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Summary 

In the genetically restricted response that follows immunization with (4-hydroxy-3-nitro- 
phenyl)acetyl coupled to protein carriers, two distinct populations of B cells are observed in the 
spleens of C57BL/6 mice. By 48 h postimmunization, loci of antigen-binding B cells appear 
along the periphery of the periarteriolar lymphoid sheaths. These loci expand to contain large 
numbers of antibody-forming cells that neither bind the lectin, peanut agglutinin, nor mutate 
the rearranged immunoglobulin variable region loci. Germinal centers containing peanut agghtinin- 
positive B cells can be observed by 96-120 h after immunization. Although specific for the 
immunizing hapten, these B cells do not produce substantial amounts of antibody, but are the 
population that undergoes somatic hypermutation and affinity-driven selection. Both focus and 
germinal center populations are paucidonal, founded, on average, by three or fewer B lymphocytes. 
Despite the highly specialized roles of the focus (early antibody production) and germinal center 
(higher affinity memory cells) B cell populations, analysis of VH to D to J. joins in neighboring 
loci and germinal centers demonstrate that these B cell populations have a common clonal origin. 

D 
uring the course of the primary immune response, par- 
ticipant B lymphocytes are segregated into distinct com- 

partments, loci of antibody-forming cells (AFC) 1 at the pe- 
riphery of the periarteriolar lymphoid sheaths (PALS) and 
germinal centers (GC) in the lymphoid follicles (1-8). These 
cellular compartments are quite distinct and can be distin- 
guished not only by their location within the spleen, but 
by a variety of other markers, including affinity for the plant 
lectin, peanut agglutinin (PNA) (for reviews see references 
5 and 6). 

We have studied this compartmentalization in the response 
of C57BL/6 mice to the hapten (4-hydroxy-3-nitrophenyl)- 
acetyl (NP) (8, 9) where the NP-specific antibodies produced 
bear the X1 L chain and use the V186.2 segment of the 
VaJ558 gene family to encode the H chain V region (10-13). 
The PALS-associated loci and GC represent mono- to oligo- 
donal populations that are similar in that both express the 
expected canonical V, and VL genes, exhibit heteroclitic 
binding of the NP analogue, (4-hydroxy-5-iodo-3-nitro- 

1 Abbreviations used in this paper: 3-AEC, 3-aminoethyl carbazole; AFC, 
antibody-forming cell; CDR3, third CDR of the Ig H chain; CG, chicken 
gamma globulin; GC, germinal center; HRP, horseradish peroxidase; NP, 
(4-hydroxy-3-nitrophenyl)acetyl; NIP, (4-hydroxy-5-iodo-3-nitrophenyl) 
acetyl; PALS, periarteriolar lymphoid sheath; PNA, peanut agglutinin; 
S-AP, streptavidin-alkaline phosphatase. 

phenyl)acetyl (NIP), and undergo IgM -~ IgG isotype 
switching (8). However, focus and GC B cell populations 
also exhibit differences that suggest specialization of their roles 
in the primary response. PALS-associated loci are the sites 
of considerable Ig synthesis and are thought to be the major 
source of early primary antibody (5, 14, 15). In contrast, 
throughout the primary response, GC B cells produce very 
little secreted Ig, but are the source for the affinity-selected 
mutant B cells which dominate the pool of memory lym- 
phocytes (6, 9, 16-18). 

The origin of GC B cells and their relationship to the extra- 
follicular focus populations remains problematic. The tradi- 
tional view, based largely upon indirect evidence, is that GC 
B cells are recruited from antigen-activated lymphocytes in 
extra-follicular locations such as the PALS-associated loci (6). 
However, Linton et al. (19) have recently suggested that the 
AFC of loci and the GC cells that enter the memory pool 
are derived from different precursor cells which may repre- 
sent independent cellular lineages. Although these hypoth- 
eses are not necessarily exclusive, if lineages of primary AFC 
and memory cell precursors are established substantially be- 
fore their encounter with antigen, neighboring focus and GC 
populations would be unlikely to share clonal origins. On 
the other hand, if GC populations are founded by antigen- 
activated migrants from the foci, nearby loci and GC would 
be expected to be clonally related. 
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An established means of determining the genetic related- 
ness of B cells is comparison of the DNA encoding the third 
C D R  (CDR3) of the H chain (20, 21). This region is created 
by the fusion of the V., D, and J .  gene segments and often 
contains imprecise joins and additional, untemplated nucleo- 
tides (22, 23). The complexity that results from these pre- 
sumably random processes is sufl~dently great to identify the 
members of a single rearrangement event (a clone) with a 
high degree of confidence (24). 

Here we exploit the diversity of the H chain CDR3 to 
identify the clonal relatedness of focus and GC B cells. Using 
a novel technique of microdissecting single foci and GC from 
histological sections followed by the amplification and se- 
quencing of genomic VDJ rearrangements (9), we have com- 
pared the constituent H chain CDR3 sequences found in ad- 
jacent PALS-associated loci and GC. Of  four (X + ,PNA-) 
loci analyzed, two were associated with (X+,PNA +) GC 
that contained cells with an identical CDR3 sequence. It is 
unlikely that this finding represents contamination during 
the process of microdissection or the retrograde migration 
from GC to loci, in that sequences recovered from GC show 
evidence of somatic hypermutation, whereas those taken from 
foci do not. Thus, we propose that a single B cell, activated 
by antigen along the border of the PALS, is capable of giving 
rise to both focus and GC populations. 

Materials and Methods 

Animals andlmmunization. Female, viral antibody-free C57BL/6 
mice (5-7 wk) were purchased from The Jackson Laboratory (Bar 
Harbor, ME) and maintained in microisolator cages. Mice were 
immunized with a single intraperitoneal injection of 50/~g NP 
(Cambridge Research Biochemicals, Cambridge, UK) conjugated 
to chicken gamma globulin (Accurate Chemical & Scientific Corp., 
Westbury, NY) precipitated in alum (NP-CG/alum) (8). After im- 
munization, mice were killed at 2-d intervals by cervical disloca- 
tion, and their spleens processed as described (8). Serial, 6-/~m-thick 
frozen sections were thaw-mounted onto poly-r-lysine coated slides, 
fixed, and stored at -20~ as described (8). 

Staining and Isolation of Individual GC and loci. Frozen sections 
were stained in tandem with horseradish peroxidase (HRP)-con- 
jugated anti-X L chain antibody (Southern Biotechnology Associates, 
Birmingham, AL) and PNA-biotin (E-Y Laboratories, San Mateo, 
CA), followed by streptavidin-alkaline phosphatase (S-AP) (Southern 
Bioteehnology) as described (8). HRP and AP activities were visual- 
ized using 3-aminoethyl carbazole (3-AEC) and napthol AS-MX 
phosphate/fast blue BB (Sigma Chemical Co., St. Louis, MO), 
respectively (8). GC ()~+, PNA+; red/blue) and loci (X § PNA-; 
red only) were identified by brightfield microscopy. Adjacent loci 
and GC were selected at random and microdissected from the stained 
sections of a single spleen using a micromanipulator (Narishige, 
Tokyo, Japan)-controUed micropipette. Approximately equal areas 
from each focus and GC were recovered for amplification to equalize 
the amount of recovered DNA. Each sample represented 50-100 
cells (9). 

DNA Amplification and Sequencing. The cellular material recov- 
ered by microdissection was introduced into a 0.5-ml microcen- 
trifuge tube containing 15 ~1 HzO and 5/zl PBS. Afterwards, 5 
~1 proteinase K (2 mg/ml) (Boehringer-Mannheim Biochemicals, 
Indianapolis, IN) was added, and the suspension was incubated at 

37~ for 16 h followed by heat inactivation of the protease (10 
min, at 96~ This crude lysate was then subjected to two rounds 
of PCR as described (9). Briefly, PCR reactions were carried out 
in a 50-/~1 volume of a reaction mixture composed of 10 mM Tris- 
HC1 (pH 8.3), 50 mM KC1, 4 mM MgC12, 0.01% gelatin (Sigma 
Chemical Co.), 200/~M dNTP (Pharmacia LKB Biotechnology, 
Piscataway, NJ), 20 pmol of each primer, and 2.5 U Taq polymerase 
(Bethesda Research Laboratories, Bethesda, MD). Two drops of 
mineral oil (Sigma Chemical Co.) were added to each tube to pre- 
vent evaporation. The first round of PCR consisted of 40 
amplification cycles (96~ for 1.4 min, and 70~ for 3 min; Ericomp 
programmable cyclic reactor, Ericomp Inc., San Diego, CA) using 
the primer, 5' CCTGACCCAGATGTCCCTTCTTCTCCAG- 
CAGG 3', which is complementary to the genomic DNA 5' of 
the transcriptional start site of V186.2, and 5'GGGTCTAGAG- 
GTGTCCCTAGTCCTTCATGACC 3" which is complementary 
to a region in the J,2-J.3 intron. 2/~1 of this reaction mixture was 
reamplified for an additional 40 cycles (96~ for 1.4 rain, and 70~ 
for 2 min) using a second set of nested primers. The 5' internal 
primer is complementary to the first 20 nucleotides of the V186.2 
gene segment, and in addition contains recognition sequences for 
the restriction enzymes XbaI and EcoRI (5' TCTAGAATTCA- 
GGTCCAACTGCAGCC 3'). The 3' internal primer binds to the 
J.2 gene segment and contains an additional BamHI recognition 
sequence (5'ACGGATCCTGTGAGAGTGGTGCCT 3'). 

Amplified DNA was extracted in phenol/chloroform, precipi- 
tated in ethanol, digested with the BamHI and PstI restriction en- 
donucleases (Boehringer-Mannheim Biochemicals), and ligated into 
pBluescript SK (9). Competent DHSc~ bacteria were transformed 
by electroporation (25/~F, 2.5 kV, 200 fl), and the recombinant 
colonies were screened with a 32p-labeled oligonucleotide corre- 
sponding to amino acid positions 70-74 of the V186.2 gene seg- 
ment. This oligonucleotide probe imparts no bias for the CDR3 
of the clones screened. 10-12 mini-plasmid preparations were made 
from positive clones (usually 60-90% of recombinant colonies were 
positive by hybridization) recovered from each focus or GC by the 
alkaline lysis method (25), and the double-stranded plasmid DNA 
was sequenced in both directions using Sequenase (United States 
Biochemical, Cleveland, OH). Sequence data were analyzed using 
the PC/GENE program (InteUigenetics, Mountain View, CA). 

Reconstruction of Splenic Architecture. The complete anatomic rela- 
tionship of some focus and GC pairs was determined from mul- 
tiple serial sections as described (8). 

Frequency of Taq-induced, Artifactual Mutations. We have mea- 
sured (9) the frequency of polymerase-induced mutations by the 
sequence analysis of amplified VDJ DNA recovered from the hy- 
bridoma clone, B1-8 (V186.2, DFL16.1, .1,2). After a fixation and 
amplification protocol identical to that used for histological sec- 
tions, eight substitutions were observed in 2,706 bp sequenced 
(1/338). This frequency corresponds to a misincorporation rate of 
4 x 10-S/bp/amplification cycle, a value virtually identical to that 
reported by Weiss and Rajewsky (26) and actually below that found 
in early studies of Taq fidelity (27, 28). Amplification ofVDJ DNA 
from seven loci (3 x 10-S/bp/cycle; [9] and this study) and three 
unmutated GC populations (3 x 10-Vbp/cycle; our unpublished 
results) indicate that polymerase fidelity is a constant. Thus, on 
average, each 320 bp VDJ fragment rescued from splenic tissue is 
expected to contain about one mutation because of polymerase error. 

Results 

Kinetics of Focus- and GC Formation. This study confirms 
our earlier report (8) on the order in which loci and GC ap- 

680 Germinal Center Precursor Cells 



150  

" -  125 ~ g  Lombda+ loci 

~ 5 0  

. . , .  , 

o 2 , 8 . 1'o 17 1'4 1'. 

Days pos t - immun iza t ion  

Figure 1. Kinetics of the appearance and loss of ~,+ foci (hatched) and 
GC (solid) from the spleen after immunization with NP-CG. Foci (X + , 
PNA-) are present 2 d postimmunization as loose clusters of 8-32 cells 
(8). By day 8-10, loci contain as many as 2 x 103 cells. After this peak, 
foci rapidly lose cells and are largely absent by day 16. GC (X + , PNA +) 
first appear on day 4 of the response and are maintained in the spleen at 
least until day 16. By day 12 postimmunization, each GC contains = 103 
cells to occupy about 1% of the splenic volume (8). 

pear in the spleen after primary immunization with NP-CG. 
As early as 2 d after immunization, heteroclitic, X + B cells 
appear along the periphery of the T cell-rich PALS. 2 d later, 

at day 4 of the response, PNA + GC appear in the lymphoid 
follicles. Although loci are progressively lost from the spleen 
after day 10 of the response, GC persist at least until 16 d 
postimmunization (8) (Fig. 1). 

Previously, we were unable to detect GC before 6 d after 
immunization using fluorochrome-labeled PNA (8). Our use 
of a more sensitive histochemical method (S-AP) in the present 

study permitted the earlier detection of GC (day 4) and is 
consistent with other reports on the kinetics of GC produc- 

tion (5, 7, 29). 
Anatomical Relationship of Foci and GC. Fig. 2 illustrates 

the proximity of the PALS-associated loci and GC within 
a single region of splenic white pulp. Foci of X + B cells 
(stained red) are located along the outer margins of the PALS 
which is dominated by Thy 1.2 + cells (Fig. 2). Lymphoid 
follicles containing X + PNA + GC B cells (stained red/blue) 
are located nearby in the B cell-rich region of the white pulp 
(Fig. 2). This approximation of loci and GC is typical (8) 

and permits the selection of associated focus and GC pairs. 
However, because of the considerable dimensions of both loci 
and GC (8), any single focus may be closely associated with 
multiple GC and vice versa. 

Analysis of the Genetic Relatedness of Adjacent Foci and GC. 
Because both loci and GC are well developed in the spleen 
10 d after challenge with NP-CG (Fig. 1 and reference 8), 

four typical sets of adjacent loci and GC were selected at 
random and microdissected from serial sections of a frozen 
spleen taken 10 d postimmunization. Two focus/GC pairs, 
focus 10.8/GC B8 and focus 10.15/GC B15, were taken from 
widely separated sites. Two other focus/GC pairs, focus 
10.12/GC B12 and focus 10.17/GC B17, shared anatomic prox- 
imity. In all cases, the phenotype of the recovered loci and 
GC was (X +, PNA-) and (X+, PNA+), respectively. 

Focus 10.8/GC B8. The CDR3 sequences ofVDJ DNA 
recovered from focus 10.8 and GC B8 are shown in Fig. 3. 
Focus 10.8 was populated by at least three distinct B cell clones, 
as three unique CDR3 sequences were recovered. The 10.8 
sequences did not show evidence of somatic hypermutation 

Figure 2. ~ t a t i v e  photomicrograph of splenic 
white pulp 10 d after immunization with 50 /zg 
NP-CG/alum. A single X + PNA- focus (F; stained 
red) may be seen in dose approximation to a tangen- 
tially sectioned arteriole (/1) and the T ceU-rich PALS 
(P) surrounding it. Two neighboring X + PNA + GC 
(stained red and blue) are located in the follicular re- 
gion of the white pulp. X L chain and PNA-binding 
cells were visualized by incubating the section with 
anti-X HILP and PNA-biotin followed by S-AP. Bound 
HRP and AP activities were visualized with 3-AEC 
and fast blue BB as described (8). Original magnifica- 
tion at 200. 
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v, 

V186.2 

V186.2 

V186.2 

V gene segment 

93 94 

...... TAC GAC TAC GGT AGT 

...... TC43 GGG GC4~ 

...... TAT CCC TAT TAC TAC GGT AGT AGC 

JH2 

TAC TTT No.lsolates/ % Tota l 

...... 2 20% 

...... 7 70% 

...... 1 10% 

Germinal Center B8 

93 94 

V. GCA AG& 

V186.2 ...... 

V186.2 ...... 

V.23 ...... 

V.23 ...... 

CHI0 ...... 

JH2 

TAC TTT 

TAC GAS TAC GGT AGT ...... 

G AAT TCC TAT TAC TAC GGT AGT AGC CTT TAC ...... 

TAT GAT GGT TAC TAC 

GAG AGG AGT AGT --- C-- 

AGT GGG GGC CTT GAT GGT TGG AAC ...... 

N o . I s o l a t e s /  %Total 

2 22% 

2 22% 

3 33% 

1 11.5% 

1 11.5% 

Figure3. Comparison of CDR.3 se- 
quences recovered from focus 10.8 and 
GC BS. Only the sequence of the VDJ 
junction is given. Rearranged V. gene 
segments are identified (30), and all 
amplified VDJ fragments were joined 
to J.2. At least three B cell clones 
popuhted focus 10.8, and their relative 
frequencies can be estimated from the 
numbers of replicate isohtes of each dis- 
tinct CDR3 sequence. One CDR3 se- 
quence (/c/a) is found in both focus and 
GC populations, indicating common 
clonal origins. 

(not shown). This focus has an average mutation frequency 
of 1/402, which is compatible with the error rate expected 
for the Taq polymerase alone (1/338). Five distinct CDR3 
sequences were amplified from GC B8 (Fig. 3). One of these, 
TACGACTACGGTAGT, is identical to a VDJ join isolated 
from the adjacent focus, 10.8. However, unlike the DNA re- 
covered from focus 10.8, all sequences derived from GC B8 

are somatically mutated (not shown; average mutation fre- 
quency 1/141), consistent with our earlier observations of 
GC 16 d after immunization (9). 

Focus I0.15/GC BI5. CDR3 sequences recovered from 
focus 10.15 and GC B15 are given in Fig. 4. It is interesting 
that focus 10.15 appears to be populated by at least six B cell 
clones that do not make use of the V186.2 gene segment 
to encode the H chain. Instead, four other closely related 

members of the J558 V. gene family, CH10, CIH4, V.23, 
and 24.8 (27), were amplified. None of the VDJ fragments 

obtained from focus 10.15 exhibited mutations in excess of 
that expected from Taq-related misincorporations (not shown; 
average frequency, 1/570). GC B15 contained at least two 
clones of B cells that, in contrast to the 10.15 populations, 
expressed only the V186.2 gene segment (Fig. 4). Both clones 

from GC B15 were somatically mutated (not shown; average 
frequency, 1/211). 

Foci 10.12, 10.17/GC 1312, B17. The association of loci 
10.12 and 10.17 and the neighboring GC B12 and B17 is more 
complex than that for the previous focus and GC pairs. The 
anatomic relationship of the four populations was determined 
from multiple serial sections (8), and a diagrammatic represen- 
tation of their association is illustrated in Fig. 5. 

Sequenced V region DNA rescued from the loci 10.12 and 
10.17 and GC B12 and B17 are shown in Fig. 6. Three diffetxmt 
CDR3 sequences were recovered from focus 10.12. These se- 
quences did not appear to contain excess mutations (average 

Focus 10.15 

V gene segment 

93 94 JH2 

Vx GCA h ~  T ~  TTT 

CHI0 ..... G GGA TTA CGAGGG ...... 

CIH4 ...... GAT GTA CGG TCT ...... 

V.23 --- AAG GAT TAC TAC GGT ACG GGG ...... 

24.8 ...... GGG C-GC TAC GGT AGG TCC ...... 

24.8 AAG GGA GGG TCC TAT GGT CCT TAC 

CIH4 ...... CGC CAC TCA GGT TAC ...... 

Germinal Center B15 

93 94 JH2 

Vx ~ ~ A  TAC TTT 

V186.2 ...... TAC CGG ACG GTA GTA GTG A ..... 

V186.2 ...... TAT GGT TAC TAC CGC --- 

H o . l s o l a t a a /  g T o t a l  

2 25% 

1 12.5% 

1 12.5% 

2 25% 

1 12.5% 

1 12.5% 

H o . I s o ~ a t o s /  % To g a l  

7 50% 

7 50% 

Filpare 4. Comparison of CDR3 se- 
quences recovered from focus 10.15 and 
GC B15. Only the sequence of the VDJ 
junction is given. Rearzanged V. gene 
segments are identified (30), and all 
amplified VDJ fragments were joined 
to J.2. The six distinct clones recov- 
ered from focus 10.15 do not use the 

canonical V186.2 gene segment, where- 
as GC B15 was populated by three B 
cell clones that had rearranged V186.2. 
The relative frequencies of the recov- 
ered clones can be estimated from 
numbers of replicate isohtes of each dis- 
tinct CDR3 sequence. There is no evi- 
dence of shared donal origins for focus 
10.15 and GC B15. 
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Figure5. Diagrammatic representation of loci 10.12 
and 10.17, and GC B12 and B17. The splenic volume 
within four serial 6-/~m-thick sections is depicted. 
(Shaded areas) Individual loci and GC. DNA was re- 
covered from sections 18 (focus 10.17; GC B17) and 
22 (focus 10.12; GC B12) for amplification and se- 
quencing. 

frequency, 1/353). Identical CDR3 sequences were not found 
in the adjacent focus 10.17 or in the neighboring GC B12 
and B17 (see below). Sequence analysis of the focus 10.17 
indicated that it may have been populated by a single domi- 
nant clone. The unique CDR3 recovered from this focus bears 
noteworthy complexity. The four terminal nucleotides of the 
V186.2 gene segment have been replaced with the N sequence, 
CCGT, and the last two codons of DFL16.1 are absent at 
the D/J. border. This V./D/J.  join is rare. It is unique 
among the 222 VDJ fragments we have recovered from loci 
and GC (9 and our unpublished observations), and it has not 
been found in any of the considerable number (~260) of se- 
quences published by other groups (26, 30-36). Like the other 
loci, the DNA from focus 10.17 is unmutated (average fre- 
quency, 1/419) beyond that expected for polymerase error. 

Six of the nine sequenced VDJ inserts from GC B12 repre- 
sent V186.2--~DFL16.1 rearrangements (Fig. 6), whereas the 
remainder use the V186.2 analogue, C1H4, to encode the 
H chain V region (not shown). All of the six V186.2/DFL16.1 
sequences of GC B12 have been derived from a single B cell 
clone that bears a CDR.3 identical to that present in focus 
10.17. However, unlike the 10.17 sequences, the VDJ DNA 
recovered from GC B12 is mutated well in excess of that ex- 
pected for Taq-related errors (average frequency, 1/209). All 
VDJ sequences recovered from GC B17 share a CDR3 re- 
gion that is identical to that found in focus 10.17 and the 
V186.2-containing rearrangements recovered from GC B12. 
Like GC B12, and in contrast to the 10.17 sequences, all GC 
B17 VDJ inserts show evidence of somatic hypermutation 
(average frequency, 1/190). 

Independent Genealogies of a Common B Cell Lineage in GC 
B12 and BIZ Based upon our analyses of CDR3 regions, 
GC B12 and B17 were colonized by a common B cell clone 
that was also present in focus 10.17. However, the accumula- 
tion of mutations in the Igh-V locus differs between the two 
GC (Fig. 6). For both B12 and B17, all of the relevant se- 
quences may be fitted into single genealogies (Fig. 7), sug- 

gesting that the mutant lineages were founded by single cells, 
confirming our earlier observations (8, 9). Although GC B12 
and B17 appear to have been established by identical sister 
cells, no mutation is shared between these two populations 
(Fig. 6). This observation suggests that mutation at distal 
anatomic sites has acted independently (Fig. 7). 

D i s c u s s i o n  

It is well established that GC form in secondary lymphoid 
tissues after challenge with thymus-dependent antigens (5-7, 
29, 37). GC B cells are believed to produce little or no anti- 
body during the early primary response (5, 6, 8, 29), although 
extensive immunization protocols can give rise to GC AFC 
(2-5). Indeed, abrogation of GC via irradiation or cytotoxic 
drugs causes little change in the levels of serum antibody, 
but severely depletes the spleen of memory B cell precursors 
(14, 15). Our results are compatible with these earlier obser- 
vations. GC B cells contain relatively low amounts of Ig and 
H and L chain mRNA (8). Thus, it may be that the B cells 
within the PALS-associated loci and GC represent specializa- 
tions for early antibody production and memory cell forma- 
tion, respectively. 

Little is known about the B cells that found GC (5, 7). 
However, Linton et al. (19) have made the observation that 
primary AFC and memory B cells may originate from dis- 
tinct cell populations that can be discriminated by the mAb 
Jlld (19). These investigators have concluded that Jlld 1~ B 
cells appear to be the founders of the memory response and 
are enriched for cells capable of producing GC, whereas 
Jlld hi cells predominantly give rise to the primary AFC (19, 
38). Unfortunately, in our hands the pattern of Jlld staining 
in splenic sections is uninformative because of a substantial 
background of reactivity (data not shown). In contrast, others 
(6) have proposed that B cells, activated by antigen in the 
T-dependent areas of the spleen, migrate into the lymphoid 
follicles and proliferate to produce GC. Although these hy- 
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GC B12 GC B17 

Figure 7. Genealogical relationship of the 
VDJ sequences recovered from GC B12 and 
B17. The common progenitor is identified by 
the shared CDR3 sequence, CCGT. (Bwken 
circles) Hypothetical intermediates. Mutations 
are indicated by specifying the number of the 
affected codon (Fig. 6). Numbers in the den- 
drograms indicate the number of substitutions 
to the ne~t node. All sequences recovered from 
GC B12 and B17 could be fitted into two dis- 
tinct genealogies indicating random mutation 
and selection at distal anatomic sites. 
44,415 

potheses are not mutually exclusive, Linton suggests that the 
developmental program of mature peripheral B lymphocytes 
is fixed before encounter with antigen. The more traditional 
view proposes that the developmental potential for B cells 
to enter the AFC or memory cell pathways is unrestricted. 
Although a mechanism for the canalization of the develop- 
mental potential of peripheral B cells before antigen triggering 
has not been described (stochastic?), decisions by develop- 
mentally unrestricted B cells to become AFC in loci or to 
colonize the lymphoid follicle would presumably be deter- 
mined by the local microenvironment. 

We have attempted to test this hypothesis by determining 
the genetic relatedness of neighboring loci and GC by searching 
for CDR3 sequences shared between focus and GC pairs. The 
CDR3 region is generated by rearrangement of V., D, and 
J. gene segments, and the complexity that results from this 
rearrangement process is sufficiently great to identify members 
of a single rearrangement event (a done) with a high degree 
of confidence. This notion is strongly supported by earlier 
studies assessing clonal relationships within hybridoma co- 
horts (20, 21), and the elegant statistical analysis of Litwin 
and Shlomchik (24), who have demonstrated that (at a 95% 
confidence limit) the probability of independent identity at 
VDJ junctions to be no greater than 0.06/event. 

The pauciclonal nature of loci and GC (8, 9, 37) makes 
the incidental sharing of rare CDR3 sequences between dis- 
crete B cell populations even less likely. Of the eight loci and 
GC sampled in this study, six contained three or fewer dis- 
tinct VDJ junctions and two, GC B8 and focus 10.15, con- 
tained five and six, respectively (Figs. 3, 4, and 6). The av- 
erage number of different CDR3 sequences recovered from 
each sample population was 2.9 (_+ 0.7), in full agreement 
with our earlier estimates based upon phenotypic diversity (8). 

Two loci, 10.8 and 10.17, out of the four we analyzed, 
contained B cells that shared identical VDJ junctions with 
cells in neighboring GC (Figs. 3 and 6). Shared CDR3 se- 
quences were observed only in adjacent populations even 
though all samples were obtained from a single spleen. Espe- 
dally noteworthy is the CDR3 sequence shared between focus 
10.17 and the GC B12 and B17 (Fig. 6). This VDJ junction 
is rare in that it is not reproduced in any of the --'60 reported 

sequences obtained from NP-specific hybridomas (21, 31-34) 
or among some 200 V186.2 rearrangements recovered by PCR 
(26, 35, 36). It is also unique among our sample of 222 VDJ 
fragments recovered from 19 loci and GC (Figs. 3, 4, and 
6; [reference 9 and our unpublished observations]). Thus, we 
believe that the probability that the sharing of this unusual 
CDR3 among associated focus and GC populations represents 
coincident independent events is vanishingly small. The focus 
10.17 and GC B12 and B17 share a common clonal origin. 

The order in which foci and GC appear after primary im- 
munization (Fig. 1) suggests that GC are established by migra- 
tion of antigen-activated B cells from the periphery of the 
PALS into the lymphoid follicles. This supposition is sup- 
ported by our sequence analyses of VDJ DNA recovered from 
loci and GC (Figs. 3, 4, and 6). In every case, the V-region 
sequences recovered from focus B cell populations were not 
mutated in excess of that expected from the error rate of the 
Taq polymerase alone (9), whereas sequences derived from 
GC cells contained an excess of accumulated mutations. For 
example, of the 19 sequences analyzed from the foci 10.12 
and 10.17 (Fig. 6), 9 (47%) have no mutations whatsoever. 
The average number of misincorporations/VDJ fragment 
among both loci is 0.8 _+ 0.2 (~  + SEM), actually below 

that expected for polymerase errors. In contrast, none of the 
15 sequences derived from GC B12 and B17 are unmutated, 
and the average frequency of mutations/VDJ fragment is 2.9 
_+ 0.3, "othreefold above that seen in the related loci. This 
difference, though small, is consistent with the onset ofmuta- 
genesis in this system (day 8, data not shown) and is unlikely 
to have been produced in vitro. The Taq error rate is identical 
for both focus- and GC-derived DNA, and roughly equal 
amounts of DNA were recovered from all samples. Thus, 
we do not believe that the apparent common origin of the 
10.17, B12, and B17 populations is an artifact of sample con- 
tamination during microdissection or retrograde migration 
from GC into loci. Both processes would tend to homoge- 
nize the frequency of mutated (or unmutated) sequences in 
focus and GC populations. Sample contamination could not 
possibly account for the presence of the 10.17 CDR3 sequence 
in GC B12 as these samples were recovered from different 
histologic sections (Fig. 5). It is significant that none of the 
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mutations seen in the 10.17 sequences is compatible with the 
clonal genealogies of GC B12 or B17 (Figs. 6 and 7). 

In agreement with our earlier observations (8, 9), there 
appears to be little or no migration of B cells between GC. 
Thus the evolutionary pathways of the B cell populations in 
GC B12 and B17 are distinct (Fig. 7), suggesting that muta- 
tion and selection at distal sites are independent even when 
operating on identical V.DJ, substrates. The analysis of a 
significant number of GC founded by identical progenitor 
cells may provide a reasonable test of hypothetical mutational 
processes that depend on the fine genetic structure of the Ig 
V-region (39), as well insight into the selection forces that 
drive the somatic evolution of antibody (40). 

Our observations provide very good evidence that Mac- 
Lennan's proposal (6) that GC B cells represent the progeny 
of antigen-activated migrants from nonfollicular regions of 
the spleen is correct. Some fraction of the activated B cells 
found in newly formed loci leave the PALS, perhaps guided 
by the products of the classical C pathway (41, 42), to estab- 
lish GC. It is interesting that our earlier studies of focus and 
GC architecture (8) indicated that the number of splenic GC 

was two to three times greater than the number of loci. This 
suggests that the establishment of two GC by focus 10.17 
(Fig. 6) is not an uncommon event. In contrast, although 
these findings do not disprove Linton's hypothesis of sepa- 
rate precursor cell populations for primary AFC and memory 
B cells (19, 36), they do suggest that early in the response, 
antigen-activated splenic lymphocytes are unrestricted with 
regard to either developmental pathway. However, the im- 
port of regulated expression of the heat-stable antigen recog- 
nized by the J l ld  antibody (43) has been recently underscored 
by the finding that this molecule may serve as a costimulator 
of T cell growth (44). 

Finally, it will be interesting to determine if mutated, 
memory B lymphocytes have the potential to form PALS- 
associated loci in early secondary responses. If this were in- 
deed the case, it would demonstrate that the differentiation 
pathways leading to the formation and specialization of loci 
and GC are accessible to both naive and memory peripheral 
B lymphocytes, and that their choice is likely determined by 
the cellular environment. 
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