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With the rapid growth of nuclear power generation and fuel processing, the treatment of

nuclear industry wastewater has become a major problem, and if not handled properly,

it will pose a potential threat to the ecological environment and human health. Herein,

a chitosan (CS)/ZIF-8 composite monolithic beads with ZIF-8 loading up to 60 wt% for

U(VI) removal was prepared, which can be easily removed after use. It possesses a very

high adsorption capacity of 629 mg•g−1 at pH = 3 for U(VI) and a well recyclability

is demonstrated for at least four adsorption/desorption cycles. X-ray photoelectron

spectroscopy (XPS) was carried out to study the adsorption mechanism between

uranium and adsorbent, and the chelation of U(VI) ions with imidazole, hydroxyl, and

amino groups was revealed. This work shows that CS/ZIF-8 composite can be used as

an effective adsorbent for uranium extraction from aqueous solution, and has a potential

application value in wastewater treatment.

Keywords: chitosan, ZIF-8, composite, uranium, adsorption

INTRODUCTION

Along with the continuous development of industrial modernization, the demand for nuclear
energy is rapidly increasing owing to its high energy density and greenhouse gas-free emission.
Uranium is a typical core resource in nuclear reaction. It is radioactive and highly toxic, and
has a high carcinogenicity (Li et al., 2016). Once discharged into the environment, it will lead to
serious pollution to the water body (Fu et al., 2017). While getting inside the human body, it will
cause irreversible damage to the internal organs (Zhang M. C. et al., 2018). Therefore, from the
perspective of environmental protection and human health, it is particularly important to recover
uranium efficiently from aqueous solution. At present, many techniques for uranium recovery from
aqueous solution have been developed, such as photocatalytic method (Li Z. J. et al., 2017; Deng
et al., 2019), chemical extraction (Sadeghi et al., 2012; Carboni et al., 2013; Wang et al., 2015),
chemical flocculation method (Newsome et al., 2015), and adsorption method (Huang et al., 2018).
Among these, adsorption method is one of the most extensive technologies because of low cost,
simple operation, high efficiency, and good removal effect (Li et al., 2018a; Wang L. et al., 2018).
The adsorbents adopted in the uranium adsorption technique include oxides (Yu et al., 2013),
sulfides (Manos and Kanatzidis, 2012), hydroxides (Li R. et al., 2017), poly (amid oxime) and its
derivatives (Wang D. et al., 2018), carbon nanotubes (Chen et al., 2018), phosphates (Zheng et al.,
2015; Cai et al., 2017), porous silica (Huynh et al., 2017), and porous carbon (Starvin and Rao, 2004)
etc. However, most of the adsorbents have some disadvantages, like low adsorption capacity, poor
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stability, or inability to circulate etc. So developing highly efficient
uranium adsorbent materials is still in needed.

Recently, metal-organic frameworks (MOFs), as a class of
novel porous material with high surface area (He et al., 2016;
Zhao et al., 2018; Li et al., 2019a), adjustable pore size (Zou et al.,
2009; Luo et al., 2016; Cheng et al., 2018), and high porosity
(Luo et al., 2018; Sun et al., 2018; Li et al., 2019b), have attracted
extensive attentions in various fields (Fang et al., 2007; Banerjee
et al., 2008). Regarding to uranium separation and recovery,
some MOFs and MOF-based composites have been developed
(Liu et al., 2018; Yang et al., 2019). For example, Wang et al.
demonstrated, for the first time, that the multilayered V2CTx
MXene could be used as a potential and efficient adsorbent for
uranium capture from aqueous solution (Wang et al., 2016).
Yang et al. reported using a rare earth-based MOF material,
MOF-76, for luminescent sensing and adsorption of uranium
(Yang et al., 2013). The adsorption was evaluated up to 298
mg•g−1 at a relatively low pH of 3.0 ± 0.1. In general, such
crystalline materials always lack flexibility and process ability,
which limits their application to actual uranium adsorption
(Kitao et al., 2017). Combining MOFs and polymers to prepare
composite monoliths will provide beneficial and significant
improvement while maintaining high adsorption capacity and
providing convenient recycling. Wang et al. processed MOFs
into nanofiber filters, which can selectively adsorb toxic SO2

gas when exposed in a SO2/N2 mixture stream (Zhang et al.,
2016). Li et al. fabricated a high-quality ZIF-8/PSS membrane,
which showed excellent performance in the nanofiltration and
separation of dyes from water (Zhang et al., 2014). For uranium
separation, Wang et al. prepared the only example of a ZIF-
8 based polyacrylonitrile (PAN) fibrous filter, which removed
uranyl ions efficiently (Wang C. H. et al., 2018). Thus, more
detailed investigations for this target are desirable.

Natural polymers are widely concerned by various industries
due to their biocompatibility, biodegradability, non-toxicity,
adsorption performance, low cost, etc. (Lee et al., 2011).
Chitosan (CS) is an important renewable natural biomass. There
are lots of free amino and hydroxyl groups in its structure,
which is advantageous to various chemical modifications
and hybridization. Owing to such features, chitosan and its
composites have been widely used for anti-bacterial coating,
drug delivery, wound dressing, and cartilage regeneration
(Mohammadzadeh Pakdel and Peighambardoust, 2018). For
example, Wang et al. investigated the U(VI) adsorption behavior
on cross-linked chitosan (Wang et al., 2009). Zhang et al.
developed an impregnation-gelation-hydrothermal technique to
prepare hybrid microspheres and hollow fibers consisting of
zeolites and chitosan, which could serve as effective absorbents
to remove Cu(II) (Zhang Y. Y. et al., 2018). To the best of our
knowledge, there is no report on chitosan composites with MOF
for uranium adsorption or separation.

Based on the above considerations, in this paper, the in situ
synthesis of a CS/ZIF-8 composite was developed (Scheme 1).
Chitosan/zinc ions beads were prepared using a peristaltic pump
firstly. When the zinc ions-containing chitosan beads were in
contact with the 2-methylimidazole solution, ZIF-8 nanocrystals
grew to form the CS/ZIF-8 composite beads, which could recover

U(VI) from aqueous solution. The effects of pH, concentration,
and adsorption time on its adsorption performances were studied
as well as the probable mechanism.

EXPERIMENT

Materials
Chitosan (CS) was purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China);
UO2(NO3)2·6H2O was purchased from Hubei Chu Sheng Wei
Chemistry Co., Ltd.; Deionized water was used in all experiments.

Preparation of CS/ZIF-8 Composite Beads
The preparation process of CS/ZIF-8 composite beads is shown in
Scheme 1. 3.0 g chitosan and 1.487 g zinc acetate were dissolved
into 0.1 L acetic acid solution (2.0%, v/v) with stirring at 550 rpm
for 4 h to form a homogeneous solution. Then, the solution was
dripped into 1M NaOH with a peristaltic pump. After 20min,
the CS/Zn2+ microspheres were taken out and washed for 3
times with deionized water to remove away excess NaOH, and
then they were soaked in an aqueous solution containing 2.315 g
(0.15mol) 2-methylimidazole. At this time, Zn2+ would react
with 2-methylimidazole to formZIF-8 in themicrospherematrix.
Next, the obtained CS/ZIF-8 hydrogel composite beads were
washed with deionized water for 3 times, soaked in tert-butanol,
changed fresh solution every 20min, subsequently freeze-dried
for 12 h to get CS/ZIF-8 composite beads (Figure 1). The average
dimension of the prepared composite beads is about 2.5mm in
diameter. The ZIF-8 content in the CS/ZIF-8 composites can be
adjusted by changing the initial Zn(CH3COO)2 amounts.

Characterization
Fourier transform infrared (FT-IR) spectroscopy was conducted
by Bruker TENSOR27. The morphology was investigated by
a scanning electron microscope (Hitachi S-4800). Powder
X-ray diffraction (PXRD) data were obtained by Miniflex-
600, with Cu Kα radiation at 40 kV and 15mA. The
thermos gravimetric (TG) curves within 30–800◦C were
collected on a TA Q600 instrument under air flow. The
concentration of U(VI) was determined by the arsenazo
III spectrophotometric method, which was measured on a
UV spectrophotometer (UV-1801, Beijing Beifen Rayleigh
Analytical Instruments (Group) Co., Ltd.). The uranium
and the interfering elements concentration were measured
by ICP-OES (X Series, Thermo Fisher, USA). The nitrogen
adsorption/desorption experiment was conducted at 77K
(ASAP2020M+c, Micromeritics Instrument Corporation, USA).
The X-ray photoelectron spectroscopy (XPS) spectra were
obtained by using ESCALAB 250Xi (Thermo Fisher, USA) with
Al Kα radiation at 1,253.6 eV.

Batch Adsorption Experiments
In a general procedure, 0.02 g of UO2 (NO3)2·6H2O was
dissolved in 0.1 L deionized water to obtain a stock solution.
The test solutions were prepared by diluting the U(VI) stock
solution. The pH was adjusted by 0.1M NaOH or HCl solution.
CS/ZIF-8 composite beads (0.002 g) were added into 0.01 L
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SCHEME 1 | Schematic depicting the in situ preparation of CS/ZIF-8 composite beads.

FIGURE 1 | Optical photos of CS/ZIF-8 composite beads with different

content of ZIF-8 (A) CS/ZIF-8–36%; (B) CS/ZIF-8–51%; (C) CS/ZIF-8–60%.

solution of U(VI). The mixture was shaken at room temperature
for desired reaction time. The concentration of U(VI) was
determined by the arsenazo III spectrophotometry. The control
experiments were conducted under similar conditions: only ZIF-
8 powder or CS replaced the CS/ZIF-8 composites. The U(VI)
adsorption capacity (qe) of the samples was calculated according
to Equation 1 (Song et al., 2018):

qe =
(C0 − Ce)V

m
(1)

where C0 refers to the U(VI) initial concentration (mg•L−1),
Ce is the equilibrium concentration (mg•L−1), V (L) refers to the
solution volume, andm (g) is the weight of the adsorbent.

After adsorption, the uranium-loaded CS/ZIF-8 adsorbents
were used directly for the elution test. The eluate was collected
after shaking for 20min on a shaker using 0.02 L of a solution
containing 0.1M NaHCO3 as an eluent, then the uranium
concentration in the eluate was analyzed. Then the CS/ZIF-8
adsorbents were washed with circulating deionized water once

before being used next for uranium adsorption-desorption cycles,
which followed the same procedure as described above.

RESULTS AND DISCUSSION

Characterization of the CS/ZIF-8
Composite Beads
The prepared composite beads are uniform with average size
of 2.5mm in diameter, which are very stable and easy to store.
Scanning electron microscopy (SEM) images show the surface
features and interfacial interactions of pure CS and CS/ZIF-
8 composites. As shown in Figure 2A, the surface of pure CS
material exhibits a smooth and evenly porous pattern. After
composition with ZIF-8, the surface becomes rough due to the
attachment of many ZIF-8 nanoparticles (Figure 2B), whose
dodecahedral morphologies are clearly visible. As the content
of Zn2+ increases in the initial reaction mixture, more ZIF-8
nanoparticles grow on the surface and internal of chitosan, and
the size is getting smaller (Figures 2C,D).

The PXRD patterns further confirm the successful growth of
ZIF-8 within the CS beads (Figure 3A). Due to the small content
of ZIF-8 in the early stage, the peak of ZIF-8 is relatively weak.
With the content of ZIF-8 increasing, the peak intensity gradually
enhanced. In order to determine the stability of the CS/ZIF-8
composites under acidic or alkaline conditions, the composite
beads were soaked in the solution with different pH (3 to 13).
Three days later, the PXRD patterns of the composite beads were
measured and no change was found, revealing the good stability
at the pH condition (Figure S1).

In order to know the content of ZIF-8 in the composite beads,
ICP analysis was performed, giving the ZIF-8 content of 36, 51,
and 60 wt% corresponding to zinc acetate initial amount of 1.487,
2.975, and 4.462 g, respectively. For convenience, the samples
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with these different ZIF-8 loading are denoted as CS/ZIF-8–
36%, CS/ZIF-8–51%, CS/ZIF-8–60%. As shown in Figure 3B, the
thermal degradation of chitosan occurs in three steps: before
100◦C, there is a small weight loss process about 10%, which
is caused by the bound water and crystal water contained

FIGURE 2 | SEM images of CS/ZIF-8 composite beads with different content

of ZIF-8. (A) pure CS; (B) CS/ZIF-8–36%; (C) CS/ZIF-8–51%;

(D) CS/ZIF-8–60%.

in the material. This process is an endothermic reaction. At
220–300◦C, chitosan is strongly degraded, with a weight loss
of about 50%. At 300–600◦C, the degradation is slow, the
weight loss is about 40%. Both steps of thermal degradation
are exothermic reactions and the thermal degradation ends at
600◦C. ZIF-8 has a residual of 33% at 600◦C, which is consistent
with the theoretical value (35%). With the increase of ZIF-8
content, the thermal decomposition temperature gradually rises,
indicating the existence of some interaction between CS and
ZIF-8 (Figure S2). Together with the TG analyses of CS/ZIF-8
composites, we can also verify the loading of ZIF-8 in CS/ZIF-8
composite beads, that is in agreement with ICP results.

FT-IR spectroscopy is shown in Figure 3C. For CS, -OH
groups vibrate at a wide band of 3,433 cm−1, overlapping with
-NH stretching vibration. The characteristic peak at 1,660 cm−1

corresponds to the vibrations of the –NH2 group. Specifically,
the absorption peak at 2,929 cm−1 is ascribed to the C-H bond
stretching vibration from themethyl imidazole ring of ZIF-8. The
absorption peak at 1,584 cm−1 belongs to the C = N vibrations,
while peaks at 1,146 and 990 cm−1 are from C-N stretching
vibration. In addition, from these spectra, we can see that with the
increasing of ZIF-8 content, the characteristic absorption peaks of
ZIF-8 in composites are enhanced.

The specific surface areas of the CS/ZIF-8 composites
were determined by nitrogen adsorption. The N2

absorption/desorption isotherms show that all materials
exhibit a typical I-type isotherm with micropore character
(Figure 3D). With the increase of ZIF-8 content, the specific
surface area also increases sequentially, which is 184.93, 279.24,

FIGURE 3 | (A) PXRD patterns, (B) TG curves, (C) FT-IR spectra, (D) Nitrogen adsorption/desorption isotherms of CS, ZIF-8, CS/ZIF-8–36%,

CS/ZIF-8–51%, CS/ZIF-8–60%.
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FIGURE 4 | Effect of pH on U(VI) adsorption of CS/ZIF-8–60% composite

beads (C0 = 100 mg•L−1, t = 24 h, mads/Vsol = 0.2 g•L−1).

and 628.80 m2•g−1, respectively, for three different ZIF-8
loading composites. The specific surface area of pure ZIF-8 is
1080.91 m2•g−1, while only 40.07 m2•g−1 for pure CS beads.
This provides possibility of the CS/ZIF-8 composite beads for
efficient adsorption of U(VI).

Evaluation of U(VI) Adsorption
Performance
Effect of Initial pH
pH is an important parameter in uranium batch adsorption
experiments (Zhang et al., 2017), due to its dramatic influence
on the charge and active site of the sorbent and the speciation
of U(VI) in solution (Min et al., 2017). Chitosan dissolves under
acidic condition of pH = 2. Therefore, a series of experiments
have been performed on the CS/ZIF-8 composite beads under pH
values ranging from 3 to 9. As shown in Figure 4, the maximum
adsorption capacity of U(VI) is obtained as 629 mg•g−1 at pH=

3.0, and then gradually decreases as the pH increases. This is a
similar trend to the work reported previously where Fe3O4@ZIF-
8 (Min et al., 2017) and ZIF-8/PAN (Wang C. H. et al., 2018) were
investigated for the adsorption of uranium. As shown in Figure 5,
at pH of 3, U(VI) mainly exits in the form of UO2+

2 cation, as
the pH increases, it will be hydrolyzed to oligomeric or colloidal
species, such as (UO2)3(OH)+5 , (UO2)4(OH)+7 , (UO2)2(OH)2+2 ,
and UO2(OH)+ etc. (Chen et al., 2018). Due to the increased
dimensions of these species, a decrease of adsorption efficiency
is resulted with pH increasing (Wang C. H. et al., 2018). In
addition, the decreased uptake trends at pH > 6.5 may also
arise from the electronic repulsion between the negative charged
U(VI) species including UO2(CO3)

2−
2 and UO2(CO3)

4−
3 and the

adsorbent surfaces (Cai et al., 2017). So pH of 3 is the optimal
adsorption value, and following adsorption investigations were
performed at this condition.

FIGURE 5 | The pH-dependence of various U(VI) species in aqueous solution

CU(VI) = 100 mg L−1 (0.038% atm in the presence of CO2).

Adsorption Kinetics of the CS/ZIF-8 Composite

Beads
The adsorption kinetics of CS, ZIF-8 and CS/ZIF-8 composite
were studied with different contact time. As shown in Figure 6A,
several curves have similar trends where a fast adsorption of
uranium is observed at the initial 60min, and followed by
a slower adsorption period until an equilibrium of uranium
adsorption is reached. It could be explained from this: U(VI)
ions first diffuse into the porous CS/ZIF-8 composite beads and
they are adsorbed by interior active sites with a slow process until
most surface active sites are occupied (Wang C. H. et al., 2018);
To further investigate the mechanism of adsorption process, the
U(VI) adsorption behavior are fitted using kinetic models as
shown in Equation (2) and (3) (Yang et al., 2013):

Pseudo - first - order:

ln
(

qe − qt
)

= ln qe − k1t (2)

Pseudo - second - order:

t

qt
=

1

k2qe2
+

t

qe
(3)

where qe and qt (mg•g−1) refer to the U(VI) maximum
adsorption capacity and the adsorption capacity at t (min),
respectively, t is contact time (min), and k (g•mmol−1•min−1)
is the kinetic constant. The fitting results (Figure 6A) show that
the degrees of linearity of fitted curves of pseudo-second-order
model are more suitable than those of pseudo-first-order model,
and the values of correlation coefficient (R2) of U(VI) fitted by
pseudo-second-order model are higher than those of pseudo-
first-order model (Table S1), indicating that the adsorption
process is mainly chemical adsorption. The calculated qe is close
to the experimental value. With the increase of ZIF-8 content, the
adsorption amount gradually increases, the adsorption amount

Frontiers in Chemistry | www.frontiersin.org 5 September 2019 | Volume 7 | Article 607

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Liu et al. Chitosan/ZIF-8 Composite Beads

FIGURE 6 | Kinetic and isothermal studies of U(VI) adsorption process, fitted with second-order kinetics (A) and Langmuir models (B) respectively (C0 = 100

mg•L−1, pH = 3, t = 24 h, mads/Vsol = 0.2 g•L−1).

TABLE 1 | Comparison of the maximum adsorption capacity of CS/ZIF-8–60%

with other MOF-based adsorbents.

Absorbents pH qm(mg/g) Refs

GO-COOH/UiO-66 8.0 1002 Yang et al., 2017

CS/ZIF-8–60% 3.0 629 This work

GO/ZIF-67-Ag 7.0 602.41 Guo et al., 2019

PPy@ZIF-8 3.5 534 Li et al., 2018b

ZIF-8/PAN 3.0 530.3 Wang C. H. et al.,

2018

Fe3O4@ZIF-8 3.0 523.5 Min et al., 2017

FIGURE 7 | Elution cycle experiment of CS/ZIF-8–60% for U(VI) adsorption.

of CS/ZIF-8–60% reaches to 608 mg•g−1, which is superior
evidently to the ZIF-8 powder (498 mg•g−1) and CS (208
mg•g−1). This better adsorption performance of the CS/ZIF-8–
60% composite for U(VI) may be ascribed to its pore structures
(Wang C. H. et al., 2018).

Adsorption Isotherms of the CS/ZIF-8 Composite

Beads
In order to investigate the maximum adsorption capacity of
the CS/ZIF-8 composites to uranium, the adsorption isotherm
experiments with various initial concentrations of uranium (20–
200 mg•L−1) were carried out at room temperature. As shown
in Figure 6B, the Langmuir and Freundlich models are used to
quantitatively analyze the adsorption isotherms. The equations
are as follows (Aguila et al., 2017):

Langmuir models

1

qe
=

1

qm
+

1

qmKLC e

(4)

Freundlich models

log qe =
log Ce

n
+ logKF (5)

where qm (mg•g−1) refers to the maximum adsorption capacity,
qe is the amount of adsorbed uranium at equilibrium (mg•g−1),
Ce is the equilibrium concentration (mg•L−1), KL (mL•g−1)
is involved in the affinity of the adsorbate with the adsorbent,
KF refers to the Freundlich constant, and n is the Freundlich
exponent. The results suggest that equilibrium isotherm
experimental data is well-described by the Langmuir model with
higher correlation coefficient (R2; Table S2), demonstrating that
this adsorption process is a monolayer chemical adsorption.
The theoretical maximum adsorption capacity of 625 mg•g−1

for CS/ZIF-8–60% is consistent with experimental value 629
mg•g−1. Compared with other reported MOF-based composite
materials, the CS/ZIF-8–60% exhibits a very high adsorption
capacity in uranium extraction (Table 1).

The Recyclability of the CS/ZIF-8 Composite Beads
Reusability is a very important index for an adsorbent. A solution
of NaHCO3 (0.1M) was used as an eluent to evaluate the
reusability of CS/ZIF-8 adsorbents. As shown in Figure 7, the
CS/ZIF-8–60% canmaintain a high adsorption performance after
four adsorption/desorption cycles, specifying a good durability
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FIGURE 8 | (A) PXRD patterns and (B) FT-IR spectra of CS/ZIF-8–60% before and after U(VI) uptake.

FIGURE 9 | XPS survey scans of CS/ZIF-8–60% before and after U(VI) uptake; high-resolution XPS spectra of U 4f (A), C 1s (B), N 1s (C,D), O 1s (E,F) before and

after U(VI) uptake.

and recyclability, which is critical for the reduction of cost
in practical uranium recovery applications. The slight decrease
of the adsorption capacity could be caused by the inevitable
mass loss of adsorbent during regeneration process. In addition,
the structure of CS and ZIF-8 remained intact after the cycle
experiment for uranium adsorption (Figure S3). Hence, the
CS/ZIF-8 composite possess an excellent reusability and can serve
as an economical and efficient adsorbent for the removal of U(VI)
from aqueous solution.

Potential Adsorption Mechanism
Additional characterization approaches were adopted to identify
the underlying removal mechanism of U(VI). As shown in

Figure 8A, the PXRD patterns before and after adsorption of
uranium are consistent, indicating that no phase change occurs
after adsorption. FT-IR studies show a characteristic absorption
peak of uranyl appears at 901 cm−1 after uranium adsorption
(Figure 8B). Moreover, both the vibrations of C-N at 1,146 cm−1

and NH2 at 1,660 cm−1 exhibit obvious red shifts after U(VI)
uptake. Especially at 3,340 cm−1, the apparent broad peak is
attributed to the stretching vibration of the hydroxyl group and
the amino group, which suggests that there are a large amount of
Zn-OH and N-H bonds through the water decomposition on the
composite material surface. They are involved in the interaction
with U(VI), proving the chelation of U(VI) ions with imidazole
and chitosan (Cai et al., 2017).
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In order to better understand the adsorption mechanism
of U(VI), XPS analysis was further carried out. The broad
scan XPS spectrum of CS/ZIF-8–60% composite exhibits
peaks of O 1s, C 1s, N 1s, and Zn 2p at 532.08, 281.08,
401.08, and 1022.08 eV, respectively (Figure S4). In addition,
two distinct peaks of U 4f appear at 383.08 and 392.08 eV
after U(VI) ingestion (Figure 9A). To verify the interaction
between U(VI) and CS/ZIF-8 composite, narrow scans of
C 1s, N 1s, and O 1s peaks are recorded and analyzed
(Figures 9B–D). The spectral fitting shows that the energy
peaks of C 1s and N 1s all exhibit a significant red shift
after U(VI) adsorption, indicating the chelation of U(VI)
with nitrogen from chitosan and imidazole (Wang C. H.
et al., 2018). Figures 9E,F indicate an obviously difference of
oxygen spectra. A new peak occurs with a binding energy
of 530.75 eV representing Zn-O-U after uranium adsorption
(Su et al., 2018). In addition, O-H has a weak red shift.
These prove that hydroxyl groups on chitosan and Zn-OH
moiety in ZIF-8 complex with uranyl (Su et al., 2018).
The analysis of XPS is consistent with the above infrared
experiment result.

CONCLUSION

In summary, CS/ZIF-8 composite beads with different ZIF-

8 loadings were synthesized by in situ growth for uranium
removal. The maximum uranium adsorption capacity of CS/ZIF-

8–60% is higher than most reported MOF-based composite

adsorbents. In addition, the micron scale spherical adsorbent
exhibits outstanding recyclability and is easy to recover. Based
on the results of desorption experiments and spectroscopic
analysis, the highly efficient removal mechanism of U(VI) is
predominantly controlled by the -OH, -NH2, and C-N groups

chelating with U(VI) ions. The results show that CS/ZIF-8
composite is a promising absorbent for uranium recovery from
aqueous solution. The findings in this work will pave the
way for the development of practical adsorbents for irradiative
wastewater treatment.
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