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Abstract 

Additive manufacturing (AM) has attracted considerable attention in recent years. This 

technology overcomes the geometrical limits of workpieces produced with the traditional 

subtractive methods and so gives the opportunity to manufacture highly complex shapes. 

Unfortunately, the repeatability of the manufacturing process and the monitoring of quality are 

not reliable enough to be utilized in mass production.  The quality monitoring of AM processes 

in commercial equipment have been largely based on temperature measurements of the process 

zone or high resolution imaging of the layers. However, both techniques lack information about 

the physical phenomena taking place in the depth of the materials medium and this limits their 

reliability in real-life applications. To overcome those restrictions, we propose to combine 

acoustic emission and reinforcement learning. The former captures the information about the 

subsurface dynamics of the process. The latter is a branch of machine learning that allows 

interpreting the received data in terms of quality. The combination of both is an original method 

for in situ and real-time quality monitoring. Acoustic data were collected during a real process 

using a commercial AM machine. The process parameters were selected to achieve three levels 

of quality in terms of porosity concentration while manufacturing a stainless steel 316L cuboid 

shape. Using our method, we demonstrated that each level of quality produced unique acoustic 

signatures during the build that were recognised by the classifier. The classification accuracy 
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reached in this work proves that the proposed method has high potential to be used as in situ and 

real-time monitoring of AM quality. 

Introduction 

Additive manufacturing (AM) technology is viewed by many as an enabling technology to 

usher in the next industrial revolution (Ref 1). In contrast to subtractive technologies, AM is 

often considered to be ideal for rapid prototyping unique workpieces with very few geometrical 

limitations in terms of shape (Refs 1,2). The AM sub-branch based on powder bed technology 

and known as Powder Bed Fusion Additive Manufacturing (PBFAM) has a broad application in 

the automotive and machine tool industries (Ref 3), aerospace applications (Ref 4), medical 

devices (Ref 5) and even turbines (Ref 6). However, despite all the advances in this technology, 

transitioning it to mass production is of great concern. The reason is a lack of process 

reproducibility and quality between workpieces. Thus, a reliable and cost-effective in situ and 

real-time quality monitoring technology is in great demand (Refs 7-9). 

During the last five years, the developments of AM quality monitoring has focused in three 

main areas: (a) temperature measurement of the melt pool either by pyrometers (Refs 10,11) or 

highs speed cameras (Refs 11,12), (b) image analysis of the surfaces of each individual layer of 

the workpiece (Ref 13) and (c) x-ray phase-contrast imaging (XPCI) (Refs 14-16) and/or x-ray 

computed tomography (XCT) of the entire workpiece (Ref 17). Despite such a diversity, each of 

the listed technologies have drawbacks that constrain their applicability in mass production (Refs 

7-9). Temperature measurement of the melt pool is limited to the melt surface and no 

information is available regarding the complex liquid movement and heat distribution throughout 

the depth. The image processing approach assesses the quality after an entire layer is produced 

and can detect only defects at the surface of the layer being built but, for obvious reasons, not 

defects created within the melt pool such as pores. Regarding x-ray technologies, XPCI is only 

used for in situ and in real-time investigations in laboratory conditions. It allows investigating 
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the origin and propagation of defects, but the algorithmic processing of the acquired data is not 

suitable for real-time implementations. XCT is applied by industries in a limited number of cases 

due to the high costs but it can be only performed after the build and the workpiece has been 

removed from the build plate. Both x-ray methods are costly and time-consuming (Refs 14-17).  

This work is an original approach for in situ and real-time quality monitoring of the PBFAM 

process, combining acoustic emission (AE) and reinforcement learning (RL). The former 

captures the information about the subsurface dynamics of the process and evidence of this is in 

(Refs 15,16). The latter is a sub-branch of machine learning (ML). The attraction of AE is in its 

reliable detection of the numerous physical phenomena with practical, cost-effective hardware 

realizations. These advantages are intensively exploited in a number of practical applications 

(Ref 18). AE was, to some extent, successfully used by Ye et al. (Ref 19) to detect several 

defects such as various states of balling and overheating during PBFAM processes. Nonetheless, 

the quality monitoring during a normal AM process is still required. The combination of AE and 

ML has been successfully applied in a number of applications, such as tribology (Refs 20,21), 

fracture mechanics (Ref 22), and AM/laser welding process (Refs 16,23,24,25). These examples 

had similarities with our current work since they were characterised by being complex, highly 

dynamic and in noisy environments. Those examples gave additional motivations to involve the 

same techniques for the AM quality monitoring problem. 

Experimental setup, material and datasets 

The details on the experimental setup, materials and dataset can be found in Shevchik et al. 

(Ref 24). Therefore, only a summary is given in this contribution. An industrial Concept M2 

PBFAM machine was used to collect the AE dataset and to reproduce the industrial environment. 

A Concept M2 was equipped with a fibre laser operating in continuous mode with a wavelength 

of 1071 nm, a spot diameter of 90 μm, and a beam quality M2 = 1.02. In addition, to detect the 

airborne AE signals generated during the AM process, an optoacoustic sensor, known as fibre 
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Bragg Grating (FBG), was installed in the machine. More details about FBGs can be found in 

Kashyap (Ref 26). The AM manufacturing was carried out with a CL20ES stainless steel (1.4404 

/ 316L) powder with a particle size distribution ranging from 10 to 45 μm. A cuboid workpiece 

with dimensions 10x10x20 mm3 was manufactured. The laser power (P), the hatching distance 

(h), and the layer thickness (t) were kept constant during the experiment with P = 125 W, 

h = 0.105 mm and t = 0.03 mm. In contrast, three scanning velocities υ were used: 800, 500 and 

300 mm/s leading to three classes of quality (different pores concentrations). The corresponding 

energy density (Edensity) and quality class were (i) 800 mm/s, 50 J/mm3, poor quality = 1.42 ± 

0.85 %, (ii) 500 mm/s, 79 J/mm3, high quality = 0.07 ± 0.02 % and (iii) 300 mm/s, 132 J/mm3, 

medium quality = 0.3 ± 0.18 %. The energy density was calculated based on Eq. 1 taken from 

Thijs et al. (Ref 27) whereas the pore concentrations was measured from cross-sections via 

visual inspection of light microscope images. A general view of the manufactured piece and the 

corresponding quality in terms of pores concentration inside the material medium are given in 

Fig.1.  

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃
𝑣𝑣∙ℎ∙𝑑𝑑

  (1)  
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Figure 1: a) Test workpiece produced with three porosity contents; b) – d) Typical light 

microscope cross-section images of the regions produced with b) 300 mm/s, 132 mm3 (medium 

quality), c) 500 mm/s, 79 mm3 (high quality) and d) 800 mm/s, 50 mm3 (poor quality). 

Reprinted by permission from Elsevier License: Elsevier, (Ref 24). 

 

The AE signals were recorded throughout the entire manufacturing process using a fibre 

Bragg Grating (FBG). The FBG was mounted inside the chamber, at more or less 20 cm distance 

from the process zone. To increase the sensitivity of the FBG, it was place so that the 

longitudinal axis of the fibre was perpendicular to the acoustic wave as shown in Fig. 2a. The 

scheme of the FBG read out system is presented in Fig. 2b. The FBG sensor has several 

advantages as compared to piezo sensors. The FBG can be used either clamped on the machine 

or airborne. It is small (with a total diameter of 125 μm and 1 cm in length), highly sensitive to 

acoustic signals (0 to 3 MHz), insensitive to dirt and magnetic field, and provides a sub-

nanosecond time resolution (Ref 26), thus fitting the needs for real-life application in dirty and 

noisy environment. A dedicated software from Vallen (Vallen Gmbh, Germany) recorded the AE 

signals with an original sampling rate of 10 MHz. The signals were then down sampled to 1 
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MHz sampling rate to fit the dynamic range of the process (0 Hz to 200 kHz) (Refs 19,24,25). 

The AE signals recorded during the AM process were then classified based on the quality level.  

 

 

 

Figure 2: a) view of the FBG location inside the AM chamber with the optical feedthrough on 

the chamber panel (left) and the FBG read out system (right); (b) scheme of the FBG read out 

system. 

Reprinted by permission from Elsevier License: Elsevier, (Ref 24). 

 

Data processing 

This work investigates the applicability of reinforced learning (RL) (Ref 28) towards the AM 

quality monitoring problem. Alongside other machine learning methods, RL is a separate 

paradigm that is inspired by the human cognitive capabilities of learning in its surrounding world 

(Ref 28). The technique assumes that the knowledge (or classes) is partially or even not 

structured and the structuring of the newly acquired information is carried out efficiently through 

an interaction with its surrounding environment (Ref 28). This is the training process of the 

algorithm, in which the optimal interaction is constructed when winning a maximum numerical 

reward (e.g. constructing a cost function) (Refs 28,29). In this work, we employed a general 

realization of RL from Silver and Huang (Ref 30) due to its potential for the future AM quality 
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monitoring systems. The reason behind its great attractiveness is that AM processes are 

characterised by a complex underlying physical phenomena involving a great number of the 

momentary events (heating, melting, solidification, etc.). Each of those has a crucial effect on the 

process dynamics (Refs 8,15,16). This complicates the preparation of a detailed training dataset, 

requiring expensive and time consuming methods for data labelling (Refs 9,16,24). In this 

context, RL potentially may provide, with a minimum supervision, correlations between the 

acoustic emission signals and the detected momentary events. This brings two significant 

advantages in real-life applications. First, taking advantage of the outstanding RL self-learning 

capabilities in future systems may reduce the costs for preparing the training datasets (Ref 30). 

Second, the same advantages promise an efficient adaption for an already trained RL based 

algorithms to new manufacturing conditions/materials.  

In the present study, RL was trained in a supervised manner using a dataset, collected in a 

previous work (Refs 23,24). The dataset was labelled and included three quality classes, 

represented by different porosity concentrations inside a manufactured workpiece as described in 

section Experimental setup, material and datasets as well as in (Refs 23,24). The objective of 

using this specific dataset was to check the capabilities of RL to recognize the differences in the 

AE spectrograms from the predefined classes. 

Based on our previous work (Ref 24), all collected signals were divided into separate datasets 

representing a time spans of 160 ms for each individual pattern (Ref 24). The relative energies of 

the frequency bands from the wavelet packet transforms were extracted for each of such pattern 

individually. A typical example of an AE signal with a 160 ms time span and the corresponding 

wavelet spectrogram can be viewed in Figure 3. The wavelet spectrogram is a signals time-

frequency domain that contains the information about the evolution of the narrow frequency 

bands in time. There are three reasons of using wavelet spectrograms. First, the wavelet 

spectrogram is a sparse representation of the signals that reduces the amount of input data for 
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analysis as compared to the AE raw signal. Second, it keeps the same classification accuracy 

(Ref 24). Finally, it is a comfortable noise reduction by selection of non-noisy frequency bands. 

The choice of the aforementioned parameters was obtained via an exhaustive search in our 

previous work (Ref 24) which provided a successful classification of the AE signals in terms of 

pore concentrations using neural network classifiers. Actually, the 160 ms time span supplied the 

best trade-off between the classification accuracy and the spatial resolution. The spatial 

resolution was estimated in terms of scanned distance (mm), processing area (mm2) and powder 

volume processed (mm3). The processing area was chosen as it is a function of spot diameter and 

scanning velocity. The powder volume processed was considered as it is a function of spot 

diameter, scanning velocity and laser power. The spatial resolutions for the different parameters 

are given in Table 1. By using the same time span and process parameter as in (Ref 24), our 

present results are directly comparable. 

Table 1: Spatial resolution of the process for the different process parameters 
Scanning 
velocity 
[mm/s] 

Energy 
density 
[J/mm3] 

Quality Scanned 
distance 

[mm] 

Processing 
area 

[mm2] 

Powder volume 
processed 

[mm3] 
300 132 Medium 48 4.4 17.6·10-3 
500 79 High 80 7.2 28.8·10-3 
800 50 Poor 128 11.6 46.5·10-3 

 

The extracted wavelet spectrograms were the direct input to the RL algorithm. The original 

total dataset (training + test dataset) included a total of 180 spectrograms that were equally 

distributed between each of the three quality classes. At the same time, the number of the 

samples in the training set was gradually reduced to observe the algorithm performance. The 

details on the data processing are given in the section Reinforcement learning.  
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Reinforcement learning 

We employed a general realization of the Reinforcement Learning (RL) and the details can be 

found in (Refs 28,29). In our general setup, the interaction of an RL agent with the given 

environment is a Markovian process which is characterized by the tuple (S, A, P, R), where S is 

the state space of the agent, A is an action space in which each action ai transfers from the state s 

to s|, P is a Markov model that incorporates the probabilities of the transitions between any of the 

two states s and s| by means of the action ai with the corresponding probabilities p(s,a,s|), and R 

is the space of the rewards. The individual reward is assigned for any action ai that took place at 

state si. Despite our limited datasets, we decided to employ the model-free approach 

(Refs 28,29,31), in which the Markov model and actions are not known a priory and are 

estimated during the training process. The classification process sets the initial state to s0 while 

the algorithm reaches the goal sg by the actions that win the maximum reward. The governing 

equation for the optimal reward is given by the following optimality criterion (Refs 28,29):  

𝑇𝑇𝜋𝜋(𝑠𝑠) = 𝐸𝐸 ��𝜆𝜆𝜆𝜆�𝑠𝑠𝑑𝑑,𝜋𝜋(𝑠𝑠𝑑𝑑)�
𝑑𝑑

|𝑠𝑠0 = 𝑠𝑠� (2)  

 
where E is the expectation, the discount factor λ⊂[0,1), and π(st) is a policy that maps the states 

to the actions. In Eq. (2), all actions and their corresponding rewards T are defined for a specific 

policy. The search of the optimal policy is an iteration process so that at each iteration step i 

computes Tπ i , and where the subscript (π i) is the current policy that determines the so-called Q-

value according to Eq. (3), defined in the framework of the Q learning approach that was applied 

in this study (Ref 28): 

𝑄𝑄𝜋𝜋 𝑑𝑑(𝑠𝑠,𝑎𝑎) = 𝜆𝜆(𝑠𝑠,𝑎𝑎) + 𝜆𝜆� 𝑝𝑝(𝑠𝑠,𝑎𝑎, 𝑠𝑠|)
𝑑𝑑|

𝑇𝑇𝜋𝜋 𝑑𝑑(𝑠𝑠) (3)  

 
The iterative update of the new policy is made as follows: π (i+1)(s) = argmaxQ (s, a). The 

actions in the algorithm follow some specific strategies and we used the ε-greedy strategy (Ref 
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28). In this strategy, each action is selected randomly with some predefined fixed probability 

ε ⊂ [0,1]. The choice of the policy is conditioned by the value ᵹ ⊂ (0,1) that is assigned at each 

step and is performed as follows: π i = random from A(s) if ε > ᵹ, otherwise π i (s) = argmaxQ (s, 

a). 

Additionally, we exploited the tabu search from Glover and Laguna (Ref 32). In this 

framework, the search of a near optimal path is carried out by analysing a restricted subset of the 

state space, thus reducing the exploration and preserving the computational time in case of big 

datasets (Ref 32).  

The multi-class case, in this investigation, was resolved using a one-against all strategy and 

three agents were involved - one for each specific class. In this particular case, the environment 

for the agent was created by the wavelet spectrograms (Refs 23,24) that are 2D maps of the time-

frequency space of the signals. Those are formed using the relative energies of the narrow bands, 

localized in time and frequency range. In this context, the search for the optimal policies was 

carried out by the construction of cost over the aforementioned domain. 

We also found it interesting to determine the minimum number of elements inside the wavelet 

spectrograms that could be used without harming the classification accuracy. To do so, we 

reduced the number of the elements inside the wavelet spectrograms to a minimum by excluding 

the decomposition levels that included the noisy frequency bands. The source of noises was 

generated by the moving mechanical workpieces of the industrial AM printer and was localized 

in wider frequency bands. The minimum number of frequency bands that provided acceptable 

results, which was defined in this work as classification accuracies above 70%, was 24 frequency 

bands per spectrogram. The tests were run in in a PC with i7 processor and 16 Gb RAM.  
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Results and discussions 

As already mentioned in section Experimental setup, material and datasets, three quality 

classes were predefined. Figure 3 shows typical light microscope cross-section images of the 

three different qualities (left), their corresponding AE signal with a 160 ms time span (middle) 

and their corresponding wavelet spectrogram (right). Based on this figure, two observations can 

be made. First, the AE signals are distinguishable. Although the amplitude is similar in all AE 

signals, the signal to noise ratio seems to increase by increasing the scanning velocity and 

evidence of this is visible in Fig. 3(a) to (c). Second, clear differences can be also seen in the 

wavelet spectrograms, in particular in the decomposition level ranging from 4 to 12. Therefore, 

we used the wavelet spectrograms due to their higher robustness as compared to the AE raw 

signals, as explained in Section Data processing.  

 

 

Figure 3: From left to right, (left) typical light microscope cross-section images, (middle) their 

corresponding AE signals with a 160 ms time span, and (right) their corresponding wavelet 

spectrogram of the regions produced with a) 300 mm/s, 132 mm3 (medium quality), b) 500 

mm/s, 79 mm3 (high quality) and c) 800 mm/s, 50 mm3 (poor quality). 
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Each class was characterised by a dataset with 60 wavelet spectrograms, computed according 

to Shevchik et al. (Ref 24). The signals were split into two completely separate datasets; one for 

training and one for the tests. It is important to emphasize that the signals for the tests were never 

seen by the RL algorithm during training, thus imitating new data arrival in real-life conditions. 

The training dataset contained 40 spectrograms, whereas the other 20 spectrograms for each class 

were used to test the RL algorithm. The selection of the spectrograms was carried out randomly. 

Two hundred tests were carried out similarly to a Monte Carlo approach (Ref 33). In other 

words, for each of the two hundred tests, the signals for building a specific training and test 

datasets were re-selected randomly from the originally collected dataset. More details about the 

Monte Carlo method can be found in the review by Robert and Casella (Ref 33). This strategy 

allowed varying the input conditions for the algorithm and to investigate its performance with 

different training/test combinations in order to obtain a reliable statistical test over the collection 

of the AE signals. The accuracy for each test was computed as the number of true positives 

divided by the total number of the tests (e.g. the number of samples in test dataset). The total 

accuracy was computed as an averaged value determined as: 

𝜀𝜀𝑎𝑎𝑣𝑣𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 = � 𝜀𝜀𝑑𝑑
𝑑𝑑=1,..,𝑁𝑁

𝑁𝑁�  (4)  

 

where N was equal to two hundreds (the total number of tests). In contrast, the classification 

errors are computed as the number of the true negatives divided by the total number of the tests 

for each class. Any further increase of the number of tests did not make any changes in the 

accuracy rates.  

The classification test results are presented in Table 2, where the classification accuracies 

ranged from 74 to 82% (See the diagonal cells in grey colour). These results demonstrate the 

feasibility of our approach for quality monitoring of AM processes. It is noteworthy that these 
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results were produced with hardware that was not optimised to fit best the process parameters as 

discussed in Shevchik et al. (Ref 24). The main potential improvements are twofold. First, the 

setup and the spectral characteristics of the AE/FBG sensor can be improved. Adjustment of 

FBG holder position, orientation and/or design can potentially enhance the shockwave 

incoupling to the sensor. In parallel, by modifying the FBG refractive index profile, we are able 

to either maximize dynamic range or its sensitivity. Second, the number of data/samples in the 

dataset could be increased and this will certainly enhance the classification accuracy results.  

Analysing in more details the results in Table 2, it is seen that the highest accuracy is achieved 

for the poor quality (82%), followed by the medium quality (79%) and the high quality (74%). In 

addition, the analysis of the classification errors structure can be evaluated from the non-diagonal 

rows in Table 2. Statistically, the error structure in the table recovers the overlaps between the 

distinct features from the predefined quality classes. For example, in Table 2, poor quality is 

classified correctly with 82% confidence. The highest classification error (11%) for this class is 

in the overlap with the high quality class. The overlap with the medium quality leads to a 7% 

misclassification. Actually, observation of the test results in Table 2 indicates that for the poor 

quality and medium qualities, the misclassification errors are higher between the classes with the 

smaller differences in the laser scanning speed velocity (and vice versa). In other words, the 

misclassification errors increase as the differences in scanning velocity between the classes 

decrease. Consequently, for the high quality with an intermediate laser scanning velocity 

(500 mm/s), the misclassification errors are also approximately split equally between the 

medium quality (12%) and poor quality (14%). At the same time, the medium quality and poor 

quality showed fewer overlap errors between each other since they had greater differences in the 

scanning laser velocity. The physical explanation may be that a slight change of the laser 

scanning velocity still provoked several similar physical events. The acoustic patterns from those 

provided the overlaps between the predefined quality classes (see Table 2). Further investigation 
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for classification of AE will be focused to minimize the error rates and to provide a higher 

classification confidence. In addition, optimizations of the FBG setup mentioned earlier should 

be considered. All these are planned as a continuation of the present work. 

 

Table 2: Test results (in %) for different classes (in rows) versus ground truth (in columns). 
The classification accuracy is given by the numbers in bold in the diagonal cells 

                       Ground truth  
Test classes High quality Medium quality Poor quality 

High quality (0.07 ± 0.02 %, 500mm/s, 79 mm3) 74 12 14 
Medium quality (0.3 ± 0.18 %, 300 mm/s, 132 mm3) 12 79 9 

Poor quality (1.42 ± 0.85 %, 800 mm/s, 50 mm3) 11 7 82 
 
 

Conclusions 

This work is a feasibility study for in situ and real-time monitoring of AM processes using 

fibre Bragg grating (FBG) as an acoustic sensor, and reinforced learning (RL) for data 

processing. The data collection was made during a real manufacturing process in a Concept M2 

industrial machine equipped with a fibre laser (wavelength = 1071 nm, spot diameter = 90 μm, 

M2 = 1.02) operating in continuous mode. The laser power was set to P = 125 W, the hatching 

distance to h = 0.105 mm and the layer thickness to t = 0.03 mm. Three different scanning 

velocities were used to produce a workpiece with three quality classes (poor, medium and high 

quality). After training of the RL based algorithm, the classification of the quality was performed 

with a confidence level between 74 and 82%. This initial result is promising, and is likely to 

improve when the hardware and analysis algorithms are optimized. The presented approach 

appears to be a good first step towards realization of useful in situ and real-time quality 

monitoring in additive manufacturing. 
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