Supporting Information

In-situ photo-assisted deposition of MoS_2 electrocatalyst onto Zinc-Cadmium-Sulphide nanoparticle surface to construct efficient photocatalyst for hydrogen generation

Mai Nguyen,^a Phong D. Tran,^{*a} Stevin S. Pramana,^{b,c} Rui Lin Lee,^a Sudip K. Batabyal,^a Nripan Mathews,^bLydia H. Wong,^{*a,b} Michael Graetzel^{d,e}

^aEnergy Research Institute @ Nanyang Technological University (ERI@N), Singapore; Email: <u>dptran@ntu.edu.sg</u>

^bSchool of Materials Science and Engineering, Nanyang Technological University, Singapore; Email: <u>lydiawong@ntu.edu.sg</u>

^cFacility of Analysis, Characterization, Testing and Simulation (FACTS), Nanyang Technological University, Singapore

^dLaboratory for Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland

^eCenter for Nanostructured Photosystems (CNPS), Nanyang Technological University, Research Techno Plaza, Singapore 637553

1. General

The reagents were all analytical-grade from Sigma Aldrich and used without any further purification.

2. Preparation of ternary alloyed Zn_xCd_{1-x}S nanoparticles

Typically, 0.43 mmol cadmium acetate (CdAc₂. 2H₂O), 0.54 mmol zinc acetate (ZnAc₂. 2H₂O) and 1.33 mmol thioacetamide (CH₃CSNH₂) were dissolved in 50 mL ethanol to obtain the solution 2% for each sample. The $Zn_xCd_{1-x}S$ nanoparticles with a specified x value, x = 0.2, 0.4, 0.6 and 0.8) were synthetized by mixing the precursors in ethanol at 50°C for 4 hours. The powders were collected and washed with ethanol twice then annealed in air at 150° for 5 minute.

3. Preparation of Zn_xCd_{1-x}S nanoparticles electrodes

The $Zn_xCd_{1-x}S$ (with a specified x value, x = 0.2, 0.4, 0.6 and 0.8) photoanode on conducting transparent fluorine-doped tin oxide (FTO) had been done by employing a precursor decomposition approach. The precursor was synthesized in ethanol by mixing Zinc acetate, Cadmium acetate and Thioacetamide. This precursor solution was spin-coated onto FTO followed by thermal decomposition at 150°C for 5 minute.

4. Material characterization

4.1 Morphology, Chemical Composition, and Structure Characterization

X-Ray powder diffraction (XRD) patterns were obtained using Bruker D8 Advance utilizing CuK α radiation with the scanning range from 20° to 80° in 2 θ . The morphologies of

catalysts were investigated by field emission scanning electron microscopy (FESEM, JEOL JSM-7600F) at 5 kV. High resolution transmission electron micrograph and selected area electron diffraction were recorded using JEOL2100F operating at 200keV.

4.2 Electrochemical characterization of Zn_xCd_{1-x}S/FTO films

Electrochemical analysis was done using a CHI, model 852 potentiostat. Three electrodes configuration was employed. The working electrode was $Zn_xCd_{1-x}S/FTO$ electrode, the reference electrode was Ag/AgCl, 3M KCl and the counter electrode was a Pt mesh. pH7 phosphate buffer (0.1M) solution was used as electrolyte. 0.01M Na₂S was added when sacrificial electron donor is required. Prior to measurement, electrolyte solution was carefully saturated with research-grade nitrogen gas to eliminate dissolved oxygen. Visible light illumination was provided by employing a 150W Xe lamp and a 420 nm cut-off filter. Light density on $Zn_xCd_{1-x}S/FTO$ working electrode was adjusted to 100 mW.cm⁻². I-V curves were recorded by employing linear sweep voltammetry with slow scan rate of $2mV.s^{-1}$. During measurement, light illumination was manually chopped employing a metal mask placed between the light source and the $Zn_xCd_{1-x}S/FTO$ electrode.

4.3 Photocatalytic H₂ production

Photocatalytic assays were carried out at room temperature in a closed system with outer irradiation. Briefly, 20 mL aqueous solution of Na₂S $0.35M/Na_2SO_3$ 0.25M in a 50 mL gas-tight closed schlenk was well degassed by research-grade nitrogen gas for 1h to remove dissolved oxygen. 20 mg of $Zn_xCd_{1-x}S$ nanopowder and a pre-determined $(NH_4)_2[MoS_4]$ precursor were added. Before illumination, the reaction mixture was vigorously stirred and further degassed by nitrogen gas for 15 min. The reaction mixture was then irradiated by a

300W Xe lamp (Asahi Spectra, MAX-302) equipped with a 420 nm cut-off filter. Gas in the head-cap of the reactor was manually sampled and analyzed by gas chromatography.

Supplementary data

Figure S1: *Morphology of Zn_xCd*_{1-x}*S nanoparticles*

Figure S2 : *X*-ray diffraction patterns of $Zn_xCd_{1-x}S$ together with the reported ZnS and CdS sphalerite and wurtzite [1-4]

Figure S3: Optical properties of Zn_xCd_{1-x}S nanoparticles

Figure S4: Schematic presentation of in-situ photo-assisted deposition of MoS_2 co-catalyst on $Zn_xCd_{1-x}S$ semiconductor and H_2 photo-evolution from an aqueous solution catalyzed by $Zn_xCd_{1-x}S/MoS_2$ photocatalyst

Figure S5: Typical consecutive cyclic voltammograms recorded on a carbon glassy electrode for a 0.5mM (NH_4)₂[MoS_4] solution in pH7 phosphate buffer. Potential scan rate was $50mV.s^{-1}$.

On a fluorine-doped tin oxide (FTO) electrode, deposition of MoS_2 amorphous thin film was visible after repeating 10 potential cycles or by holding this FTO electrode at 0V *vs*. RHE for 20 min.

Figure S6: *TEM image recorded on a Zn*_{0.2}*Cd*_{0.8}*S*/*MoS*₂ 3% *photocatalyst*

Catalysts	BET Surface Area (m ² .g ⁻¹)	Langmuir Surface Area (m ² .g ⁻¹)
Zn _{0.2} Cd _{0.8} S	29.2546	40.6323
Zn _{0.4} Cd _{0.6} S	51.1519	72.8227
Zn _{0.6} Cd _{0.4} S	49.0176	68.3543
Zn _{0.8} Cd _{0.2} S	5.5090	7.64955

Table S1 : Surface area measured for different Zn_xCd_1 .
--

References

1. C. Hua, R. D. Pike, R. Kershaw, K. Dwight. A. Wold, *Journal of Solid State Chemistry* 1992, **101**, 115-118.

2. M. K. Rabadanov, Kristallografiya 1995, 40, 21-27.

3. M. Ikeda, H. Wada, T. Wada, T. Hirao, *Japanese Journal of Applied Physics*, Part 1 1994, **33**, 4540-4545.

4. D. Rodic, V. Spasojevic, A. Bajorek, P. Oennerud, *Journal of Magnestism and Magnetic Materials* 1996, **152**, 159-164