In situ synthesis of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowires with exceptional visible-light photocatalytic performance ${ }^{\text {th }}$

Jungang Hou, Chao Yang, Zheng Wang, Weilin Zhou, Shuqiang Jiao*, Hongmin Zhu
State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

A R T I C L E I N F O

Article history:

Received 29 January 2013
Received in revised form 26 April 2013
Accepted 22 May 2013
Available online xxx

Keywords:

Bismuth oxide
Charge transfer
Heterojunction
Photocatalysis

Abstract

Visible-light-responsive $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowire photocatalysts were prepared via a facile in situ hydrothermal process in assistance with the post-heat treatment route. The as-prepared samples were characterized by X-ray diffraction (XRD), electron microscope (EM), Brunauer-Emmett-Teller analysis (BET), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance absorption spec$\operatorname{tra}(U V-v i s)$. XRD patterns revealed that the $\alpha-\beta$ phase heterojunction over $\mathrm{Bi}_{2} \mathrm{O}_{3}$ composites with the monoclinic $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and the tetragonal $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ structure were obtained and the relative ratios between $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ can readily be tailored by the control of the reaction temperature. Within the hydrothermal temperature range, the morphology of as-prepared samples transformed progressively from two-dimensional $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets to the $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowires junction. The exceptional photocatalytic performance of $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ heterojunction for the degradation of cationic rhodamine B and anionic methyl orange under visible-light irradiation is superior over that of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets, which is ascribed to the efficient charge separation and transfer across the $\alpha-\beta$ phase junction. The phase-junction approach will open new avenues for the development of efficient photocatalysts for environmental remediation and energy conversion.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Photocatalyst is a research topic of great importance in view of its applications in energy production, global environmental pollutant control, and final chemical synthesis. Many oxide semiconductors, such as $\mathrm{TiO}_{2}, \mathrm{ZnO}, \mathrm{WO}_{3}$ and $\mathrm{Ta}_{2} \mathrm{O}_{5}$, have been employed as photocatalysts in pollutant degradation and water splitting reactions [1-4]. To date, TiO_{2}, as a semiconductor photocatalyst with large band gap (about 3.2 eV), has been intensively investigated under UV irradiation ($\lambda<388 \mathrm{~nm}$). However, titania can only absorb about less than 5% of sunlight, which greatly limits its practical application [1]. Recently, TiO_{2} has been modified by transitionmetal cations, non-metal anions (such as N, S, C, F) or noble metal nanoparticles for the improvement of the catalytic performance in the visible range [5-8]. Among them, the Bi -based multimetal oxides with a $6 s^{2}$ configuration, such as $\mathrm{CaBi}_{2} \mathrm{O}_{4}$ [9], BiVO_{4} [10], $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ [11], $\mathrm{Bi}_{3} \mathrm{NbO}_{7}[12,13]$ and $\mathrm{Bi}_{12} \mathrm{TiO}_{20}$ [14-18], have shown

[^0]to be active under visible illumination, which can be ascribed to the fresh-constructed, well-dispersed valence bands by the hybridization of Bi 6 s and O 2 p orbitals [19,20].

Recently, $\mathrm{Bi}_{2} \mathrm{O}_{3}$ as an undoped and single oxide semiconductor sensitive to visible irradiation has been found to exhibit high photocatalytic performance due to the appropriate band gap [21]. As is known, $\mathrm{Bi}_{2} \mathrm{O}_{3}$ has four different polymorphs, denoted as monoclinic α, tetragonal β, body-centered cubic γ, and face-centered cubic δ, among which, the low-temperature α-phase and the hightemperature δ-phase are stable; while the other two phases are high-temperature metastable [22]. Though many researches on α $\mathrm{Bi}_{2} \mathrm{O}_{3}$ have been reported, there were only a few on $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$, in most of which $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ was obtained due to the difficulty of the synthesis of this metastable phase [23-26]. Generally, $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ showed higher photocatalytic activity than $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ owing to the lower band gap energy and higher optic absorption in wider visible light region [26-30]. Besides, Muruganandham et al. have successfully used two types of bismuth oxalates as a precursor for various morphological $\mathrm{Bi}_{2} \mathrm{O}_{3}$ preparations [31]. Chen et al. prepared bismuth oxide nanoflakes by using bismuth oxalate as a precursor with and without using L -lysine [32]. Brezesinski et al. found that the mesoporous $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ showed exceptional photocatalytic activity [33]. Thus, it is therefore highly desirable to develop a new modification and/or preparation method that can enhance the photocatalytic activity of $\mathrm{Bi}_{2} \mathrm{O}_{3}$.

Generally, the photocatalytic performance of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ is better than that of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$, because $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ could absorb more visible light than $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$, which was explained by electronic structure calculations and experimental evidence [26-30]. To further improve the photocatalytic performance of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ under the irradiation of solar light, different hybrid semiconductor heterostructures have been explored. Large numbers of efficient heterostructures for photocatalytic application are reported. For example, threedimensional flower-like hierarchical $\mathrm{Fe}_{2} \mathrm{O}_{3} @ \mathrm{Bi}_{2} \mathrm{O}_{3}$ architectures synthesized by a simple solvothermal route showed higher photocatalytic activity [34]. The $\mathrm{Bi}_{2} \mathrm{O}_{3} / \mathrm{TiO}_{2} /$ graphene hybrids have been applied as stable photocatalysts for the high photocatalytic activity for rhodamine B degradation [35]. The $\mathrm{Bi}_{2} \mathrm{O}_{3} / \mathrm{N}-\mathrm{Bi}_{3} \mathrm{NbO}_{7}$ heterostructures prepared by a facile in situ hydrothermal process exhibited the higher photocatalytic activity [13]. Proper junctions formed in semiconductor-based photocatalysts could also lead to enhanced activity. However, fabricating efficient junctions for the photocatalytic reaction still remains a challenge. More importantly, the essential relation between the junction and the photocatalytic activity is far less well understood. An in-depth understanding of junction-related issues may be a great aid in the design and preparation of efficient semiconductor based photocatalysts.

In this work, the influences of synthesis parameters on the resulting products, the synthesis mechanism, the critical roles of treatment conditions and catalyst compositions in determining catalytic performance, as well as the contribution of the work to the fields of visible-light photocatalytic activities were elaborated in detail. There are several significant aspects of the work described in this paper. Firstly, the synthesis of shape-controlled $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets to $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowire heterojunction have been found to be extremely evasive to date. Hence, the post-heat treatment route using bismuth based precursors through a facile hydrothermal process in assistance with benzyl alcohol as solvent should be an important progress that may inspire subsequent catalytic materials synthesis. Secondly, the exceptional photocatalytic performance of $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowire heterojunction for the degradation of cationic rhodamine B and anionic methyl orange under visible-light irradiation has been rarely reported. Hence, an in-depth understanding of junction-related issues may be a great aid in the design and preparation of efficient semiconductor based photocatalysts.

2. Experimental

2.1. Synthesis of $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostuctures

All chemicals were analytical grade and used without further purification. In a typical procedure, stochiometric amounts of $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ was dissolved in 15 mL of benzyl alcohol under vigorous stirring. Before being transferred to a Teflon-lined stainless autoclave (50 mL capacity). The hydrothermal synthesis was conducted at $90-240^{\circ} \mathrm{C}$ for 24 h in an electric oven. The system was then cooled to ambient temperature naturally. The as-prepared samples as precursors were collected and washed with distilled water and absolute alcohol several times, vacuum-dried, and then heated at $300^{\circ} \mathrm{C}$ for 5 h to obtain $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostuctures.

2.2. Characterization

The obtained products were characterized by powder Xray diffraction (XRD, MAC Science Co. Ltd Japan) using $\mathrm{Cu} \mathrm{K} \alpha$ ($\lambda=0.1546 \mathrm{~nm}$) and XRD patterns were obtained by step scanning with a step size of 0.02°. The morphology and size of the resultant products were observed using a field emission scanning electron microscope (FESEM, JEOL, JSM-6701F) with energy-dispersive spectra and transmission electron microscope (TEM, JEM-2010).

The optical properties of the samples were analyzed by UV-vis diffuse reflectance spectroscopy (UV-vis DRS) using a UV-vis spectrophotometer (UV-2550, Shimadzu) in the range $190-900 \mathrm{~nm}$. The surface area of the samples were measured by TriStar 3000-BET/BJH Surface Area. The chemical states of the sample were determined by X-ray photoelectron spectroscopy (XPS) in a VG Multilab 2009 system (UK) with a monochromatic Al K α source and a charge neutralizer.

2.3. Photocatalytic test

Photocatalysis reactions were performed in an air-free, closed gas circulation system with a quartz reaction cell. Photocatalytic activity was evaluated by the degradation of methylene blue in aqueous solution under visible-light irradiation using a 300 W Xe lamp with a cutoff filter ($\lambda>420 \mathrm{~nm}$). Light intensity and utilization efficiency is about $20 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$ and 95%, respectively. A cylindrical Pyrex flask $(200 \mathrm{~mL})$ was placed in a sealed black box of which the top was open and the cutoff filter was set on the window face of the reaction vessel to ensure the desired irradiation condition. In each experiments, the samples as catalysts $(0.2 \mathrm{~g})$ were added into rhodamine $B(R h B)$ and methyl orange (MO) solution ($1 \times 10^{-4} \mathrm{M}$, 100 mL). Before illumination, the suspension between photocatalyst powders and methylene blue at given time intervals (3 mL aliquots) were sampled and centrifuged to remove photocatalyst powders. The various samples were taken out for the absorbance measurements using a UV-vis spectrophotometer (UV-2550, Shimadzu) and the TOC content in the aqueous solutions was analyzed using a TOC analyser (TOC-V CPH, Shimadzu).

2.4. Flatband potential measurements

The flatband potentials have been measured by impedance spectroscopy using Mott-Schottky plots. Individual $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ paste for the fabrication of electrodes for impedance measurements was obtained by mixing 1 mL of water and 100 mg of individual $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ powder (Supporting Information) homogeneously by sonication. An appropriate amount of the individual $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ suspension was spread on a conductive fluorine-tin oxide (FTO) glass with a glass rod, using adhesive tapes as spacers followed by drying in air at $300^{\circ} \mathrm{C}$ for 1 h . The electrical contact was formed on the uncoated area of the substrate using silver paint and copper wire. This contact area was later covered with nonconducting epoxy resin to isolate it from the electrolyte solution. A glass rod was placed over the copper wire for better handling. The electrochemical setup for impedance measurements consisted of three electrodes: the working electrode (individual $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ film), a platinum wire used as counter electrode, and a standard saturated calomel electrode (SCE). The photocurrents were measured using a Solartron 1287 potentiostat. Mott-Schottky analyses were performed with a Solartron 1255B frequency response analyzer under control by ZPLOT software. The solution containing $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution was used as the electrolyte. A 300 W Xe lamp was utilized as a light source.

3. Results and discussion

The XRD patterns of the as-prepared samples are shown in Fig. 1. The product calcined at $300^{\circ} \mathrm{C}$ using the precursors at the hydrothermal temperature of $120^{\circ} \mathrm{C}$ can be indexed to well crystallized $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ structure (PDF NO. 27-50) with the major peaks at $2 \theta=27.94,31.76,32.69,46.22,54.27,55.48,57.75$, and 66.12°, corresponding to the diffractions of the (201), (002), (220), (222), (203), (421), (402), and (400) plane of the tetragonal $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$. However, metastable $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ changed gradually into $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ as the hydrothermal temperature increased. In the XRD pattern of the

Fig. 1. The XRD patterns of the as-prepared $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at different temperatures.
product at $150^{\circ} \mathrm{C}$, the peaks of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ decreased while the second phase of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ (PDF NO.6-294) appeared, with the major peaks at $2 \theta=25.75,26.92,33.03$ and 33.94°, corresponding to the diffractions of the (002), (111), (121) and (031) plane of the monoclinic $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$. Namely, the composites of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and β $\mathrm{Bi}_{2} \mathrm{O}_{3}$ were obtained at the hydrothermal temperature of $150^{\circ} \mathrm{C}$. With the further increase of the hydrothermal temperature up to $180-240^{\circ} \mathrm{C}$, the major phase can be indexed to the monoclinic $\alpha-$ $\mathrm{Bi}_{2} \mathrm{O}_{3}$ (PDF NO.4-294) while a little amount of second phase can be recognized as the tetragonal $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ phase (PDF NO. 18-244), indicating the formation of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$. In addition, XPS signals of Bi 4 f were observed at binding energies at around $164.2-164.1 \mathrm{eV}\left(\mathrm{Bi} 4 \mathrm{f}_{5 / 2}\right)$ and $158.8-158.7 \mathrm{eV}\left(\mathrm{Bi} 4 \mathrm{f}_{7 / 2}\right)$ ascribed to Bi^{3+} from XPS analysis, which is consistent with the previous reports of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ powders [25], also indicating that the samples are containing $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$. Thus, the controllable temperature of hydrothermal process played a very important role in this synthesis of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ that
is considering the high photocatalytic activity of the as-prepared samples.

To obtain information about the particles morphology, some selected powders were investigated by field-emission scanning electron microscopy (FE-SEM). The SEM images of the synthesized bismuth based cluster as the precursors prepared by a benzyl alcohol assisted hydrothermal process at $120-240^{\circ} \mathrm{C}$ were shown in Fig. 2. The SEM results clearly indicate that the calcined sample was composed of a large number of sheet after the hydrothermal reaction at $120^{\circ} \mathrm{C}$, while the product consists of many of sheets containing a little amount of nanowires at $150^{\circ} \mathrm{C}$ (Fig. 2a and b). Furthermore, with increasing hydrothermal temperature up to $210-240^{\circ} \mathrm{C}$, the SEM images show the as-prepared samples consist of a great number of nanowires and parts of nanocrystals, as shown in Fig. 2c and d. From the results reported so far, it becomes obvious that the ratio of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ is mainly controlled by the hydrothermal temperature.

Further information was obtained by TEM analysis for the asprepared $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples (Fig. 3). Among the hydrothermal synthesis at $90-120^{\circ} \mathrm{C}$, the $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ products consist of sheets with landscape dimension of $100 \mathrm{~nm}-2 \mu \mathrm{~m}$, as shown in Fig. 1S. The in-plane surfaces of the $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets lies on $\{001\}$ facet, indicating these $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets with a high percentage of reactive $\{001\}$ facets. With increasing hydrothermal temperature up to $150^{\circ} \mathrm{C}$, the sample is composed of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanorods with heavy aggregates and some of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanocrystals, which is in agreement with the results from XRD analysis. With further increasing hydrothermal temperature between 180 and $240^{\circ} \mathrm{C}$, the as-prepared products are composed of a great number of uniform nanowires with the average diameter below 50 nm , coupling with a little amount of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanocrystals, as shown in Fig. 3 and Fig. 1S. From HRTEM images, it can be seen that small β $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanocrystals are sporadically patched onto the surface of the original single-crystalline $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowire, resulting in the exposure of both α and β phases on the surface. Moreover, it is observed that the phase junction between $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ is composed of well-matched lattice fringes between the (111) plane of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and the (001) plane of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ (Fig. 3b). In addition, the selected area electron diffraction (SAED) pattern is shown in Fig. 3c and

Fig. 2. The SEM images of the as-prepared products using the precursors prepared at various temperatures after calcinations. (a) $120^{\circ} \mathrm{C}$, (b) $150^{\circ} \mathrm{C}$, (c) $210^{\circ} \mathrm{C}$ and (d) $240^{\circ} \mathrm{C}$.

Fig. 3. The TEM (a) and HRTEM (b) images of the $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$. The SAED patterns from (c) $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and (d) $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$.
d, which also indicates a single-crystal structure for individual α $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$. All results clearly demonstrate that atomically well-defined $\alpha-\beta$ phase junctions of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ can be tailor-designed and obtained by phase transformation.

Full nitrogen sorption isotherms of the $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets and the $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples, were measured to gain the information about the specific surface area, as shown in Fig. 4. The specific surface area the $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$ was calculated to be $44 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ by the BET equation, as shown in Fig. 4. The corresponding Barrett Joyner Halenda (BJH) analyses (the inset in Fig. 4) for the $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$ exhibit that most of the pores fall into the size range from 5 to 60 nm . These pores presumably arise from the spaces among the composites within the $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures. However, as shown in Fig. 4, the specific surface area of the $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures was calculated to be $9 \mathrm{~m}^{2} \mathrm{~g}^{-1}$, which is lower that of the $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$. The high surface area and mesoporous structure of the $\mathrm{Bi}_{2} \mathrm{O}_{3}$ junction nanostructures will lead to the enhanced photocatalytic performance of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures.

The optical absorption of the $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures was measured by UV-vis diffuse reflection spectroscopy, and the results are shown in Fig. 5. The absorbance edge of the as-prepared $\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples located approximately in the wave length range from 400 to 550 nm . The band gap energies of the as-prepared $\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples using the bismuth based clusters prepared at $120-240^{\circ} \mathrm{C}$, is
determined from a plot of $(a h v)^{2}$ vs energy ($h v$)(Fig. 5) and are found to be about $2.40-2.80 \mathrm{eV}$, respectively. Namely, the band gap of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures and is found to be 2.71 and 2.48 eV . Utilizing visible light for driving photocatalytic reactions is a key challenge and visible light absorption of a material is a prerequisite for visible light activity.

Fig. 4. Full nitrogen sorption isotherms of (a) $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and (b) $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$. The inset is the corresponding pore-size distribution of $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ heterojunction using the precursors prepared at $210^{\circ} \mathrm{C}$.

Fig. 5. (a) The UV-vis spectra of the products using the precursors prepared at different temperatures after calcinations. (b) Plots of $(a h v)^{2}$ vs energy ($h v$) for the band gap energies.

The photocatalytic activities of the as-prepared samples were evaluated by monitoring the degradation of rhodamine B (RhB) and methyl orange (MO) in an aqueous solution under visible light irradiation, respectively. The time-dependent UV-vis absorption spectra of RhB dye during the irradiation are displayed in Fig. 6. It can be seen clearly that the maximum absorbance of 550 nm decreases greatly after irradiation in 60 min for the $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples. Fig. 7 and Fig. 3S show the photodegradation of RhB and MO dyes as a function of irradiation time. For the degradation of RhB and MO dye molecules, the photocatalytic performance of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors increase with increasing hydrothermal temperatures from 90 to $210^{\circ} \mathrm{C}$. The best photocatalytic degradation efficiencies of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowires using the precursors prepared at $210^{\circ} \mathrm{C}$ were achieved about 98% for RhB dye molecule after irradiation for 60 min and around 96% for MO dye after irradiation for 15 min . In comparison, the degradation efficiencies of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets only reached about 85% for RhB dye molecule after irradiation for 60 min and around 79% for MO dye after irradiation for 15 min. While the photocatalytic activity of the sample decreases with increasing hydrothermal temperature up to $240^{\circ} \mathrm{C}$. In addition, the blank experiments were also carried out in the presence of the $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ using the precursors prepared at $210^{\circ} \mathrm{C}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples without irradiation or in the presence of irradiation without the $\alpha-\beta$ phase heterojunction and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples, from which we can observe that there is no apparent change for the degradation of RhB and MO dyes under visible light irradiation in the absence of photocatalysts. Besides,

Fig. 6. UV-vis spectra changes in RhB degradation with (a) $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and (b) $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$ under visible-light irradiation.
the adsorption capacities of RhB molecules on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors at $90,120,150,180,210$ and $240^{\circ} \mathrm{C}$ are approaching $95.8 \%, 68.7 \%, 60.8 \%, 38.1 \%, 30.2 \%$ and 47.7%, respectively. And the adsorption capacities of MO molecules on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors at $90,120,150,180,210$ and $240^{\circ} \mathrm{C}$ are approaching $50.0 \%, 47.6 \%, 42.6 \%, 29.5 \%, 23.8 \%$ and 35.0%, respectively, which is ascribed to the high surface area of the $\alpha-\beta$

Fig. 7. Visible-light photocatalytic degradation of RhB solution of the products using the precursors prepared at different temperatures after calcinations. (a) RhB without catalyst, (b) 90°, (c) $120^{\circ} \mathrm{C}$, (d) $150^{\circ} \mathrm{C}$, (e) $180^{\circ} \mathrm{C}$, (f) $210^{\circ} \mathrm{C}$ and (g) $240^{\circ} \mathrm{C}$.
phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples. In order to investigate the details of the photocatalytic process, the mineralization efficiencies (TOC tests) of the photodegradation for RhB (after 60 min) and MO (after 15 min) solution for the $\alpha-\beta$ phase heterojunction on Bi 2 O 3 using the precursors prepared at $210^{\circ} \mathrm{C}$ were found to be 72% and 66%, respectively. However, the photodegradation rates of RhB (after 60 min) and MO (after 15 min) solution were achieve 98% and 96%, indicating that the mineralization rate was slower than that of discoloration of dyes (Fig. 4S). In addition, it is well known that the photocatalytic performance of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ is better than that of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$, which was explained by electronic structure calculations and experimental evidence [26-30]. Compared to the previous reports [21-34], the as-prepared $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$ exhibited higher photocatalytic performance than individual $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ or $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ in the degradation of RhB and MO molecules.

Generally, the decomposition of the dye could be assigned to a pseudo-first-order kinetics reaction with a simplified Langmuir-Hinshelwood model when C_{0} is very small.
$\ln \left(\frac{C_{0}}{C}\right)=k t$
where k is the apparent first-order kinetics rate constant, and was determined from a linear fit to the data as shown in Fig. 8. Clearly, the degradating kinetics rate of RhB molecules on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors at $90,120,150,180,210$ and $240^{\circ} \mathrm{C}$ are approaching $0.01406,0.02718,0.03143,0.03484,0.04343$ and 0.03285 , respectively. Besides, it is obvious that the kinetics rate of degradating RhB molecules on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the

Fig. 8. Visible-light photocatalytic kinetic rates of (A) RhB and MO (B) solution of the products using the precursors prepared at different temperatures after calcinations.
precursors at $90,120,150,180,210$ and $240^{\circ} \mathrm{C}$ are approaching $0.03801,0.06261,0.07061,0.08308,0.12835$ and 0.07639 , respectively. In addition, the photodegradation of RhB and MO dyes that were monitored over five cycles under a certain irradiation time. After each cycle, the photocatalytic efficiency exhibited only a slight decrease and no significant loss of activity after the decomposition was repeated five consecutive times (Fig. 5S), indicating that $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowire was an efficient and stable visible-light photocatalyst. Furthermore, the main active species in the visible-light-driven photocatalytic process were examined in the experiments of in situ capture of active pieces. The photodegradation of RhB solution for $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowires was slightly inhibited by the addition of $\mathrm{t}-\mathrm{BuOH}$ (hydroxyl radicals scavenger) under visible light irradiation, indicating that the free hydroxyl radicals were not the major active oxidizing species in the photocatalytic process, as shown in Fig. 6S. However, it was intensively suppressed when EDTA (holes scavenger) was introduced. This indicates that holes were the main active oxidizing species involved in the photoreaction process, which is consistent with the previous reports [36,37].

Generally, the better photocatalytic performance of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ has been shown in the previous works [21-34], which is ascribed to the wide absorbance in the visible light region from electronic structure calculation and UV-vis measurement. However, the unusual superior catalytic activity of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ was exhibited in this work. In order to have an in-depth understanding of the unique catalytic performance of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$, the several points for $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures were shown. As we know, the morphology, phase component, shape, and size could play important roles on the photocatalytic efficiency. As indicated in Table 1, the surface properties of the synthesized $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$, possesses a higher surface area and pore volume, providing the possibility for the efficient diffusion and transportation of the degradable organic molecules and hydroxyl radicals in photochemical reaction. Furthermore, the possible transfer routes of the photo-generated electrons and holes were also introduced to explain the enhanced photocatalytic activity using the conduction band minimum (CBM) and valence band maximum (VBM) potentials of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$. The band structures of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ were further examined by MottSchottky measurements. The flat-band potentials (E_{fb}) of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ are estimated to be -0.46 V and -0.15 V vs. SCE (-0.22 V and +0.09 V vs. NHE) by Mott-Schottky analysis (Fig. 9). E_{fb} is strongly related to the bottom of the E_{cb} and is considered to be located just under the E_{cb} for the semiconductors indicating that the flat band potential of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ is more negative than that of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$, and the valence band potential of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ is more positive than that of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$, as shown in Fig. 9. The mechanism of the enhancement of photocatalytic activity is illustrated in Fig. 10. A scheme for

Table 1
Quantitative phase composition and physicochemical properties of various $\mathrm{Bi}_{2} \mathrm{O}_{3}$ samples.

Samples	Synthetic temperature	S_{BET} $\left[\mathrm{m}^{2} \mathrm{~g}^{-1}\right]^{\mathrm{a}}$	RhB degradation kinetic rate $\left[\mathrm{k} \mathrm{min}^{-1}\right]^{\mathrm{b}}$	MO degradation kinetic rate $\left[\mathrm{k} \mathrm{min}^{-1}\right]^{\mathrm{b}}$
S 1	$90^{\circ} \mathrm{C}$	3	0.01406	0.03801
S 2	$120^{\circ} \mathrm{C}$	9	0.02718	0.06261
S 3	$150^{\circ} \mathrm{C}$	12	0.03143	0.07061
S 4	$180^{\circ} \mathrm{C}$	22	0.03484	0.08308
S 5	$210^{\circ} \mathrm{C}$	44	0.04343	0.12835
S 6	$240^{\circ} \mathrm{C}$	18	0.03285	0.07639

[^1]

Fig. 9. Mott-Schottky plots obtained for the films electrodes prepared with and α $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ in $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$, and the ac amplitude is 10 mV and the frequency is 1000 Hz .
electron-hole separation and transport at the visible-light-driven heterojunction photocatalyst interface and in both semiconductors is shown in Fig. 10. Since the CB edge potential of $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ is more negative than that of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ the photoinduced electrons on α $\mathrm{Bi}_{2} \mathrm{O}_{3}$ surfaces transfer easily to $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ via the well developed interface. Similarly, the photoinduced holes on the $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ surface move to $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ due to the large difference in VB edge potentials retarding the recombination of the photoinduced electron-hole pairs in the $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ heterojunction. Thus, the $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ coated on the surface of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ could function as traps to capture the photoinduced holes and the heterojunction of $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ could act as an active center for hindering the rapid recombination of photoinduced electron-hole pairs.

For semiconductors, the photoluminescence (PL) spectra is related to the transfer behavior of the photoinduced electrons and

Fig. 10. Scheme for electron-hole separation and transport at the visible-lightdriven heterojunction photocatalyst interface and in both semiconductors: E_{C} is the contact electric field for the two materials; E_{B} is the potential barrier in the interfacial depletion layer ($E_{\mathrm{B}}<E_{\mathrm{C}}$ during the photocatalytic reaction); E_{1} and E_{2} are the internal electric fields induced by the redistribution of the spatial charges in $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ particles, respectively.

Fig. 11. Photoluminescence spectra of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ heterojunction nanowires using the precursors prepared at $210^{\circ} \mathrm{C}$, excited at the wavelength of 325 nm .
holes, so that it can reflect the separation and recombination of photoinduced charge carriers [38,39]. The PL spectra of the as-prepared $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$ are shown in Fig. 11. The excitation wavelength is determined as 325 nm , and the $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ has a strong emission peak at about 533 nm . Furthermore, there was a small PL peak observed for $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures using the precursors prepared at $210^{\circ} \mathrm{C}$, indicating that the electron-hole pairs recombination is very slow. This is ascribed to the fact that $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanostructures could prevent the direct recombination of electrons and holes, which is of great benefit for enhancing activity in the photocatalytic reaction.

4. Conclusion

Visible-light-responsive $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowires photocatalysts were prepared via a facile in situ hydrothermal process in assistance with the post-heat treatment route. XRD patterns revealed that the $\alpha-\beta$ phase heterojunction with the monoclinic $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and the tetragonal $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ structure were obtained with increasing of the hydrothermal temperature. Within the reaction temperature, the morphology of as-prepared samples transformed progressively from $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets to the $\alpha-/ \beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowires. The exceptional photocatalytic performance of $\alpha-\beta$ phase heterojunction on $\mathrm{Bi}_{2} \mathrm{O}_{3}$ nanowire for the degradation of cationic rhodamine B and anionic methyl orange under visiblelight irradiation is superior over that of $\beta-\mathrm{Bi}_{2} \mathrm{O}_{3}$ sheets, which is ascribed to the efficient charge separation and transfer across the $\alpha-\beta$ phase junction. The phase-junction approach will open new avenues for the development of efficient photocatalysts for environmental remediation and energy conversion.

Acknowledgements

This work was supported by National Science Foundation of China (No. 51102015, 21071014 and 51004008), the Fundamental Research Funds for the Central Universities (No. FRF-AS-11-002A and FRF-TP-12-023A), Research Fund for the Doctoral Program of Higher Education of China (No. 20110006120027), National High Technology Research and Development Program of China (863 Program, No. 2012AA062302), National Basic Research Program of China (973 Program, No. 2007CB613301), the Program for New

Century Excellent Talents in University (NCET-11-0577) and the 111 Project (B13004).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb. 2013.05.050.

References

[1] X. Chen, S. Mao, Chem. Rev. 107 (2007) 2891.
[2] R. Kozhummal, Y. Yang, F. Güder, A. Hartel, X. Lu, U.M. Küçükbayrak, A. MateoAlonso, M. Elwenspoek, M. Zacharias, ACS Nano 6 (2012) 7133.
[3] A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253.
[4] Y. Noda, B. Lee, K. Domen, J.N. Kondo, Chem. Mater. 20 (2008) 5361.
[5] G. Liu, H.G. Yang, X.W. Wang, L.N. Cheng, J. Pan, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc. 131 (2009) 12868.
[6] Q.J. Xiang, J.G. Yu, W.G. Wang, M. Jaroniec, Chem. Commun. 47 (2011) 6906.
[7] G. Liu, C.H. Sun, S.C. Smith, L.Z. Wang, G.Q. Lu, H.M. Cheng, J. Colloid Interface Sci. 349 (2010) 477.
[8] J.G. Yu, G.P. Dai, Q.J. Xiang, M. Jaroniec, J. Mater. Chem. 21 (2011) 1049.
[9] J.W. Tang, Z.G. Zou, J.H. Ye, Angew. Chem. Int. Ed. 43 (2004) 4463.
[10] W.J. Luo, Z.S. Yang, Z.S. Li, J.Y. Zhang, J.G. Liu, Z.Y. Zhao, Z.Q. Wang, S.C. Yan, T. Yu, Z.G. Zou, Energy Environ. Sci. 4 (2011) 4046.
[11] L. Zhou, W.Z. Wang, S.W. Liu, J. Mol. Catal. A: Chem. 252 (2006) 120.
[12] J.G. Hou, R. Cao, Z. Wang, S.Q. Jiao, H.M. Zhu, J. Hazard. Mater. 217-218 (2012) 177.
[13] J.G. Hou, Z. Wang, S.Q. Jiao, H.M. Zhu, CrystEngComm 14 (2012) 5923.
[14] X.Q. Zhu, J.L. Zhang, F. Chen, Appl. Catal. B 102 (2011) 316.
[15] J.G. Hou, R. Cao, S.Q. Jiao, H.M. Zhu, R.V. Kumar, Appl. Catal. B 104 (2011) 399.
[16] J.G. Hou, Y.F. Qu, D. Krsmanovic, C. Ducati, D. Eder, R.V. Kumar, Chem. Commun. 26 (2009) 3937.
[17] J.G. Hou, Y.F. Qu, D. Krsmanovic, C. Ducati, D. Eder, R.V. Kumar, J. Mater. Chem. 20 (2010) 2418.
[18] J.G. Hou, R. Cao, Z. Wang, S.Q. Jiao, H.M. Zhu, J. Mater. Chem. 11 (2011) 7296.
[19] L.S. Zhang, W.Z. Wang, Z.L. Zhou, Small 3 (2007) 1618.
[20] J.G. Hou, Z. Wang, C. Yang, W.L. Zhou, S.Q. Jiao, H.M. Zhu, J. Phys. Chem. C 117 (2013) 5132.
[21] L.S. Zhang, W.Z. Wang, J. Yang, Z.G. Chen, W.Q. Zhang, L. Zhou, S.W. Liu, Appl. Catal. A 308 (2006) 105.
[22] M. Drache, P. Roussel, J.P. Wignacourt, Chem. Rev. 107 (2007) 80.
[23] H. Abdul, M. Tiziano, G. Valentina, J. Am. Chem. Soc. 130 (2008) 9658.
[24] J.C. Yu, A.W. Xu, L.Z. Zhang, R.Q. Song, L. Wu, J. Phys. Chem. B 108 (2004) 64.
[25] H.F. Cheng, B.B. Huang, J.B. Lu, Z.Y. Wang, B. Xu, X.Y. Qin, X.Y. Zhang, Y. Dai, Phys. Chem. Chem. Phys. 12 (2010) 15468.
[26] H.W. Kim, Thin Solid Films 516 (2008) 3665.
[27] H. Zhang, P. Wu, Y. Li, L.F. Liao, Z. Fang, X.H. Zhong, ChemCatChem 2 (2010) 1115.
[28] J.K. Reddy, B. Srinivas, V.D. Kumari, M. Subrahmanyam, ChemCatChem 1 (2009) 492.
[29] J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, B. Kim, Chem. Eur. J. 17 (2011) 1304.
[30] A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 9 (2008) 9659.
[31] M. Muruganandham, R. Amutha, G.J. Lee, S.H. Hsieh, J.J. Wu, M. Sillanpää, J. Phys. Chem. C 116 (2012) 12906.
[32] R. Chen, Z.R. Shen, H. Wang, H.J. Zhou, Y.P. Liu, D.T. Ding, T.H. Chen, J. Alloys Compd. 509 (2011) 2588.
[33] K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich, T. Brezesinski, Chem. Mater. 22 (2010) 3079.
[34] Y. Wang, S.H. Li, X.R. Xing, F.Z. Huang, Y.H. Shen, A.J. Xie, X.F. Wang, J. Zhang, Chem. Eur. J. 17 (2011) 4802.
[35] J.G. Hou, C. Yang, Z. Wang, S.Q. Jiao, H.M. Zhu, Appl. Catal. B 129 (2013) 333.
[36] S.B. Zhu, T.G. Xu, H.B. Fu, J.C. Zhao, Y.F. Zhu, Env. Sci. Technol. 41 (2007) 6234-6239.
[37] G.L. Huang, S.C. Zhang, T.G. Xu, Y.F. Zhu, Env. Sci. Technol. 42 (2008) 8516-8521.
[38] J.G. Hou, Z. Wang, W.B. Kan, S.Q. Jiao, H.M. Zhu, J. Mater. Chem. 22 (2012) 7291.
[39] J.G. Hou, Z. Wang, S.Q. Jiao, H.M. Zhu, J. Hazard. Mater. 192 (2011) 1772.

[^0]: is This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

 * Corresponding author. Tel.: +86 1062334204.

 E-mail address: sjiao@ustb.edu.cn (S. Jiao).

[^1]: Physicochemical properties of various bismuth oxide samples.
 ${ }^{\text {a }}$ Measurement from specific surface area.
 ${ }^{\text {b }}$ Photocatalytic degradation kinetic rates of RhB and MO solution for various bismuth oxide samples under visible-light irradiation.

