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In Situ Stress Measurements to 3.5 km Depth in the Cajon Pass Scientific 

Research Borehole' Implications for the Mechanics of Crustal Faulting 

MARK D. ZOBACK 

Department of Geophysics, Stanford University, Stanford, California 

JOHN H. HEALY 

Office of Earthquakes, Volcanoes and Engineering, U.S. Geological Survey, Menlo Park, California 

Measurements of in situ stress orientation and magnitude at the site of the Cajon Pass research 
borehole have been made from depths of 0.9-3.5 km using the hydraulic fracturing technique and 
analysis of stress-induced well bore breakouts. The results of these measurements support two 
important conclusions about the mechanics of crustal faulting. First, the magnitudes of measured in 
situ stresses indicate ratios of shear to normal stres. s on favorably oriented fault planes that are 
consistent with predictions based on Mohr-Coulomb theory and laboratory-determined coefficients of 
friction in the range of 0.6-1.0 assuming hydrostatic pore pressure (this is commonly known as 
Byerlee's law). Thus the stress measurements indicate that the frictional strength of the crust adjacent 
to the San Andreas fault is high (i.e., consistent with laboratory-derived friction values) and that the 
level of shear stress in the crust adjacent to the San Andreas is principally controlled by its frictional 
strength. However, data on the orientation of maximum horizontal compression in the borehole from 
1.75 to 3.5 km (N57øE + 19 ø) indicate that the San Andreas must be quite weak as a complete absence 
of right-lateral shear stress resolved on planes parallel to the --•N60øW striking San Andreas fault is 
observed. The lack of right-lateral shear stress on planes parallel to the San Andreas fault at this site 
is especially surprising as Cajon Pass is located along a section of the San Andreas which has not had 
a major earthquake since 1812 and is thus presumably quite "late" in the earthquake cycle. 
Nevertheless, both the orientation and magnitudes of stresses measured in the well are consistent with 
the style of active faulting in the area surrounding the drill site, most notably normal faulting and 
Quaternary age left-lateral slip on the Cleghorn fault that parallels the San Andreas in the vicinity of 
the drill site (Meisling and Weldon, 1982; Weldon, 1986; R. J. Weldon et al., unpublished report, 1981). 
We argue that the stress state (and Quaternary fault offsets) observed in the Cajon Pass area could 
exist only if the San Andreas moved at low shear stresses comparable to seismic stress drops rather 
than the much higher values predicted by Byerlee's law, a conclusion consistent with the lack of 
frictionally generated heat flow along the San Andreas system (e.g., Brune et al., 1969; Henyey and 
Wasserburg, 1971; Lachenbruch and Sass, 1973, 1980). Taken together, the Cajon Pass in situ stress 
and heat flow measurements (Lachenbruch and Sass, this issue) support a conceptual model of the San 
Andreas system in which the San Andreas is extremely weak with respect to the surrounding crust. 

INTRODUCTION 

A long-standing problem in understanding the mechanics 

of earthquakes is the level of shear stress acting on major 

crustal faults like the San Andreas fault. Application of 

Mohr-Coulomb faulting theory and laboratory-derived coef- 

ficients of friction in the range of 0.6-1.0 [e.g., Byeflee, 1978] 

imply average levels of shear stress for the seismogenic part 

of the fault (the upper ---15 km) that are about a factor of 5 

higher than stress levels inferred from numerous heat flow 

measurements which indicate a complete absence of friction- 

ally generated heat on the fault [Brune eta!., 1969; Henyey 

and Wasserburg, 1971; Lachenbruch and Sass, 1973, 1980, 

1988, this issue]. This discrepancy is sometimes referred to 

as the San Andreas stress/heat flow paradox. 

The importance of resolution of this paradox is multifold. 

Are laboratory-derived friction data and experimentally 

based earthquake instability mechanisms such as stick-slip 

and time-dependent friction that are associated with high 

friction levels relevant to earthquakes along major faults like 

the San Andreas [e.g., Brace and Byedee, 1966; Byedee, 
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1970; Dieterich, 1979]? Are conceptual models of the state of 

stress in the lithosphere in which the overall average stress 

levels are defined by the "high" frictional strength of the 

upper crust and upper mantle relevant to plate boundaries 

[e.g., Sibson, 1982, 1983; Kirby, 1980; Chen and Molnar, 

1983; Smith and Bruhn, 1984; Molnar, 1988]? What are the 

relative magnitudes of the forces that drive and resist plate 

motion along plate boundary [e.g., Lachenbruch and Sass, 

1973, 1980, this issue; Hanks, 1977]? Do earthquake stress 

drops (typically in the range of--•1-10 MPa [Kanamori and 

Anderson, 1975]) represent near-complete relief of shear 

stress along the plate boundary or only a relatively minor 

perturbations superimposed on an ambiently high level of 

shear [e.g., Lachenbruch and Sass, this issue; Shamir and 

Zoback, this issue]? 

The implications of these questions are obviously far 

reaching. Yet despite the fact that discussions of the possible 

weakness of the major transform faults like the San Andreas 

have been going on for over two decades (see also Lachen- 

bruch and Thompson [1972] and Oldenburg and Brune [1972, 

1975] for arguments that motion along oceanic transforms is 

also resisted by extremely little shear stress), little attention 

has been paid to the implications of the weak fault hypoth- 
esis. One reason for this is that heat flow measurements are 

5039 
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an indirect method for measuring average stress. Also, as 

nearly all the available conductive heat flow data near the 

San Andreas have come from holes only about 300 m deep, 

it has been proposed that broad-scale convective heat trans- 

port or some other process makes inferences about stress 

levels from heat flow measurements questionable [O'Neil 

and Hanks, 1980]. Another problem with simply assuming 

that major faults are extremely weak is that in situ stress 
measurements indicate differential stress levels consistent 

Mohr-Coulomb theory and laboratory-derived coefficients of 

friction in the range of 0.6-1.0 in studies conducted in a wide 

variety of tectonic environments around the world [e.g., 

Raleigh et al., 1972; McGarr and Gay, 1978; Brace and 
Kohlstedt, 1980; Zoback and Hickman, 1982; Pine et al., 

1983; Zoback and Healy, 1984; Stock et al., 1985; Baum- 

giirtner and Zoback, 1989; Baumgiirtner et al., 1990]. Why 

should the San Andreas be so different, especially as labo- 

ratory experiments on fault gouges obtained at the surface or 

very shallow depth indicate relatively high coefficients of 

fraction generally consistent with those for intact rock [e.g., 
Morrow et al., 1982]? 

The Cajon Pass Scientific Drilling Project was designed to 

address the questions of stress and heat flow at depth along 

the San Andreas. Would the implications of the shallow heat 

flow data be confirmed by data obtained from greater depth? 

Would stress magnitudes at depth be consistent with appli- 
cability of Mohr-Coulomb theory and laboratory-derived 

coefficients of fraction of about 0.6-1.0 and essentially 

hydrostatic pore pressure (following Brace and Kohlstedt 

[ 1980], we shall refer to this as "Byerlee's law") or be found 

to be consistent with the much lower values suggested by the 

heat flow data? These questions could only be addressed by 

drilling near the San Andreas to measure heat flow at depths 

greater than the influence of possible thermal convection 

[e.g., Lachenbruch and Sass, 1988, this issue] and to mea- 

sure stress at depths at which stress magnitudes (consistent 

with Byerlee's law) would substantially exceed the maxi- 

mum stress levels implied by the heat flow data. An over- 

view of the Cajon Pass project was presented by Zoback et 

al. [1988b] in a special issue of Geophysical Research 

Letters that contained 36 papers reporting preliminary re- 

sults of the first phase of the project after drilling had 

reached a depth of 2.1 km. The papers in this special section 

of the Journal of Geophysical Research summarize results 

obtained to a depth of 3.5 km. Technical and operational 
aspects of the Cajon Pass drilling project are discussed by 
Wicklund et al. [1988, 1990]. 

Since the initiation of the Cajon Pass project in 1986, 

additional arguments have been made about the frictional 

strength of the San Andreas fault based upon the orientation 

of maximum principal stress in a relatively broad zone 
(---_+ 100 km) on either side of the fault. Abundant data in 
Central California show that the direction of maximum 

horizontal compression is almost perpendicular to the strike 
of the San Andreas [Zoback et al., 1987; Mount and Suppe, 

1987; Oppenheimer et al., 1988; Wong, 1990], indicating that 

there is extremely little resolved shear stress on the fault. 

Solomon et al. [1989] and Wilcock et al. [1990] have recently 

reported a similar finding for oceanic transforms using well- 

constrained (off-transform) earthquake focal plane mecha- 
nisms. These data further define the manner in which the 

stress measurement in the Cajon Pass borehole can test and 

illuminate the hypothesis that the San Andreas is quite weak. 

For example, one important question raised by the stress 

orientation data is whether the entire crust along plate 
boundaries has low strength or whether there is a marked 

contrast in strength between the crust adjacent to the fault 

and the fault itself. The latter case was proposed by Kan- 

amori [1980] on the basis of the large difference between the 

--- 100 MPa strength of the crust implied by Byerlee' s law and 

the universally low observations of earthquake stress drops 

determined from both geodetic and seismologic measure- 

ments (---1-10 MPa [Kanamori and Anderson, 1975]). Zo- 

back et al. [1987] and Mount and Suppe [1987] proposed 
similar models in an attempt to explain the origin of the fault 

normal compression observed along the San Andreas of 

central California. By measuring stress magnitudes and the 

orientation of principal stresses in the Cajon Pass well, we 

can directly test this "strong crust/weak transform" hypoth- 

esis by contrasting the level of shear stress resolved on the 
San Andreas with the absolute levels of shear stress in the 

crust. 

Another important aspect of the Cajon Pass stress mea- 

surements with respect to the implications of stress orienta- 

tion data from central California is that no clear pattern of 

fault normal compression is seen in southern California [see 

Zoback et al., 1987; Jones, 1988; Hauksson, 1990; Shamir 

and Zoback, this issue], and it is not clear if the arguments 

based on stress orientation data from north of the big bend 

(i.e., north of Fort Tejon) apply to the southernmost San 

Andreas. On the basis of focal plane mechanisms from 

earthquake near the San Andreas, Jones [1988] has argued 

that the direction of maximum horizontal compression is at a 

higher angle to the southern San Andreas than predicted by 

conventional faulting theory (•-65 ø rather than 30ø-45ø). 

While these results imply that the San Andreas has low 

frictional strength, she suggests that the southern San An- 

dreas may not be "as weak" as the central San Andreas 

because the directions of maximum horizontal stress implied 
by the earthquake focal plane mechanisms are not nearly 

orthogonal to the fault (as is in central California). Could 

there, in fact, be marked differences in strength along 

various sections of the San Andreas .9 While this may be true, 

it is important to note that the evidence for near fault normal 

compression in central California comes both from regions 

where the San Andreas produced major earthquakes in 1906 

and 1857 and where it is currently creeping [see Zoback et 

al., 1987, Figure 1]. It is also important to note that there is 

a fundamental difference between the use of earthquake 

focal plane mechanisms to infer stress orientation in the 

studies of Jones [1988] and of Zoback et al. [1987]. In the 

former case, only earthquakes within _+ 10 km of the San 
Andreas fault were used to assess stress orientation. In the 

latter case, only earthquakes were used that were clearly not 

on the San Andreas fault (or its principal branches) to avoid 

the potentially large difference (as much as 90 ø) between P 

axes and S•/max directions in cases when slip is occurring on 
a low friction fault [MacKenzie, 1969]. 

The location of the Cajon Pass borehole is shown in Figure 

la on a map of active faults along a section of the San 
Andreas fault in southern California that was derived from 

mapping by Weldon [1986] and Matti et al. [1985]. The drill 

site is only 4 km from the San Andreas, in an area of 

moderate topography, and along a section of the fault which 

is apparently quite late in the seismic cycle. The best 

available evidence indicates that the last major strike-slip 
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Fig. 1. (a) Map of active faults along the southern San Andreas and San Jacinto fault systems in southern California 
derived from Figure 1 of Weldon and Springer [1988] (after mapping by Weldon [1986] and Matti et al. [1985]). The 
direction of lateral motion is shown on faults with known strike-slip motion, barbs are shown on the hanging wall side 
of faults with reverse motion, and the bar and ball symbol is shown on the footwall side of faults with normal 
displacement. The stippled areas indicate regions in which the style of secondary faulting is extensional. Areas where 
the style of secondary faulting is compressional are unshaded. The location of the Cajon Pass borehole is shown with 
the average direction of maximum horizontal compression of N57øE [Shamir and Zoback, this issue]. Other locations 
of note along the San Andreas are the southeastern ends of rupture in the major earthquakes of 1812 and 1857 (after Sieh 
[1978] and Jacoby et al. [ 1988], respectively). In both cases, the earthquakes ruptured far to the northwest along the San 
Andreas. (b) Generalized geologic cross section perpendicular to the San Andreas fault through the sites of the Arkoma 
and DOSECC boreholes at Cajon Pass (after L. T. Silver and E. W. James, written communication, 1991). With the 
exception of the --•50-m surface spacing between the boreholes that is exaggerated for clarity, the schematic cross 
section is at approximately true scale. No differentiation of basement rocks is shown, although the depths of major 
seismic and isotopic discontinuities are shown, as well as other zones of unusually dense faulting. The depths at which 
hydrofrac measurements were made in the two wells is shown. T and A denote toward and away for strike-slip faults. 
Note that the sense of motion on the Cleghorn fault is left-lateral, opposite that of the San Andreas [Meisling and 
Weldon, 1982; Weldon, 1986; R. J. Weldon et al., unpublished report, 1981]. Neither the Whale Mountain or Squaw 
Peak faults are currently active. The high-angle fault between the two wells [see Silver and James, 1988a] was unknown 
prior to drilling the holes. 

earthquake at this site occurred in 1812, when a 4.5-m 

right-lateral offset occurred at nearby Cajon Creek [Weldon, 

1986; Sieh et al., 1989; Jacoby et al., 1988]. Based on a 

long-term slip rate of about 25 mm/yr at Cajon Pass [Weldon 

and Sieh, 1985; Weldon, 1986], approximately 4.4 m of 

potential slip has accumulated since 1812. Thus the level of 

shear stress at this site should be about equal to its value at 
the time of the 1812 event. 

Detailed geology of the Cajon Pass site is described by 

Weldon [1986], Meisling and Weldon [1989], Silver and 



5042 ZOBACK AND HEALY: CAJON PASS STRESS MEASUREMENTS 

James [1988a], and Ehlig [1988a, b]. Note in Figure la that 

the Cajon Pass drill site is within one of several extensive 

regions along the San Andreas and San Jacinto faults where 

the style of active secondary faulting is extensional (the 

stippled areas in Figure 1 a are taken from Figure 1 of Weldon 

and Springer [1988]). The Cleghorn fault, which strikes 

subparallel to the San Andreas in the vicinity of the drill site, 

is also of important note. R. J. Weldon et al. (Neotectonics 

of the Silverwood Lake area, San Bernadino County, un- 

published report to California Department of Water re- 

sources to accompany 50-sq. mile map of the San Bernadino 
Mountains around the Silverwood Lake Reservoir, 1981), 

Meisling and Weldon [1982], and Weldon [1986] discuss 

evidence for left-lateral strike-slip and normal fault displace- 

ments on the Cleghorn in Quaternary time. 

A schematic geological cross section through the Cajon 

Pass site is shown in Figure lb (modified after L. T. Silver 

and E. James (written communication, 1991). The Whale 

Mountain and Squaw Peak thrusts shown in Figure lb are no 

longer active. Zones of particularly intense faulting and 

zones which are distinct seismic and isotopic discontinuites 

(simplified after L. T. Silver and E. W. James (written 

communication, 1991)) are shown in Figure lb. Two rela- 

tively deep boreholes exist at the Cajon Pass site, an 

abandoned wildcat well drilled at the site by Arkoma Pro- 

duction Company and the scientific research borehole drilled 

by the university consortium Deep Observation and Sam- 

pling of the Continental Crust (DOSECC) in conjunction 

with the U.S. Geological Survey and Department of Energy. 

Drilling of the DOSECC hole only -50 m from the Arkoma 

hole revealed a previously unknown high-angle fault that 

cuts between the two wells [see Silver and James, 1988b]. 

Fractures and faults were found throughout the borehole. 

A discussion of macroscopic and microscopic fractures and 
associated chemical alteration that can be observed in core 

samples and thin section analysis is presented by Silver and 

James [1988a, also submitted manuscript, 1990], Vernik and 

Nur [this issue], and Morrow and Byerlee [1988, this issue]. 

Vincent and Ehlig [1988] describe fractures and associated 

hydrothermal alteration in basement rocks exposed in the 

region surrounding the drill site. Detailed studies of fractures 

detected through geophysical logging (principally with the 
ultrasonic borehole televiewer and formation microscanneD 

are discussed by Barton and Moos [1988] and Barton and 

Zoback [this issue] in the crystalline rocks in the lower part 

of the hole. Pezard et al. [1988] discuss fractures and other 

structures identified through logging in the sedimentary 

section of the upper part of the hole. Stress-induced well 

bore breakouts were ubiquitous in the lower half of the 

borehole. These are described and discussed in detail by 

Shamir and Zoback [this issue]. Vernik and Zoback [1989, 

1990] describe a comprehensive series of strength tests 

specifically aimed at determining whether rock strength 

anisotropy induced by foliation had any appreciable affect on 
the occurrence of the stress-induced well bore breakouts. 

They concluded that azimuthal strength variations around 

the borehole had very little effect on the generation of well 

bore breakouts as (1) the foliation in the borehole was almost 

everywhere subhorizontal (dipping less than 45ø; see also 

Silver and James [1988a]) and (2) only one rock type showed 

appreciable rock strength anisotropy (biotite-rich amphibo- 

lites and schists) which comprised less than 5% of the 

lithologic column (see also, Vernik and Zoback [this issue]). 

The same conclusion was reached by Shamir [1990] and 

Shamir and Zoback [this issue] as no correlation between 

breakout orientations and lithology was found. 

In situ stress measurements were made at the Cajon Press 

site in three stages. Healy and Zoback [1988] presented a 

preliminary interpretation of hydraulic fracturing stress mea- 

surements made at depths of 0.9 and 1.3 km depth in the 

Arkoma well (stage I) and between 1.86 and 2.1 km depth in 

the Cajon Pass borehole drilled by DOSECC (stage II). In 

this paper we present hydraulic fracturing stress measure- 

ments to 3.5 km depth in addition to measurements of stress 

orientation and estimates of S Hmax magnitude obtained from 
analysis of well bore breakouts (see also Shamir and Zoback 

[this issue] and Vernik and Zoback [this issue]). As dis- 

cussed by Healy and Zoback [1988], the stress state ob- 

served in the upper 2.1 km at the Cajon Pass site is 

consistent with the style of active faulting around the drillsite 

(see also Weldon and Springer [1988]). However, the orien- 

tation of maximum horizontal stress in the upper 2.1 km 

resulted in a component of left-lateral shear on planes 

parallel to the San Andreas which suggests that either the 

site was decoupled from that of the San Andreas fault or that 

the San Andreas was extremely weak. In this paper we 

follow up these observations and hypotheses and discuss the 

implications of the state of stress measured in the Cajon Pass 

borehole for the frictional strength of the San Andreas and 

adjacent crust. 

OVERVIEW OF IN SITU STRESS MEASUREMENTS 

Measurements of in situ stress magnitude and orientation 

were made at the Cajon Pass drill site using the hydraulic 

fracturing stress measurement technique [e.g., Haimson and 

Fairhurst, 1967, 1970] and detailed observations of stress- 

induced well bore breakouts [e.g., Bell and Gough, 1979, 

1983; Gough and Bell, 1981; Cox, 1983; Zoback et al., 1985]. 

As presented in detail below, the hydraulic fracturing data 

provided 23 measurements of the least horizontal principal 

stress, Shmin, as function of depth, six estimates of the 
maximum horizontal stress, S Hmax , and four measurements 
of the direction of maximum horizontal compression (Table 

1) were also obtained from the hydraulic fracturing tests. As 

discussed below, 12 additional estimates of S Hmax were 
obtained through detailed analysis of well bore breakouts. 

Hydraulic fracturing. Since it was first described as a 

stress measurement method by Haimson and Fairhurst 

[1967], the hydraulic fracturing technique has become widely 

used for measurement of in situ stress magnitude and orien- 

tation in boreholes. Three compilations of papers [Zoback 

and Haimson, 1983; Stephansson, 1986; Haimson, 1989] 

provide useful summaries of worldwide experience with 

hydraulic fracturing (hydrotrac) as an in situ stress measure- 

ment method. Among the strengths of the hydrofrac method 

is its ability to determine accurately the magnitude of least 

principal stress. As hydraulic fractures propagate away from 
a borehole in a manner to minimize the energy required for 

propagation, they propagate in a plane perpendicular to the 

least principal stress, essentially independent of material 

properties and conditions immediately adjacent to the bore- 

hole [cf. Hubbert and Willis, 1957; Warren and Smith, 1985]. 

It is widely recognized that when used for stress measure- 

ments in crystalline rock, straightforward interpretation of 

hydraulic fracturing pressure data yields reliable information 
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TABLE 1. In Situ Stress Measurements 

Hydraulic Fracturing Well Bore Breakouts 

Depth,* S hmin, S//max, Strike/Dip S Hmax, S Hmax.,, $ 
m MPa MPa SHmax Remarks Azimuth? MPa • 

907 12.9 +__ 0.9 preexisting fractures 
918 12.1 +__ 0.2 19.1 ___ 7.6 hydrofracture 
928 13.6 +__ 0.4 27.8 +__ 8.2 hydrofracture 
938 14.0 +__ 0.3 preexisting fractures 
991 13.7 +__ 0.5 preexisting fractures 

1044 15.6 +__ 0.3 preexisting fractures 
1178 19.1 +__ 1.7 preexisting fractures 
1187 19.8 +__ 0.5 preexisting fractures 
1277 20.6 +__ 0.3 19.1 ___ 7.9? hydrofrac, anomalous high T? 
1852 035 +__ 11 68 +-- 8 

1862 >36.1 preexisting fractures 089 ___ 7 
2048 39.9 +__ 0.2 79.3 +__ 7.6 096/80 hydrofracture 092 +__ 25 
2052 45.0 +__ 0.2 090/87 hydrofracture 092 +__ 25 
2085 48.4 +__ 0.5 084/85 hydrofrac/packer problem 075 ___ 20 
2091 47.9 +__ 0.4 092/81 hydrofracture 085 ___ 15 
2095 96 +-- 11 77 ___ 14 

2163 32.3 +__ 0.2 preexisting fractures 92 +__ 14 
2188 30.2 +__ 0.3 preexisting fractures no BOs 
2375 34.3 +__ 0.2 preexisting fractures variable 
2438 092 +__ 8 78 --- 12 

2500 no BOs <73 

2652 34.9 +__ 0.2 66.8 +__ 7.6 hydrofracture variable 
2661 32.9 +__ 0.2 70.0 ___ 7.6 hydrofracture no BOs 
2670 37.1 +__ 0.3 preexisting fractures no BOs 
2685 41.0 +__ 0.2 preexisting fractures variable 
2705 071 ___ 8 85 +__ 13 

2803 071 ___ 8 93 --- 27 

2805 071 ___ 8 105 ___ 17 

2857 --•40.9 hydrofracture/packer problem 113 +__ 7 
2974 123 ___ 14 114 +__ 17 

2980 060 ___ 14 99 +-- 25 

3122 no BOs <85 

3398 127 +__ 21 108 +__ 33 

3486 82.9 +__ 0.3 preexisting fractures/single packer 57 +__ 21 
3507 123 +__ 21 

BO, breakouts. 

*The stress measurements at depths between 907 and 1277 m were made in the Arkoma well at the Cajon Pass site [See Healy and Zoback, 
1988]; all deeper measurements were made in the DOSECC hole. 

?See Shamir and Zoback [this issue]; average breakout orientations for depths close to those of the hydrofracs are shown. 
$See Vernik and Zoback [this issue]; depth corresponds to average depth from which sample strengths with measured. 

on the magnitude of the least principal stress. As discussed 

at length below, the most significant problem with using the 

hydraulic fracturing for in situ stress measurements is deter- 

mination of the maximum horizontal compressive stress 

SHmax. 

While we basically utilized a conventional "open-hole" 

inflatable straddle-packer system to conduct the hydrofrac 

tests, we made a number of modifications of standardly used 

equipment for use in these experiments. Noteworthy devel- 

opments included (1) improved inflatable high-pressure 

straddle packers for the relatively large diameter of the 

DOSECC borehole, (2) a downhole pressure gauge carrier 

system that made it possible to measure simultaneously 

pressure in the hydrofrac interval, within the inflatable 

packer elements, and below the straddle-packer assembly, 

and (3) a sophisticated monitoring system that simulta- 

neously recorded pressure and flow from redundant instru- 

ments on two independent computer systems at the surface. 

The first development was necessary because high-pressure 

inflatable packers were previously not commercially avail- 

able. The development of the downhole gauge carrier en- 

abled us to analyze tests more fully in which unusual 

pressure-time records were obtained and enabled us to test 

for packer leaks or flow past the lower packer. The third 

development insured the highest possible data accuracy (six 

different pressure gauge systems were used, including redun- 

dant high-precision quartz pressure transducers) so that the 

validity of any given test would not be compromised by 

failure or calibration problems with any given instrument. 

No significant difference between surface pressure and in- 

terval pressure was detected once a correction for the 

hydrostatic head was made. Utilization of this system also 

meant that tests could proceed as planned even if a given 

monitoring instrument or one of the recording systems failed 

as the test was proceeding. Taking into account both the 

difficult conditions encountered in relatively deep holes and 

the great expense associated with rig time, the purpose of 

these modifications helped to improve the accuracy of each 

measurement as well as the probability that any given test 

would be successful. Despite these developments and other 

precautions, the combination of poor hole conditions and 

packer problems made a number of the attempted hydrofrac 

tests unsuccessful. Thus, while appreciable progress was 

made in packer development, further improvements in 



5044 ZOBACK AND HEALY: CAJON PASS STRESS MEASUREMENTS 

packer systems for future deep hydrofrac tests are clearly 

necessary. Healy and Zoback [1988] describe a number of 

the experimental techniques in more detail. 

The distribution of the hydrofrac measurements as a 

function of depth in the two holes is shown in Figure 1 b. As 
shown, all of the stress measurements were made in crys- 
talline basement rocks. The fractures and faults that were 

encountered throughout the hole often made identification of 

suitable intervals for hydraulic fracturing difficult. Stress- 

induced well bore breakouts were also widespread in the 

hole at depths below 1.75 km [Shamir and Zoback, this 

issue] and further limited the possibility to conduct the 

hydraulic fracturing tests. Fortunately, stress-induced break- 

outs have proven to be an extremely reliable method for 

determining in situ stress orientations [Bell and Gough, 

1979, 1983; Zoback and Zoback, 1980, 1989; Bliimling et al., 

1983; Plumb and Cox, 1987; Zoback et al., 1987; Mount and 

Suppe, 1987; Zoback et al., 1989] and provide a wealth of 

important data about the stress field encountered in the 

Cajon Pass borehole. 

For the case of a vertical well drilled into isotropic rock 

and one principal stress acting parallel to the borehole, 

Figure 2a illustrates the theoretical relationship between the 

positions around the borehole where hydraulic fractures and 

well bore breakouts occur. Hydraulic fractures will initiate 

in a vertical plane at the azimuth of maximum horizontal 

principal stress S Hmax in response to pressurization of the 
borehole (APb) to the pressure at which the stress concen- 
tration around the well bore reaches the tensile strength of 

the rock, T, at the azimuth of S Hmax. The orientation of 
hydraulic fractures has been found to be a reliable indicator 

of the direction of maximum horizontal compression in many 

studies (see also stress complications of Haimson [1977], 

Zoback and Zoback [1980, 1988], and Zoback et al. [1989]). 

Numerous studies in which earthquake focal plane mecha- 

nisms have been used to indicate the direction of principal 

stresses show, with some rare exceptions, that one principal 

stress is essentially vertical [Zoback and Zoback, 1980, 

1988; Zoback et al., 1989]. Of particular note to this study is 

a similar finding by Jones [1988], who inverted earthquake 
focal mechanism data to determine stress tensors within __ 10 

km of the southern San Andreas. A number of in situ stress 

measurements have also shown that one principal stress is 

usually very close to vertical [e.g., Haimson, 1976; McGarr 

and Gay, 1978; Zoback and Hickman, 1982; Evans and 

Engelder, 1989; Baumgiirtner and Zoback, 1989]. Modelling 

of topographically induced stresses at the Cajon Pass drill 

site also indicates that no appreciable deviation from a 

vertical principal stress is induced by regional topography 

[Liu and Zoback, this issue]. We therefore assume that one 

principal stress is approximately vertical in the analysis of 

the hydrofrac and breakout data at the Cajon Pass site. 
Well bore breakouts. Stress-induced well bore breakouts 

form over some range of angles at the azimuth of least 

horizontal principal stress, Shmin, if the naturally occurring 
compressive stress concentration exceeds the compressive 

strength of the rock, C [see Bell and Gough, 1979; Zoback et 

al., 1985; Moos and Zoback, 1990]. The ultrasonic borehole 

televiewer [Zemanek et al., 1970] produces data that can be 

used to recreate the precise shape of the hole with a 

resolution that is --• 1 cm vertically and ---1 mm radially, when 

the data quality is good. Figure 2b shows a perspective view 
of a section of the Cajon Pass borehole at 2088 m constructed 

by special processing of borehole televiewer data [Barton, 

1988; Barton et al., 1991]. As can be seen in the image, the 

induced hydraulic fracture and naturally occurring well bore 

breakout are orthogonal to one another as expected by 

theory. Similar results have also been found in a number of 

other studies [Hickman et al., 1985; Stock et al., 1985; 

Paillet and Kim, 1985; Plumb and Cox, 1987; Baumgiirtner 

et al., 1990]. The most common method used to determine 

hydraulic fracture orientation involves use of magnetically 

oriented impression packers which are pressed against the 

borehole wall after a hydraulic fracture is made [e.g., Ander- 

son and Stahl, 1967]. While this technique is used frequently 

in relatively shallow holes, it is extremely time consuming, 

and thus expensive, to determine the orientation of hydraulic 

fractures in relatively deep holes. Also, it can often produce 

poor results in deep wells because of damage to the impres- 

sion packer that occurs when it is being lowered and raised 

in the well. For these reasons, we only attempted to make 

several hydrofrac orientations at about the middepth of the 

hole for comparison with the breakout observations (Table 

1). As illustrated in Figure 2c, at a depth of 2052 m, use of an 

impression packer also shows that the hydrofracs and break- 

outs are orthogonal to one another. The sinusoidal trace of 

the hydrofrac (straight-line segments) on the impression 

packer indicates a strike of 90 ø and dip of --87 ø. As the 

comparison between stress orientations determined with 

hydraulic fracturing and breakouts was so good in both the 

Cajon Pass borehole and other scientific boreholes world- 

wide, we decided to rely primarily on the breakouts for in 

situ stress orientation in the Cajon Pass experiment. Shamir 

and Zoback [this issue] report a detailed analysis of break- 

outs in the Cajon Pass borehole. This study yielded approx- 

imately 32,000 observations of the orientation of well bore 

breakouts (and thus the least horizontal principal stress 

orientation) over a depth range of 1.7-3.5 km. 

As mentioned above, detailed analysis of the shapes of 

well bore breakouts was also used to supplement the infor- 

mation on the magnitude of S Hmax available from hydraulic 
fracturing. This technique basically involves independent 

knowledge of $hmin from hydraulic fracturing and strength of 
the rock [Barton et al., 1988; Moos and Zoback, 1990]. In 

laboratory tests, Herrick and Haimson [1990] have recently 

documented an increase of breakout size with increasing 

stress. Vernik and Zoback [this issue] further developed the 

technique used by Barton et al. [1988] for estimation of 

S Hmax to improve the accuracy of such in situ stress estima- 
tions [e.g., Maloney and Kaiser, 1989]. Vernik and Zoback 

[this issue] made detailed rock strength measurements and 

utilized a generalized failure criterion for the formation of 

breakouts based on the effective strain energy concepts of 

Weibols and Cook [1968]. Combination of the breakout 

observations with the detailed S hmin values provided by the 
hydraulic fracturing tests and the rock strength measure- 

ments allowed them to make a profile of SHmax estimates in 
the Cajon Pass well. Together, utilization of the hydraulic 

fracturing and well bore breakout techniques resulted in a 

fairly complete profile of both stress magnitude and orienta- 

tion from 0.9 to 3.5 km at the Cajon Pass site. 

RESULTS 

Least principal stress. While it is relatively straightfor- 

ward to determine the magnitude of the least principal stress 
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Fig. 2. (a) Schematic diagram of the relationship between the location of hydraulic fractures and stress-induced 

well bore breakouts in a vertical wellbore. A schematic variation of the circumferential stress (%q) around the well bore 
is also shown based on the equations of Kirsch [1898]. Breakouts are expected when the concentration of hoop stress 
(maximum at the azimuth of the least horizontal principal stress, Shmin ) exceeds the compressive strength of the rock. 
Hydraulic fractures occur at the azimuth of S Hmax in response to a tensile circumferential stress induced by the 
combined effects of the stress concentration and pressurization of the well bore that exceeds the tensile strength of the 
rock. (b) Perspective view of a section of the borehole at around 2088 m where a hydraulic fracture was induced and 
a small well bore breakout was present. The image was produced from ultrasonic borehole televiewer data that has a 
radial precision of about 1 mm. The diameter of the borehole is 15 cm. The breakout and hydrofrac are orthogonal as 
expected by theory. (c) Tracing of an impression packer from a depth of 2052 m that also shows the orthogonal 
relationship between an induced hydraulic fracture and naturally occurring wellbore breakouts. The thin lines 
representing the hydrofrac correspond to distinct, narrow (< 1 mm) ridges on the impression packer. They define a steep 
sinusoidal trace with a strike of 90 ø and dip of 87 ø. The location of well bore breakouts were indicated by broad, raised 
areas on the impression packer with small imbedded rock fragments. 

using the hydraulic fracturing technique, the accuracy of 

hydrofrac measurements depends strongly on the correct 

interpretation of the pressure-time records obtained during 

the experiment. Several standard data interpretation meth- 

ods were used in this study for determination of the least 

principal stress. These methods involve using the pressure- 

time data to determine the instantaneous shut-in pressure 

(ISIP) and low-flow-rate pumping pressures and are widely 

described in hydraulic fracturing literature. To improve the 

interpretation of the pressure-time data, however, several 

new interactive data interpretation methodologies were also 

used that have been described in detail by Baumgfirtner and 

Zoback [1989]. Utilization of these techniques made it pos- 

sible to track small changes of pressure, flow rate, and 

pressurization rate as a function of time and thus determine 

the least principal stress from the pressure data with several 

independent methods. While the results obtained with the 

different methods varied very little, as shown by the esti- 

mates of uncertainty in Table 1, these techniques were 

employed to yield redundant measures of the least principal 
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Fig. 3. Magnitude of least principal horizontal stress, Shmin, and 
estimates of maximum horizontal principal stress, S Hmax , as a 
function of depth at the Cajon Pass site. The measurements at 
depths shallower than 1277 m were made in the Arkoma borehole 
and the deeper measurements were made in the DOSECC borehole. 

The terms BO, HF, and PE refer to the S Hmax estimates determined 
from the breakout analysis of Vernik and Zoback [this issue], the 
$hmin and $Hmax values determined from the hydrofrac tests, and 
the $hmin values determined from the hydrofrac tests in zones with 
pre-existing fractures, respectively. The line labelled Sv is the 
estimated value of the vertical stress based on the average density of 

the rocks. The manner in which the hydrofrac SHmax were computed 
considers intergranular pore pressure to have no effect on the 
breakdown pressure. This assumption tends to make the values 
shown upper bound estimates. 

stress for each test and to provide as a good an estimate as 

possible of the range of uncertainty of each stress measure- 
ment. 

Two types of hydrofrac measurements were made. The 

tests indicated by the word "hydrofrac" in Table 1 and 

Figure 3 refer to relatively conventional, open-hole hydrau- 

lic fracturing tests in the best intervals of rock that could be 

found in the hole (i.e., intervals where no breakouts or 

preexisting fractures were present and where the rock type 

was relatively uniform). The other type of test (referred to 

with the term "preexisting fractures") involved pressuriza- 

tion of a zone where there were known preexisting natural 

fractures as indicated by borehole televiewer logging. In the 

Arkoma borehole (the stress measurements in Table 1 and 

Figure 3 that were made to a depth of 1277 m), this was done 
repeatedly to lower the breakdown (fracture initiation) pres- 

sure. High viscosity drilling mud had been left in the Arkoma 

borehole for approximately 2 years prior to the stress 

measurements and had resulted in anomalously high appar- 
ent tensile strengths for a number of the tests [see Healy and 

Zoback, 1988]. In the DOSECC borehole, this type of test 

was also performed to reduce the maximum pumping pres- 

sures in about half the tests. While it is impossible to 

determine the magnitude of SHmax from the tests in the zones 
with preexisting fractures, the six preexisting fracture tests 

and three conventional hydraulic fracturing tests yielded 

nearly identical values for Shmin in the tests conducted in the 
Arkoma hole (907-1277 m) and the same was found to be 
true at 2650-2857 m in the DOSECC borehole. The four 

values of the least principal stress that are anomalously high 

around 2050 are all conventional hydrofracs. The tests are 
discussed in more detail below. 

Figure 3 indicates that at nearly all depths in the hole Shmin 
is substantially lower than the vertical principal stress, S v, 
as estimated from the density of the rocks. One of the most 

striking things about the variation of S hmin with depth, 
however, is the localized increase of Shmin at about 2100 m. 
The measurements at 2085 and 2091 m indicate that the 

magnitude of Shmin is almost equal to that of the overburden, 

S v, whereas the deeper and shallower measurements show 
that it is considerably less. 

Figure 4 is an example of the pressure and flow data that 

were recorded at the surface that also indicates the abrupt- 

ness of the change of magnitude of the least principal stress 

at about 2100 m. Figures 4a and 4b show the last three 

pressurization cycles from the test at 2091 m, and Figure 4c 

shows the five pressurization cycles of the test at 2375 m. 

Corresponding to each pressure record is a measure of the 

flow rate into the hydrofrac test interval during pumping (the 

top panel in each figure) and periods when the pressurization 

system was opened and flow was allowed to "flow back" out 

of the fracture (the shaded bars in the middle panel). The 

pressure buildups seen after the second and third pressur- 

ization cycles shown for the test at 2091 m (Figures 4a and 

4b) shows that when the flow back is abruptly terminated 

due to closing a surface valve, a pressure buildup occurs due 

to continued flow out of the fracture as the pressure in the 

fracture is greater than that in the wellbore. 

In Figure 4a, the last two pumping cycles from the test at 

2091 m clearly indicate a shut-in pressure and low-flow-rate 

pumping pressure that stabilize at a value of about 25 MPa 

[see Hickman and Zoback, 1983]. When the precise value of 

the hydrostatic head is added, the value determined for Shrnin 
for this test was 47.9 _+ 0.4 MPa (Table 1). The last 

pressurization cycles for the test at a depth of 2375 m (Figure 

4c) shows that the low flow rate pumping pressure and 

shut-in pressure is only about 10 MPa, less than half the 

measured surface pressure for the test shown in Figures 4a 

and 4b. After adding the hydrostat, the best determined 

value for Shmin at 2375 m is 34.3 -+ 0.2 MPa. It is clear, 
therefore, that the abrupt change in S hmin indicated by the 
tests at about 2100 m is associated with rather large changes 

in pumping and shut-in pressures. The deepest stress mea- 

surement at about 3.49 km, involved setting a single packer 

at the bottom of casing and pressurizing the open-hole 

section of the borehole below the casing. This data point also 

indicates that the least principal stress is almost equal to the 

weight of the overburden. Unfortunately, there are insuffi- 

cient data to define the nature of the change of stress 

between this point and that at 2857 m. A possible cause for 

the two zones of anomalously high values of S hmin observed 
in the borehole is presented in the Discussion section below. 

Maximum horizontal principal stress. The basic me- 

chanics of initiation of hydraulic fractures was first worked 

out for a porous, impermeable material by Hubbert and 

Willis [1957] and confirmed by numerous laboratory tests 
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Fig. 4. Pressure and flow data for two hydrofracs in the vicinity 
of stress anomalously high values of Shmin at about 2100 m. In each 
figure, the bottom panel shows surface pressure as a function of 
time, the top panel shows injection rate into the hole and the center 
panel indicates periods during which flow was allowed to return 
from the well. Note that the pressure and flow axes are the same in 
each figure but the time axes are different. (a) and (b) The last three 
pressurization cycles from the test at 2091 m and (c) the five 
pressurization cycles for the test at 2375 m. 

[e.g., Haimson and Fairhurst, 1967, 1970]. Under ideal 

circumstances excellent correlations between hydrofrac- 

and strain relief-determined values of S Hmax have been 
obtained (see review of six case histories by Haimson 

[1983]). Nevertheless, even when breakouts and preexisting 

fractures are absent and best available evidence suggests 

that one principal stress is parallel to the borehole and the 

rock surrounding the borehole can be considered both elastic 

and isotropic, there are still two serious areas of uncertainty 

in determining SHmax from hydrofrac tests. One involves 
knowing the appropriate value of tensile strength to use in 

the hydrofrac breakdown equation [Bredehoeft et al., 1976; 

Alexander, 1983; Ratigan, 1983; Hickman and Zoback, 1983; 

Rummel and Hansen, 1989]. The other involves the proper 

manner for incorporating intergranular pore pressure (Pt,) on 
the breakdown, or fracture initiation, pressure (Pt,) in low- 
porosity crystalline rocks [Rummel et al., 1983; Pine et al., 

1983; Schmitt and Zoback, 1988; Baumgiirtner et al., 1990]. 

These uncertainties are easily seen in the three simple 

equations that have been used for estimation of S ttma x from 
hydrofrac tests: 

P t, = 3 S hmin -- SHmax + T - Pt, (1) 

P r: 3 S hmin -- S Hmax -- Pt, (2) 

Pb = 3 ShEin- SHmax + T (3) 

Equation (1) is the basic hydrofrac breakdown equation 

derived from Haimson and Fairhust [1967] after Hubbert 

and Willis [1957] for a porous rock in which the fluid 

pressurizing the borehole does not permeate the formation. 

As alluded to above, this equation has been used widely and 

gives excellent results in many cases, although it is often 

unclear what value for tensile strength should be used in (1),. 

This is because core may not be available for laboratory 

testing or one is concerned about issues such as scale effects 

that might make direct application of the laboratory tests 

questionable [e.g., Ratigan, 1983]. Because of these prob- 

lems, Bredehoeft et al. [1976] proposed use of (2) where Pr 

is the fracture reopening pressure, the pressure at which a 

hydrofrac opens after it has already been initiated. This 

method has been widely used and also frequently gives quite 

reasonable values for the estimated magnitudes of both 

tensile strength (i.e., T = Pt, - Pr) and SHmax (see Brede- 
hoeft et al. [1976], Haimson [1989], Hickman and Zoback 

[1982], Rummel et al. [1983], Tsukahara [1983], and various 

papers cited by Haimson [1989]). 
Hickman and Zoback [1983] discussed methods for deter- 

mination of accurate values of Pr at length and show that 

reliable values of Pr can be determined (1) when the fracture 

reopening pressure is clearly greater than Shmin or (2) during 
constant injection rate tests, when the volume of fluid in the 

hydrofrac system has such high "stiffness" that the effect of 

the volume increase associated with the fracture opening on 

the pressurization rate is measurable. Unfortunately, these 

two conditions are not always met. When Pr is less than or 

approximately equal to S hmin , considerable uncertainty can 
occur in identifying the pressure at which the fracture 

reopens [see Hardy and Asgian, 1989; Cheung and Haim- 

son, 1989]. Also, in deep wells such as Cajon Pass, the total 

volume of fluid in the system is so large that the influence of 

the hydrofrac opening on the pressurization rate is quite low 

and Pr can be hard to detect due to the low system stiffness 
[see Baumgiirtner and Zoback, 1989]. 

For these reasons, we decided not to use fracture reopen- 

ing pressures and (2) for the computation of S Hmax in this 
study. As all of the hydrofracs were performed in crystalline 

rocks of granodioritic composition, we use an estimate of 

tensile strength based on the results of laboratory tests and 

granodiorite core samples and allow considerable variability 
of the possible value of T. Hydrofrac tests on core sample 

(D. Schmitt and M.D. Zoback, unpublished data, 1990) 

indicate an average tensile strength of 11 MPa. We have used 

T = 8 -+ 7 MPa for analysis of these tests to bracket 

representative and reasonable tensile strengths for this type 

of rock and to accommodate possible scale effects, recog- 

nizing that laboratory measurements on relatively small core 

samples represent upper bound estimates of tensile strength. 

While -+7 MPa causes some degree of uncertainty in the 

computed values of SHmax, this uncertainty is less than 10% 
of the vertical stress in the lower parts of the hole. 
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An even more important issue than tensile strength in the 

accurate computation of S Hmax is how to handle intergranu- 

lar pore pressure, Pp, and whether one should use (1) or (3) 
in crystalline rock with extremely low porosity. A number of 

investigators [Rummel et al., 1983; Pine et al., 1983; Baum- 

giirtner et al., 1990] have suggested that in such cases, (3) 

should be used which neglects intergranular pore pressure 
on the state of effective stress around the borehole. There is 

substantial empirical evidence suggesting the validity of (3) 

in low-porosity crystalline rock. For example, in a number of 

cases, hydraulic fracturing calculations with (1) in low- 

porosity crystalline rocks yields computed magnitudes of 

SHmax that are clearly unreasonable (i.e., SHmax ( Shmin ) 
whereas when (3) is used not only are the values of SHmax ) 

Shmin, but SHmax has values consistent with independent 
information on the stress state from the style of faulting. This 

was found to be the case with hydrofrac stress measure- 

ments to 2.5 km depth in granitic rocks in Cornwall [Pine et 

al., 1983] to 3.0 km depth in gneissic rocks in the KTB 

borehole in southeastern Germany [Baumgiirtner et al., 

1990] and in many shallow boreholes in crystalline rocks in 

central Europe [Rummel et al., 1983] and Australia (J. 

Enever, personal communication, 1989). 

To further demonstrate that (3) may be valid for hydraulic 

fracturing in extremely low-permeability rock, Schmitt and 

Zoback [1989] derived the following two generalized formu- 

las for hydraulic fracture initiation by allowing for the 

possibility that tensile failure of extremely low-porosity 

rocks might not be a function of effective stress (the total 

stress minus the pore pressure): 

Pb = 3Shmin- SHmax d- T- 13Pp (4) 

3Shmin- SHmax + T- a(1 - 2v)/(1 - v)Pp 
Pt, = (5) 

1 + /3- a(1 - 2v)/(1 - v) 

where a is the Biot coefficient (a = 1 - Kb/Km), Kt, is the 
bulk modulus of the rock aggregate, K m is the bulk modulus 
of the mineral grains, v is Poisson' s ratio, and/3 is defined as 

a parameter describing the degree to which tensile failure 

could deviate from a simple effective stress law (i.e., it is 

assumed that for tensile failure cro = Sij - 5•i[3Pp, where ,Sij 
is the Kronecker delta). It is required that 0 (/3 ( 1. 

As in the cases of (1)-(3), equation (4) assumes that no 

fluid penetration from the borehole into the rock occurs prior 

to fracture initiation, whereas (5) allows for the possibility of 

fluid permeation into the formation prior to breakdown. 

When /3 --- 1, as would be expected for porous permeable 
rocks, (5) is the same as a formula derived by Haimson and 

Fairhurst [1967] to account for fluid permeation effects 

during hydraulic fracturing. When/3 -• 0, (4) is identical to 

(3). Values of/3 --- 0 could occur in extremely low-porosity 
rock due to processes such as dilatancy hardening. It is well 

known that in triaxial compressive strength tests on satu- 

rated crystalline rocks at elevated pore pressure, the influ- 

ence of pore pressure on strength is negligible at relatively 

high strain rates because dilatancy prior to failure drops the 

intergranular pore pressure faster than permeation can re- 

store it [Brace and Martin, 1968]. When an extremely low 

porosity/low-permeability rock fails in tension at a high 

strain rate (as in a hydrofrac test), dilatancy hardening would 

also be expected. In fact, Schmitt and Zoback [1990] have 

found evidence of dilatancy hardening in laboratory hydro- 

frac tests on low porosity crystalline rock. Morrow and 

Byedee [1988, this issue] point out that because of extensive 

secondary mineralization, the porosity and permeability of 

the Cajon Pass core samples are much lower than that of 

rocks of generally similar composition obtained from the 

surface. The low permeability of the Cajon Pass samples and 

the likely sealing of the microcracks adjacent to the borehole 

by a "mud-cake" argue argue for use of (4). However, even 

if some fluid penetration did occur prior to breakdown and 

(5) was more appropriate, Kt, ---. K m and thus a --- 0 in 
extremely low-porosity crystalline rocks under appreciable 

confining pressure (such as those hydraulically fractured in 

the Cajon Pass borehole). Thus it is quite reasonable that 

both a and/3 would be close to 0 when a low porosity/low 

permeability crystalline rock fails in tension in which case 

both (4) and (5) approach (3). 

We find the sum of these arguments and the empirical 

results of previous investigators compelling and, because we 

also find that SHmax ( Shmin for several of the hydrofracs in 
the Cajon pass borehole if (1) is used, we follow Pine et al. 

[1983] and Baumgiirtner et al. [1990] and utilize (3) for 

computation of S Hmax , recognizing that this tends to be an 

upper bound estimate. As discussed by Vernik and Zoback 
[this issue] and shown below, utilization of (3) for the 

analysis of the hydrofrac data also yields SHmax values closer 

to those implied by analysis of stress-induced breakouts. 

Table 1 and Figure 3 present the data on the magnitude of 

S Hmax determined both by the hydrofrac tests and from the 
analysis of breakouts of Vernik and Zoback [this issue]. 

While 10 hydrofrac measurements were made in relatively 

ideal intervals (Table 1), estimates of SHmax are reported for 

only six depths because in four of the tests equipment 

problems (or some other factor) complicated the determina- 

tion of the pressure at which fracture initiation occurred. As 

noted above, the hydrofrac- and breakout-determined values 

of SHmax are similar although it is difficult to compare the two 
sets of values in detail. The two types of data compare quite 

well between 2000 and 2100 m and the hydrofrac-determined 

S Hmax values at about 2650 m are also comparable to the 
nearby breakout-determined values. Overall, while the un- 

certainties for both the hydrofrac- and breakout-determined 

SHmax values are fairly high, the data indicate that SHmax has 
a value approximately equal to, to slightly greater than, the 

vertical stress and increases with depth at a rate similar to 
that of the vertical stress. 

The only value of SHmax that is significantly lower than the 
vertical stress is at 1277 m in the Arkoma well. This test is 

somewhat unusual because of an extremely high value of the 

breakdown pressure. The pressure record for this test [see 

Healy and Zoback, 1988] indicates that the apparent tensile 

strength for this test is about twice that indicated by the 

laboratory tests on core samples. If we were to use a higher 

value of T in the calculations of S Hmax, its value would be 

similar in relative magnitude to that indicated by the other 

shallow measurements in the Arkoma hole (i.e., close to the 

lithostat). 

Stress orientations. As shown in Figure 1, the average 

direction of the San Andreas fault in the region of Cajon Pass 

is N60øW. Shamir and Zoback [this issue] show that the 

average direction of maximum horizontal stress determined 

from the ubiquitous breakouts in the lower half of the 

DOSECC borehole is N57øE -+ 19 ø. As indicated in Figure 2 

and Table 1, the hydrofracs that were detected in the Cajon 
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Fig. 5. Data on Shmin and SHmax (same symbols as Figure 3) compared with the theoretical magnitudes predicted 
using (4) and Byerlee's law (coefficients of friction, m, that range between 0.6 and 1.0) which are indicated by the 
hachured areas. (a) shows the expected value for Shmin for the case of normal faulting (S 1 = Sv and S3 = Shmin). (b) 
shows the expected value for SHmax for the case of strike-slip faulting (S1 = SHmax and S3 = S hmin) utilizing generalized 
values for S hmin given by the dashed line in the figure. 

Pass borehole are essentially orthogonal to the breakouts in 

the same or nearby zones. As mentioned above, the excel- 

lent correlation of horizontal principal stress orientations 

inferred from hydraulic fracture orientations and breakout 

azimuths in numerous case studies led us to rely on break- 

outs for stress orientation in the Cajon Pass borehole be- 

cause of the expense and difficulty associated with using 

impression packers at great depth. While the only compari- 

sons between hydrofrac and breakout orientations that we 

have in the Cajon Pass well come from a limited range of 

depths in the hole where the maximum horizontal stress 

orientation is somewhat anomalous (approximately E-W) 

with respect to the overall average direction, there is no 

reason to suspect that the breakouts at other depths are not 

accurately indicating the directions of horizontal principal 
stresses. 

DISCUSSION 

Byedee's law. As noted in the introduction, nearly all 

relatively deep in situ stress measurements indicate that 

stress magnitudes are in general agreement with frictional 

faulting theory and Byerlee's law. Of comparable depth to 

the Cajon Pass borehole, the hydrofrac stress measurements 

of 2.5 km depth in granitic rocks in Cornwall, England 

indicate a strike-slip faulting stress regime [Pine et al., 1983], 

those to 3.0 km depth in gneissic rocks in the southeastern 

Germany [Baumgiirtner et al., 1990] indicate a normal/ 

strike-slip faulting stress regime near the bottom of the hole 
and a similar state of stress exists at --•3.5 km depth in hole 

EE-2 at Fenton Hill, New Mexico [Barton et al., 1988]. In 

each case, the measured state of stress is consistent with that 

informed from earthquake focal plane mechanisms and sup- 

port the concepts that (1) stress magnitudes in the crust are 

in equilibrium with the frictional strength of the crust and (2) 

laboratory-derived coefficients of fraction,/•, in the range of 

0.6-1.0 [Byedee, 1978] can be applied to faults in situ. 

Another way of saying this is that the maximum stress 

differences in the crust are controlled by the frictional 

strength of those faults that are most favorably oriented to 

the principal stress field (i.e., those whose normal is oriented 
at an angle of (45 ø - 0.5 tan -• /x) to the maximum principal 
stress [Jaeger and Cook, 1971]). 

In Figures 5a and 5b we show that the same thing is 

generally true for the majority of data collected in the Cajon 

Pass well. Numerous fault planes cut through the Cajon Pass 

well at a wide-variety of orientations [Barton and Zoback, 

this issue]. If the ratio of shear to normal stress on favorably 

oriented fault planes is consistent with predictions based on 

Mohr-Coulomb theory, it is possible to compare principal 

stress magnitudes with the following equation from Jaeger 

and Cook [1972] (see also Zoback and Hickman [1982], 

McGarr et al. [1982], Zoback and Healy [1984], Stock et al. 

[1985], and Evans and Engelder [1989]): 

(S 1 _ pp)/(S 3 _ pp) = [(•2 + 1)1/2 + •]2 (6) 
Pore fluid pressures in the fractured rock mass drilled at 

Cajon Pass were found to be very close to hydrostatic [Coyle 
and Zoback, 1988], and we utilize a hydrostatic pore pres- 

sure in (6). 

For the case of normal faulting, S 1 = S v and S 3 = Shmin. 

In Figure 5a we show the range of expected values of S hmin 

based on (4) using an estimate of the vertical stress based on 
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rock densities, coefficients of friction between 0.6 and 1.0 

and hydrostatic fluid pressure. With the exceptions of the 

anomalously high values of S hmin at 2.1 km at 3.5 km noted 

above, the measured values of S hmin are in agreement with 
those predicted by (6). In other words, the difference be- 

tween S v and S hmin is large enough to make favorably 

oriented normal faults move. Shmin could have larger values 
than those predicted by (6) (as is the case with the anomalies 

at about 2100 m and near the bottom of the hole) because this 

corresponds to lower shear stress on favorably-oriented fault 

planes. The values of Shmin cannot be much lower than that 
predicted by (6) because the shear stress would exceed the 

frictional strength of favorably-oriented faults. In Figure 5b, 

we show that the same thing is true for the case of strike-slip 

faulting (S• = SHmax and S 3 = Shmin ) if we utilize a 

generalized increase of S hmin with depth as shown by the 
dashed line in the figure. Thus Figure 5 shows that the 

magnitudes of stresses measured in the Cajon Pass well are 

in agreement with Mohr-Coulomb theory and Byedee's law 

and imply that favorably oriented normal faults and strike- 

slip faults in the region are expected to be active. In the 

context of the "strong crust/weak transform" concept for 

the mechanics of the San Andreas system alluded to above, 

these data clearly seem to provide evidence for a strong 

crust adjacent to the San Andreas fault. 

The use of hydrostatic fluid pressure in (6) to compute the 

likelihood of frictional sliding on favorably oriented fault 

planes is not inconsistent with utilization of zero pore 

pressure in (3) to relate the pressure of hydraulic fracture 

initiation to the principal stresses. Utilization of hydrostatic 

pore pressure in (6) is appropriate because such pressures 

are consistent with measured values for a •--300-m-long 

interval of fractured rock at --•2 km in the borehole [Coyle 

and Zoback, 1988]. Thus such pore pressures are presum- 

ably acting within potentially active faults and fractures. 

These same two assumptions, that hydrostatic pore pressure 

effects frictional failure on preexisting faults but pore pres- 

sure does not affect hydraulic fracture initiation, were also 

made by Pine et al. [1983] and Baumgiirtner et al. [1990], in 

the two most comparable studies to Cajon Pass conducted to 
date. 

Shear stresses resolved onto the San Andreas fault. In 

marked contrast to the high shear stresses resolved on 

favorably oriented faults in the crust penetrated by the Cajon 

Pass borehole, the abundant data on the orientation of SHmax 
from the orientations of the well bore breakouts over the 

entire lower half of the borehole indicates that there is no 

fight-lateral shear stress resolved on planes parallel to the 
San Andreas fault [see Shamir and Zoback, this issue]. 

Figure 6 combines the data on stress magnitude and orien- 

tation in Table 1 and presents computed upper bound values 

of shear stress parallel to the San Andreas as a function of 

depth in the well and compares it the expected values of 

shear stress if Byerlee's law applied to the San Andreas and 

the normal stress acting on the fault was approximately 

equal to the vertical stress. As alluded to above, the Cajon 

Pass site is along a section of the San Andreas which has not 

had a major earthquake since 1820 and is thus apparently 

quite "late" in the earthquake cycle. If Byedee's law 

applied to the San Andreas, the expected values of right 
lateral shear would be similar to those in the shaded area. 

The vertical line at 20 MPa of right-lateral shear indicates the 

approximate upper bound of average shear stress allowed by 

500 

1000 

1500 

2000 

2500 

3000 

3500 

Shear Stress Parallel to San Andreas (MPa) 

-60 -40 -20 0 20 40 60 

4000 

0 

Lef t-Latera 1 R 1 ght-Lat era l 

Fig. 6. An upper bound estimate of horizontal shear stresses 
resolved onto planes parallel to the local strike of the San Andreas 

fault (right-lateral shear is positive) utilizing the values of Shmin and 
S Hmax and the orientation of principal stresses listed in Table 1. 
Expected values of right-lateral shear based on Byedee's law is 
indicated by the hachured area. The upper limit to average right- 
lateral shear stresses based on the lack of frictionally-generated heat 
(-20 MPa [Lachenbruch and Sass, 1981]) is also shown. Symbols 
are the same as in Figures 3 and 5. As the average direction of 
maximum horizontal compression in the borehole indicates left- 
lateral shear on planes parallel to the San Andreas, the expected 
value of shear stress required to cause left-lateral strike-slip move- 
ment utilizing Byedee's law is also shown in the figure. 

shallow heat flow data along the San Andreas [Lachenbruch 
and Sass, 1980, 1981]. 

Figure 7 shows the average orientation of maximum 

horizontal stress in the Cajon Pass borehole. The shaded 

range of angles in the figure indicates the __+ 19 ø standard 

deviation of the breakout measurements [Shamir and Zo- 

back, this issue]. Thus, within one standard deviation, the 

stress orientation data indicate fault normal compression to 

left-lateral shear on planes parallel to the San Andreas, a 

result inconsistent with the applicability of conventional 

faulting theory to the San Andreas and its long-term slip 

history, along both its entire length and at the Cajon Pass site 

in particular [Sieh, 1978; Weldon, 1986; $ieh et al., 1989]. 

Comparison with geology. As pointed out by Weldon 

and Springer [1988], even though the NE-SW orientation of 

maximum principal stress in the Cajon Pass borehole is 

inconsistent with right-lateral shear along the San Andreas, 

it is consistent with the orientation of active strike-slip and 

normal faults in the immediate vicinity. In this section, we 

briefly investigate the potential for activity of the secondary 

faults in the region of the drillsite in the context of the 

measurements of both stress orientation and magnitude at 

depth. 

The mapping of Weldon [1986] and Matti et al. [1985] 

shown in Figure l a illustrates that the Cajon Pass drill site is 

near the northwestern end of a large region where the style 

of secondary faulting near the San Andreas is extensional. In 

the discussion above concerning the consistency of mea- 

sured stress magnitudes in the borehole with Byerlee's law 
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Fig. 7. Active faults in the immediate vicinity of the Cajon pass 
drill site (modified from Weldon [1986] and Pezard et al. [1988]) and 
the average direction (and standard deviation) of maximum horizon- 
tal principal stress in the Cajon pass borehole [Shamir and Zoback, 
this issue]. 

for the crust penetrated by the borehole, we argued that both 

favorably oriented normal faults and strike-slip faults are 

potentially active in the vicinity of the Cajon Pass drill site. 

The likelihood of left-lateral strike-slip faulting on the 

Cleghorn fault is especially interesting. As mentioned above, 

it is mapped as a left-lateral strike-slip fault striking subpar- 

allel to the San Andreas (Figure 7) near the drill site. We can 

evaluate the potential for left-lateral slip along the Cleghorn 

fault by simply considering the amount of left-lateral shear 
stress resolved onto it. As shown in Figure 6, this is 

approximately equal to that required to cause left-lateral slip 

for coefficients of friction of 0.6-1.0 at depths of-2-3 km. 

Thus, as implausible as left-lateral slip on the Cleghorn near 

the San Andreas at Cajon Pass would seem to be, left-lateral 

slip is consistent with the state of stress measured in the 

borehole in terms of Byerlee's law. Thus both the stress 

orientation and stress magnitude data in the Cajon Pass 

borehole indicate a stress state that is generally consistent 

with the general style of faulting in the region, especially the 

left-lateral strike-slip motion on the Cleghorn fault. While no 

normal faults striking approximately N60øE (as predicted by 

the borehole measurements) have been mapped in the im- 

mediate area of the drillsite, an active, steep, dip-slip fault 

striking about N60øE was mapped by Meisling and Weldon 

[1989] only about 3 km east of the drillsite (see Figure 7). 

Although it is not clear from field relations that this is an 

active normal fault, it is reasonable to speculate that it is as 
it is within the extensional domain near the San Andreas 

mapped by Weldon [1986] and Matti et al. [1985]. 

Three hypotheses of the origin of contemporary left-lateral 

shear and deformation at the Cajon Pass site are offered by 

Meisling and Weldon [1989], Saucier et al. [this issue] and 

Shamir [ 1990]. Meisling and Weldon suggest that the style of 

geologic deformation is largely the result of the complexities 

in the three-dimensional shape of the San Andreas. They 

argue that in addition to variations in strike observable in 

Figure l a and 7, the San Andreas dips to the northeast in the 

Cajon Pass region and that the subsurface trace of the fault 

may be offset to the northeast by several kilometers [see 

Meisling and Weldon, 1989, Figure 15]. To explain patterns 

of geologic deformation observed at the surface in the 

western San Bernadino mountains and the Cajon Pass area, 

they argue that the movement of mass around this "bulge" 

at depth results in the uplift and extension. Saucier et al. 

suggest that right-lateral slip associated with bends in an 

essentially vertical San Andreas fault plane introduce areas 

of concentrated left-lateral shear and extension in the Cajon 

Pass area that are generally consistent with the region in 

which such deformation is mapped. For the case when the 

right-lateral slip relieves all of the right-lateral shear (i.e., a 
weak fault) left-lateral shear stresses can accumulate over 

several earthquakes until they can eventually cause second- 

ary crustal deformation. Shamir [1990] suggested that the 

left lateral shear might be the result of dynamic stress 

redistributions in the 1812 earthquake which are somewhat 

intensified by geometric effects like those studied by Saucier 

et al. He pointed to examples of left-lateral strike-slip 

aftershocks on planes parallel to the San Andreas that 
occurred after the 1966 Parkfield earthquake as a possible 

analog to what might be the cause of what is observed at 

Cajon Pass today. 

The consistency between the normal/strike-slip fault in 

stress regime indicated by geologic deformation in the region 

of the drill site and the stress magnitude measurements in the 

Cajon Pass borehole seem to add appreciably to the argu- 
ments based on the orientation of the in situ stress field and 

strikes of secondary faults made by Weldon and Springer 

[1988]. There is indeed an excellent correlation between the 

state of stress and style of geologic deformation in the region 

in the immediate vicinity of the drill hole. Nevertheless, the 

map of active faults in the Cajon Pass region clearly shows 

that one would expect that the direction of maximum hori- 

zontal compression and relative magnitudes of principal 

stresses would change spatially. To a degree this is also 

reflected in earthquake focal plane mechanisms along the 

San Andreas [Jones, 1988]. To the northwest of Cajon Pass 

there is a region where the state of stress is compressional 

(see for example the active thrust fault that is mapped near 

the San Andreas close to Pallett Creek in Figure l a). Stress 

measurements made at a site called Crystallaire (4 km 

northeast of the San Andreas near Pallett Creek) to almost 1 

km depth found a reverse faulting stress state in the upper 

-300 m and a strike-slip faulting stress regime at greater 

depth with a direction of maximum horizontal compression 
-N20øW [Zoback et al., 1980]. To the southeast of the drill 

site along the San Andreas, earthquake focal plane mecha- 
nisms define the extensional stress state near the San An- 

dreas defined by the mapping of Weldon [1986] and Matti et 

al. [1985]. Thus both earthquake focal plane mechanisms 

[Jones, 1988] and the style of secondary crustal deformation 

imply that the state of stress changes markedly along the 
strike of the San Andreas system in southern California. 

There remains a discrepancy between the stress orientation 
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at Cajon Pass and that in the adjacent regions as indicated by 

earthquake focal plane mechanisms near the San Andreas. 

The strike-slip/reverse faulting earthquakes to the northwest 

in the Pallett Creek/Crystallaire area and the strike-slip/ 

normal faulting earthquakes to the southeast both have 

NNW trending P axes [Jones, 1988]. This discrepancy may 

simply be the result of sampling a nonuniform stress field 

along the fault (see also the discussion by Shamir and 

Zoback [this issue]). As shown by Jones [1988, Figure 13], 

there are no well-constrained earthquake focal plane mech- 

anisms that are within _ 10 km of the San Andreas directly 

within the domain defined by the Cleghorn fault and drill site 

(the area to adjacent to the northwest side of the San 

Andreas in the westernmost San Bernadino mountains). 

One could argue that the stress orientation observed in the 

Cajon Pass borehole and the changes in deformational style 

along the strike of the San Andreas indicated by active 

secondary faults shown in Figure l a simply reflect superfi- 

cial features that are perhaps related to a weak San Andreas 

at shallow depth but are not really indicative of the level of 

shear stress on the fault at seismogenic depth. An obvious 

problem with such arguments is that they clearly violate 

constraints on frictional stress imposed by heat flow mea- 

surements along the length of San Andreas (and in the Cajon 

Pass borehole in particular [Lachenbruch and Sass, this 

issue]). The lack of frictionally generated heat along the San 

Andreas argues that the fault must be weak, especially below 

5 km. If the frictional strength of the San Andreas was zero 

from the surface to a depth of about 5 km but consistent with 

Byerlee's law from 5 to 15 km, it would only diminish the 

average frictional resistance on the fault by about 10% (for 

an average increase of frictional resistance of about 10 

MPa/km), not the decrease of frictional resistance of a factor 

of 3-5 was required by the heat flow data. Moreover, the 

state of stress and style of secondary deformation observed 

throughout the Coast Ranges in central California appear to 

change neither with depth nor distance from the fault (com- 

pare the breakout and focal plane mechanism data in Figure 

1 of Zoback et al. [1987]). 

The state of stress throughout southern California is 

clearly more complex than that in central California. Never- 

theless, the angles between the local strike of San Andreas 

and the S Hmax directions inferred from the focal plane 
mechanism inversions near it do indicate that the frictional 

strength of the fault is low [Jones, 1988] from Fort Tejon to 

Indio. Moreover, while earthquake focal plane mechanisms 

near the San Andreas and in the Los Angeles basin show 

-N-S compression [Hauksson, 1990], compression nearly 

perpendicular to the San Andreas is observed at distances 

more than 10 km away from the fault is indicated by a 

number of focal plane mechanisms in the eastern Transverse 

Ranges [Webb and Kanamori, 1985] and by well bore 

breakout data and earthquake focal plane mechanisms along 

the coast [Zoback et al., 1987; Hauksson, 1990]. 

Finally, we should address the possibility that the overall 

state of stress in the upper 3.5 km at the Cajon Pass site 

might be affected by some large-scale perturbations of the 

regional stress field. Two such perturbations of the stress 

field are those associated with topography and the great 1857 

Fort Tejon earthquake, which broke to within about 20 km of 

Cajon Pass to the northwest. Three other papers in this issue 

deal with these questions in some detail. Both Saucier et al. 

[this issue] and Shamir and Zoback [this issue] model stress 

changes associated with the 1857 earthquake. For smoothly 

decaying slip at the southern end of the rupture, both studies 

showed that the 1857 rupture had negligible effect on the 

current state of stress at Cajon Pass. Shamir and Zoback also 

showed that no marked changes of stress magnitude would 

occur in the upper 7-8 km at the Cajon Pass site as a result 

of the long-term cycle of stress accumulation and release 

along the San Andreas and San Jacinto faults. Liu and 

Zoback [this issue] describe a new method for modelling 

three-dimensional topography and apply it to computing 

effects of topography in the San Gabriel and San Bernadino 

mountains on state of stress at depth in the Cajon Pass area. 

They show that topographic effects also have a negligible 

effect on the measures stress magnitudes and orientations in 

the borehole at depths greater than 1-2 km. 

Another type of stress perturbation that could affect the 

stress measurements are the stress drops associated with slip 

on the numerous minor faults in the area and especially those 

that cut directly through the well. Shamir and Zoback [this 

issue] point out evidence in the borehole for perturbations of 

the stress field associated with slip on such faults at a variety 

of scales. It is unlikely, however, that this phenomena could 
effect the overall state of stress measured in the borehole. As 

shown in Figure 7 and discussed above, the state of stress 

measured in the Cajon Pass borehole is consistent with the 

style of faulting in the region, and it is clear that the borehole 

is sampling a "stress domain" characteristic of a fairly large 

area adjacent to the San Andreas. Even at the relatively 

modest depth of 3.5 km reached, right-lateral shear stresses 

should be about 30-50 MPa if Byerlee's law and hydrostatic 

pore pressures were relevant to the San Andreas (e.g., 

Figure 6). As such shear stresses are much larger than the 

-1-10 MPa average stress drops of large earthquakes, and it 

would take an extremely large stress drop over an extremely 

large fault area to affect the overall state of stress in the 

entire region in which the borehole is located. 

Overall, the excellent correlation between the style of 

local faulting and the stress measurements made in the 

borehole indicates that the remarkable thing about the stress 

measurements in the Cajon pass borehole is that there are no 

surprises if we forget about the San Andreas fault. Lachen- 

bruch and Sass [this issue] reached the same conclusions 

based on their thermal studies to 3.5 km depth as did Healy 
and Zoback [1988] after stress measurements were made to 

2.1 km. In the introduction we referred to the two hypothe- 

ses Healy and Zoback proposed to explain the state of stress 

and style of geologic deformation around the well site: either 

the crust in the region of the borehole was decoupled from 

the San Andreas or the San Andreas is quite weak. The fact 

that a complete absence of right-lateral shear on planes 

parallel to the San Andreas is observed to 3.5 km suggests 

that both of these hypotheses may be correct. 

Stress perturbations. It is interesting to briefly speculate 

about possible causes of the two localized zones where the 

last principal stress markedly deviates from the magnitudes 

consistent with Byerlee's law and increases in the Cajon 
Pass well to values close to that of the overburden stress 

(Figure 5a). Two other wells drilled in areas of active normal 

faulting in situ stress measurements are known to show 

similar phenomena. In four wells on the Nevada Test Site 

near Yucca mountain, Stock and Healy [1988] show that 

nearly all the last principal stress values are consistent with 

predicted values based on Byeflee' s law for an area of active 
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normal faulting (and are thus considerably less than the 

vertical stress). However, in two of the wells, USW G-2 and 

Ue25P1, localized increases of Shmin are observed where the 
values deviate from Byerlee's law and reach values close to 

the vertical stress. The same thing was observed with stress 
measurements made in borehole SST-701 drilled in 6th 

Water canyon, Utah (U.S. Bureau of Reclamation, unpub- 

lished memorandum, 1990). In fact, the similarities of the 

state of stress, magnitude of stress perturbations and style of 

local faulting among these two cases and the Cajon Pass data 

are striking. 

Shamir and Zoback [this issue] discuss variations of stress 

orientation with depth in the Cajon Pass borehole that occur 

at a variety of scales and wavelengths. The best explanation 

of these variations of stress orientation seems to be that they 

result from slip (of varying scale) on faults that pass through 

and near the hole. They argue that the highly faulted nature 

of the shallow crust in the western Mojave desert seems also 

to be the most likely explanation for the unusually large 

degree of variability of stress managements in that region 

(see also Hickman [1991]). We therefore hypothesize that 

the perturbations in the magnitude of least principal stress 

with depth may also be the result of slip on active faults that 

cut through the hole (i.e., we are sampling the perturbations 

of the stress field associated with past earthquakes). Because 

S1 = S v and S3 -- Shmin in a normal faulting environment, the 

drop in shear stress in an earthquake must be accompanied 

by an increase in S hmin because the magnitude of the 
overburden stress is fixed by the weight of the rock. This is 

schematically shown in Figures 8a and 8b. In the vicinity of 

the stress anomaly at about 2100 m, analysis of borehole 

televiewer data revealed a fault at a depth of 2038 m. While 

many faults and fractures cut through the hole in this general 

depth range, this particular fault appears to be normal fault 

that is favorably-oriented to the stress field (i.e., it strikes 

---E-W, essentially parallel to the direction of maximum 

principal stress at that depth and dips 60 ø to the north). To 

test the plausibility of the hypothesis that slip on such a fault 

may have caused the stress anomaly observed at about 2100 

m in the Cajon Pass borehole, we have modelled the change 

in the magnitude of least principal stress associated with slip 

on this fault. To compute the stress changes, we used the 

program DIS3D [Erickson, 1987], which models the stress 

and displacements associated with dislocations in an elastic 

half-space. 

We show in Figure 8c the results of two of the models, 15 

cm of offset on a 200 by 200 m fault patch cutting through the 

well and 30 cm of offset on a 400 by 400 m patch. While such 

modelling is inherently nonunique, in the context of the 

model the stress magnitude data do constrain some general 

characteristics of the slip on the fault hypothesized to have 

caused the anomaly. Less slip would have produced less of 

an increase of the magnitude of the least principal stress and 

slip over a broader area would have produced an anomaly 

detected over a greater range of depths. The decreases of the 

magnitude of least principal stress below the values pre- 

dicted by Byerlee's law (the negative lobes on the stress 

pertubations) would not be expected to occur in nature as it 

would result in too much shear stress on favorably oriented 
normal faults. 

Despite the good fit between the models shown in Figure 

8c, our goal in presenting the modeling is only to argue 

conceptually that stress anomalies in normal faulting envi- 
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Fig. 8. (a) Schematic of normal fault cutting through the bore- 
hole at 2038 m which may be related to the increase of least principal 
stress measured at about that depth. The fault strikes E-W, parallel 
to the direction of maximum horizontal compression at that depth 
and dips 60 ø to the north. (b) Mohr diagram illustrating that the drop 
in shear stress associated with a normal faulting earthquake would 
require an increase in the magnitude of least effective principal 
stress. (c) Results of dislocation modelling of the stress perturbation 
associated with normal slip on the fault at 2038 m (see text). 

ronments such as those encountered in the Cajon Pass 

borehole (and the other cases described above), may simply 

be the result of sampling the perturbations of the stress field 

associated with past earthquakes. If this hypothesis is cor- 

rect, the stress drop on earthquakes was nearly complete as 

the least principal stress has a magnitude almost equal to the 

vertical stress. On the basis of analysis of strong motion 

seismograms McGarr [1981, 1984] has argued that large, 

near-complete stress drops might occur in the hypocentral 

zones of earthquakes. 

CONCLUSIONS 

Measurements of in situ stress orientation and magnitude 

in the two boreholes drilled at Cajon Pass indicate ratios of 

shear to normal stress on favorably oriented fault planes 

consistent with Byerlee's law, i.e., predictions of stress 

magnitudes based on Mohr-Coulomb theory utilizing labora- 

tory-determined coefficients of friction in the range 0.6-1.0. 

Twenty-three hydraulic fracturing tests yielded data on the 

magnitude of the least horizontal principal stress, S hmin , 
from 0.8 to 3.5 km depth. Six estimates of the magnitude of 

the maximum horizontal principal stress, SHmax , were also 
determined from the hydrofracs, and an additional 12 esti- 
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mates of S Hmax were obtained from analysis of stress- 
induced well bore breakouts utilizing knowledge of rock 

strength and the hydrofrac-determined values of least prin- 

cipal stress [Vernik and Zoback, this issue]. The consistency 

of stress magnitudes in the Cajon Pass boreholes with 

Byerlee's law is similar to results of stress measurements at 

a number of sites around the world [e.g., McGarr and Gay, 

1978; Brace and Kohlstedt, 1980; Pine et al.. 1983; Zoback 

and Healy, 1984; Stock et al., 1985; Zoback et al. 1988a; 

Baumgiirtner et al., 1990]. As the validity of Byerlee's law is 

demonstrated for the case of normal faulting by the differ- 

ences between the vertical stress and nearly all of the least 

principal stress values, this conclusion is independent of the 

relatively large uncertainties associated with the S Hmax val- 
ues. 

In two places in the borehole, the magnitude of the least 

principal stress deviates from the values predicted by Byer- 

lee's law for active normal faulting and increases to values 

approximately equal to the overburden stress. These local- 

ized stress perturbations can be modelled as near-complete 

stress drop associated with slip in past earthquakes with 
scale dimensions of a few hundred meters that occurred on 

normal faults that cut through the well. 

In marked contradiction to the applicability of Byerlee's 

law for the crust penetrated by the borehole, abundant data 

on the orientation of S Hmax to 3.5 km depth [Shamir and 
Zoback, this issue] indicate that there is left-lateral and not 

right-lateral shear stress resolved onto the San Andreas fault 

in this area. The lack of right-lateral shear stress on the San 

Andreas is extremely surprising at a site that is presumably 

quite "late" in the earthquake cycle [Weldon, 1986; Sieh et 

al., 1989]. As surprising as this result is, the low least 

principal stress and tendency for normal faulting measured 

in the borehole is consistent with the overall style of active 

secondary faulting in the region encompassing Cajon Pass 

and that extending to the southeast [Weldon, 1986]. Perhaps 

more importantly, the state of stress measured in the bore- 

hole is consistent with the left-lateral strike slip observed on 

the Cleghorn fault [Weldon, 1986; Weldon and Springer, 

1988] that is located approximately half way between the 

drill site and the San Andreas. Even at the relatively modest 

depth of 3.5 km reached in the Cajon Pass borehole, right- 

lateral shear stresses should be about 3-50 MPa if Byerlee's 

law was relevant to the San Andreas [e.g., Sibson, 1974]. As 

such shear stresses are much larger than the --•1-10 MPa 

average stress drops of large earthquakes, and it would take 

an extremely large stress drop over an extremely large fault 

area to negate 30-50 MPa of expected right-lateral shear and 

affect the overall state of stress in the entire region in which 
the borehole is located. 

It is clear in Figure l a that the style of secondary faulting 

is quite variable along the San Andreas in southern Califor- 

nia. We argue that the only way that such variations of 

deformational style can exist (especially that left-lateral 

shear that occurs essentially adjacent to the San Andreas in 

the Cajon Pass region) is that motion on the San Andreas 

does not require large magnitude right-lateral shear stresses. 

It is not possible to say to what depth the observed left- 

lateral shear in the borehole (and corresponding left-lateral 

slip on the Cleghorn) might persist. But the consistency 

between the state of stress measured in the Cajon Pass 

borehole and the active faulting in the region demonstrates 

that we are sampling a "stress domain" characteristic of a 

fairly large area adjacent to the San Andreas (Figure l a). 

Even at a relatively modest depth of 3.5 km (earthquake 

focal depths in the region extend from 3.6 to 11.3 km [Jones, 

1988]), measured right-lateral shear stresses are -30-50 MPa 

less than that predicted by conventional faulting theory and 

Byeflee's law. As this amount is much larger than the - 1-10 

MPa average stress drops by large earthquakes, we believe 

that the style of deformation and the state of stress currently 

measured in the Cajon Pass/Cleghorn fault region is a 

persistent feature, relatively unaffected by the stress drops 

associated with individual earthquakes on the San Andreas 

or other faults in the region (see also Saucier et al. [this 

issue] and Shamir and Zoback [this issue]). 

Overall, the in situ stress measurements in the Cajon Pass 

borehole support the "strong curst/weak transform" con- 

ceptual model for faulting along the San Andreas system 

referred to above that was originally proposed for central 

California. Heat flow measurements in the Cajon Pass bore- 

hole [Lachenbruch and Sass, this issue] indicate no evidence 

of frictionally generated hear from the San Andreas and thus 

support inferences about the low frictional strength of the 
fault based on the heat flow measurements in shallow 

boreholes. Thus both the stress and heat flow measurements 

to 3.5 km depth in the Cajon Pass borehole support the 

hypothesis that slip along the San Andreas fault occurs at 

shear stresses markedly lower than that predicted by con- 

ventional faulting theory and laboratory coefficients of fric- 

tion in the range of 0.6-1.0. 
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