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As NASA exploration moves beyond earth’s orbit, the need exists for long duration space 

systems that are resilient to events that compromise safety and performance. Fortunately, 

technology advances in autonomy, robotic manipulators, and modular plug-and-play 

architectures over the past two decades have made in-space vehicle assembly and servicing 

possible at acceptable cost and risk. This study evaluates future space systems needed to 

support scientific observatories and human/robotic Mars exploration to assess key structural 

design considerations. The impact of in-space assembly is discussed to identify gaps in 

structural technology and opportunities for new vehicle designs to support NASA’s future 

long duration missions.  

Nomenclature 
AD = atmospheric decelerator 

AG = artificial gravity 

AM = additive manufacturing 

ARV = asteroid redirect vehicle 

EAM = exploration augmentation module 

HDST = high definition space telescope 

ISA = in-space assembly 

ISRU = in-situ resource utilization 

ISS = international space station 

JWST = James Webb space telescope 

SEP = solar electric propulsion 

TA = technology area 
 

I. Introduction 
 

Government and commercial spacecraft have developed into high performance systems over the past four decades. 

New knowledge gained by robotic scientific observatories like the Hubble Space Telescope and the Mars rovers 

have resulted in the rewrite of educational textbooks several times. Hundreds of commercial communication 

satellites fill the geo-synchronous orbit and provide valuable financial returns to businesses in the United States and 

in other nations. For most applications, these government and commercial spacecraft are launched as a single unit 

often with deployable appendages to fit within the launch vehicle fairing.   

 

In-space assembly (ISA) of spacecraft systems has been proposed and demonstrated several times as a way of 

improving aperture size, decreasing deployment risk, assembling systems too large to fit into a single launch vehicle, 

and enabling repair and upgrade. Assembly of spacecraft components also permits a “pay-as-you-go” approach to 

missions whereby space systems can be augmented for increased performance over time as way of lowering initial 

costs.  The International Space Station (ISS) and the Hubble Space Telescope servicing missions are two good 

examples of ISA operations.  
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Over the last decade, remarkable advances in robotics and autonomous operations have made ISA more affordable 

than prior efforts. This paper takes a forward look at potential NASA applications of ISA, reviews previous 

technology demonstrations of ISA, and projects key technology advancements needed for modular spacecraft design  

and joining of components and subsystems. Of particular interest to the astrophysics community is the possible use 

of ISA technology for future planet imaging telescopes. This class of telescope, with 10-meter to 20-meter diameter 

primary mirrors, far exceeds the launch shroud diameter of even the Space Launch System
1
.  

 

Based on future mission needs, NASA released an update to its technology area (TA) roadmaps
2
 in May 2015. ISA 

of spacecraft systems including large apertures for science is highlighted as a technology goal in several roadmaps: 

TA-4 Robotics and Autonomous Systems; TA-7 Human Exploration Destination Systems; TA-8 Science 

Instruments, Observatories, and Sensor Systems; and TA-12 Materials, Structures, Mechanical Systems, and 

Manufacturing. The need for on-orbit servicing, particularly in geo-synchronous orbit
3
, modularity and re-

configurability of design
4-5

, and in-space aggregation and assembly
6
 is well documented.  

 

To understand the state of the art and gaps in ISA technology and capabilities, this paper reviews the key design 

drivers for future NASA vehicles and space systems. These results are proffered to guide structural systems research 

and development efforts in order to make ISA a routine capability for future space vehicle design and operations. 

 
II. Possible NASA Applications of ISA 

 
NASA’s science and exploration missions of the future require spacecraft systems, both robotic and human tended, 

that can operate in deep space for extended periods of time. In this section, the authors assess a number of possible 

spacecraft systems that could potentially support NASA space science and exploration. Each of these spacecraft 

types was attributed high-level requirements, design options, and technology drivers to identify technology needs 

that apply to multiple vehicles (crosscutting).   For each spacecraft system, three categories are used to guide the 

assessment: 1) structural requirements describe the primary functional and performance aspects of the space system, 

2) vehicle design options indicate the approaches the designer may consider for assembly, deployment, and space 

operations; and 3) key mechanical/structural technologies represent technologies needed to achieve the structural 

requirements for a given spacecraft type.  Note that mass is a design driver in all space applications, but only those 

space systems requiring very low mass are noted with low mass as a requirement. 

 

A. Asteroid Redirect Vehicle  

An Asteroid Redirect Vehicle (ARV)
 7
 in cis-lunar space consists of a robotic capture device, large solar arrays for 

power and electric propulsion.  The ARV could dock with crewed modules such as Orion and other augmentation 

modules (Fig. 1). The Exploration Augmentation Module (EAM) could be used to test deep space habitation 

technologies for a Mars transport habitat. The EAM could also be repurposed as a cis-lunar exploration platform that 

advances scientific research, enables lunar surface exploration and provides a deep-space vehicle assembly and 

servicing site. 

 

The ARV (docked with crewed modules) key structures requirements, 

design options, and technology needs are described as: 

1) Structural Requirements  

a. Pressurized volume with airlocks and docking ports 

b. High strength and stiffness  

c. Assembly (or deployment) of subsystem modules 

2) Vehicle Design Options 

a. Module-based design for docking/berthing 

b. Modular subsystems for repair/assembly/upgrade  

c. Long reach arms for berthing/inspection/assembly 

3) Key Mechanical/Structural Technologies 

a. Soft-docking systems 

b. Serviceable/modular components 

c. Robotic manipulator and end effectors 

 

 

Figure 1. Mission concept for 

Asteroid Redirect Vehicle. 
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B. Artificial Gravity Vehicles  

Various concepts for artificial gravity (AG) vehicles have been evaluated as shown for example in Fig. 2. In 1985 

the Shuttle/Spacelab D-1 mission flew a biorack centrifuge containing seeds, bacteria, and human blood cells. The 

results were summarized in Ref. 8: “microgravity effects at the cellular level may be eliminated by artificial 

gravity”. The study assumed that a centripetal acceleration of 1-g would be physiologically equivalent to a 

gravitational acceleration of 1-g (excluding Coriolis effects).  Based on these results, Ref. 9 studied artificial gravity 

(AG) countermeasures for an 18 month, six crew mission with 1-g of AG produced by spinning a space vehicle as 

shown in Fig. 2. More recently, an international workshop on AG evaluated the efficacy of several vehicle 

concepts
10

. 

 

The AG vehicle key structures requirements, design options, and 

technologies are described as: 

1) Structural Requirements  

a. Pressurized space with airlocks and docking 

ports 

b. High strength and stiffness truss (0.34 – 1.0 g) 

c. Assembly (or deployment) of modules 

d. Robust to docking loads 

2) Vehicle Design Options 

a. Module based design for berthing/docking 

b. Deployment/assembly 

3) Key Mechanical/Structural Technologies 

a. High strength and stability  

b. Truss assembly and joining technology 

c. Robotic berthing/assembly  

d. Modular components and docking systems 

 

C. Space Dock (“Transportation Hub”) 

The International Space Station has proven that by aggregating payloads in one location, coupled with a dexterous 

robotics infrastructure, complex ISA and repair operations are enabled. Concepts for general-purpose in-space 

construction facilities and space cranes have been under consideration for decades
11-12

. Snead
13

 argues that to seriously 

create rapid growth in space, an on-orbit logistics capability is required. This on-orbit logistics capability (Fig. 3), 

referred to herein as a Space Dock, could proceed from the ISS experience. In fact, the Defense Advanced Research 

Projects Agency (DARPA) is promoting a future of spaceflight that involves building, refueling and repairing 

spacecraft in a depot far from Earth. "We think that these capabilities — space capabilities — are not just about a 

single monolithic satellite with a few capabilities, but instead about a vibrant, robust ecosystem that involves 

transportation, repair, refueling, upgrading, and in-situ construction."
 14

.  

The Space Dock key structures requirements, design options, and technologies are described as: 

1) Structural Requirements  

a. High strength and stiffness truss  

b. Structural metrology platform 

c. Robotics - crawler/spider/free-flyer robots 

d. Docking/berthing infrastructure 

e. Fuel storage 

2) Vehicle Design Options 

a. Large (~10s meters) truss, with power and 

manipulators 

b. Pre-positioning of infrastructure 

c. Repair and assembly 

3) Key Mechanical/Structural Technologies 

a. Assembled truss 

b. Power/data/mechanical joining technology 

c. Metrology 

d. Long-reach manipulators 
Figure 3. Space Dock Servicing Facility. 

Figure 2. Artificial Gravity Vehicle.	
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D. High Definition Space Telescope 

Various studies
15-17

 have been performed to identify the requirements for the next large astrophysics observatory 

beyond the James Webb Space Telescope (JWST). These studies have considered a range of telescope sizes as 

shown in Figure 4. One concept referred to as the High Definition Space Telescope (HDST)
18

 would utilize a 10 m 

to 12 m telescope operating at 0.1 µm to 2 µm wavelengths (not a cryogenic telescope). It would use a coronagraph 

for imaging and spectroscopy of Earth-like exoplanets. The structural stability of the HDST would need to be on the 

order of tens of picometers. Servicing for upgrade and repair similar to that done for the Hubble Space Telescope 

would be needed for life extension.  

 

Due to the large size of the telescope, either highly complex deployment or ISA would be required. ISA enables new 

design paradigms; for example, the possibility of using multiple small launchers to aggregate the telescope 

components for assembly instead of launching one large system.  

  

A key consideration of ISA for telescopes is the stability of the joined segments. Bartoszyk’s [19] work on non-ISA 

joints for the James Webb Space Telescope showed that bonded joint stability can be achieved even at cryogenic 

temperatures. ISA joining technology (mechanical latching, bonding, and welding) and the relative stability of the 

joined system for each method are primary design drivers for space telescope assembly. 

 

The HDST key structures requirements, design options, and key technologies are described as: 

1) Structural Requirements  

a. Deployment and/or assembly of primary mirror (12-20 m diameter) 

b. High dimensional stability (10s of picometers) 

c. Sunshield 

d. Optical bench and secondary mirror support 

2) Vehicle Design Options 

a. Deployable (JWST derivative) 

b. In-space assembly 

c. Modules (mirrors, instruments, etc.) 

d. Optical bench and secondary mirror truss  

3) Key Mechanical/Structural Technologies 

a. Micro-stability of joints 

b. Power/data/mechanical joining 

c. Robotic assembly 

d. Integrated power/instrument modular structural component 

 
E. Surface In-Situ Resource Utilization (ISRU) for Construction 
Surface operations at Mars and other locations in the solar system require in-situ resource utilization to achieve 

some level of earth independence for future exploration missions. In Ref. 20, the need for ISRU and a reusable 

orbiter for earth independent Mars missions is studied. The use of regolith is proposed for processing structural 

materials and manufacturing of structural systems in order to provide infrastructure for long duration human 

Figure 4.  

       16.8 m 9.2 m 8 m 
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missions to Mars. Constructing infrastructure on Mars was also the subject of an advanced concepts study that 

developed a technique known as ‘contour crafting’. Khoshnevis [21] presents simulations of this technique for 

building systems on the surface of Mars as shown in Fig. 5. 

Requirements, design options, and technologies for construction using ISRU are described as: 

1) Structural Requirements  

a. Robotic processing of materials 

into useful forms 

b. Mobility and dexterity 

c. Pressure vessels 

d. Surface and subsurface 

operations 

2) Vehicle Design Options 

a. Design with low strength 

materials (e.g. unreinforced 

polymers) 

b. Modular assembly of sintered 

(ceramic) blocks 

c. Assembly of processed parts into 

systems 

d. Repair and assembly 

3) Key Mechanical/Structural Technologies 

a. Additive manufacturing 

b. Modular parts and assembly (joining technology) – “construction” 

c. Mobility of systems (wheeled and robotic manipulators) 

d. Regolith contouring and constituent extraction 

 
F. Solar Electric Power & Propulsion 
 

The Deep Space 1 and Dawn spacecraft
22

, propelled by ion thrust, introduced the use of a new in-space propulsion 

technology. Now, very large solar electric propulsion (SEP) vehicles are under study for deep space missions as 

shown in Figure 6. Both SEP and large electric power systems are particularly attractive for missions
23

 to Mars and 

Phobos. For this class of mission to the vicinity of Mars, 100 kW to 400 kW of electric power is needed for 

reasonable transit times. Recent studies
24

 of these large SEP systems have shown the need for a high strength and 

stiffness backbone truss which, may be well suited to ISA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Surface ISRU and construction.	
  

(a) Solar electric propulsion    (b) Solar electric power  
 

Figure 6. Artist’s concept for solar electric space systems.	
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The SEP vehicle key structures requirements, design options, and key technologies are described as: 

1) Structural Requirements  

a. Large support structures for high-power solar arrays 

b. Low mass with high stiffness 

2) Vehicle Design Options 

a. Deployable and assembled arrays 

b. Membrane deployment 

c. High stiffness backbone truss 

d. Active structural control 

3) Key Mechanical/Structural Technologies 

a. Assembly/disassembly of arrays 

b. High power and mechanical/electrical joining technology 

c. High power/mass efficiency 

 

G. Sun Shields / Star Shades 

Large sun shades for thermal and light control and occulter star shades for exoplanet imaging are critical elements of 

large scientific observatories. While these membrane dominated structures (Fig. 7) are well suited to packaging and 

deployment, the compressive members that maintain tension in the membranes often require complex deployments. 

With long reach autonomous manipulators, these systems could be assisted by robotics during deployment. In 

addition, servicing large scientific observatories with fully extended sun shades poses extreme reach challenges. The 

need for full or partial retraction of the sun shades could be facilitated with robotic assembly agents. 

Star Light Shades primary structures requirements, design 

options, and technologies are described as:	
  	
  

1) Structural Requirements  

a. Low mass, moderate stiffness 

b. Large area membranes 

2) Vehicle Design Options 

a. Membrane deployment 

b. Hybrid robotic assembly/deployment 

3) Key Mechanical/Structural Technologies 

a. Lightweight membrane 

deployment/assembly 

b. Retraction for servicing desirable 

c. Star shade – geometric shape precision 

 

H. Atmospheric Decelerators	
   

Entry, descent, and landing is a critical capability for landing on planetary bodies with atmospheres. Detailed 

systems analysis studies
25 

of atmospheric decelerators have been performed and NASA is developing ever larger 

systems for future human missions to Mars. While not currently in the trade space, prior studies
26

 have investigated 

ISA of heatshields and aerobrakes. Current studies assume a landed payload mass of 27 metric tons which requires 

an 18 m heatshield diameter. Assembly of structural systems this size and larger is relatively straight forward if one 

assumes a truss backplane populated with panels made of appropriate thermal materials as shown in Fig. 8.  

Key structures requirements for Atmospheric Decelerators (AD), 

design options, and technologies are described as: 

1) Structural Requirements  

a. High strength and stiffness  

b. Robotics bench, crawler/spider/free-flyer robots 

c. Docking/berthing infrastructure 

2) Vehicle Design Options  
a. Truss backplane 

b. Pre-positioning (aggregation) of infrastructure 

c. Assembly and inspection 

 

Figure 7. Sun shield and star shade.	
  

Star Shade 

Sun 

Shield 

Figure 8. Heatshield and aerobrake.	
  

Aerobrake 

Heatshield 
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3) Key Mechanical/Structural Technologies 

a. Assembled curved truss 

b. Panel joining technology 

c. Close-out of panel seams from hot gases 

d. Thermal control – materials, hot structures 

 
III. Capability and Technology Needs 

 
From the previous section, the primary structural/mechanical capabilities for future NASA vehicles are shown in 

Table 1. The most frequently occurring (crosscutting) capabilities include modular design with high stiffness, 

robotic assembly with long reach manipulators, mechanical and electrical joining technology for components and 

modules, docking and berthing, and deployable subsystems. The remaining capabilities in Table 1 are more 

application dependent.  

 

From this analysis of high priority (crosscutting) needs for structural space systems, an assessment of current 

technology readiness is appropriate. In particular, the state-of-the-art in three key technology groupings are 

described next: structural assembly; autonomous robotics; and additive manufacturing.	
   

 

 

Table 1. Crosscutting capabilities and requirements for future NASA vehicles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. ISA Technology Readiness and Opportunities 
 

A number of past and present activities to develop and mature ISA capabilities have been undertaken by 

government, industry and academia. Many of these efforts are relevant for developing a new approach to space 

vehicle design involving modular assembly using robotic agents.  
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A. Structural Assembly 

Following the successful development of the Space Transportation System (“Space Shuttle”), the structures 

community has developed highly efficient deployable and erectable space structures. The work of Refs. 27-28 

researched, developed and flight demonstrated the ability to assemble large (5 m bay size) truss structures in space. 

The assembly agents for these efforts were astronauts who served both as the controller and the robotic “end 

effector”.   Joint latches were specifically designed to be operated using the gloved hands of suited astronauts.  

Flight experiments showed that highly efficient space trusses could be constructed with predictable time estimates 

based on simulated assembly in neutral buoyancy facilities.  These results spawned new designs and experiments to 

assemble a precision segmented reflector
29

 for high-frequency antennae and various optical and near-infrared 

telescope applications.  

 

Robotic assembly
30

 of space systems was demonstrated for planar truss and beam structures in the automated 

structures assembly laboratory at NASA Langley Research Center. In these experiments, smart end effectors and 

mechanized joints were used with a general-purpose robotic motion system and optical metrology for computer 

control of all assembly operations.  The control system was designed to provide for human supervision, but the 

assembly occurred in a totally autonomous mode. 

 

The joining technology for assembled and deployed structures was studied extensively in Refs. 31-37. Joint 

dominated structures were shown to have non-linear micro-dynamic behavior that can impart vibrations in the 

structural system as energy is stored and released primarily due to thermal cycling. Recent work
 38-39 

has focused on 

reducing the complexity of ISA structural systems and improving the precision of assembled parts using robotic 

jigging and welding of joints.  

 

While deployable structures with revolute joints and latches are commonly used, new ISA-designed joints are 

needed to improve the micro-dynamic stability of joined structures for some applications.  Ref. 19 shows that 

bonded joints can achieve the stability requirements for telescope applications.  The opportunity exists for new 

joining approaches to be developed such as magnetic latching in future ISA operations.  Of particular interest are 

reversible joints for disassembly and module replacement. 

 

Modular design of space systems coupled with an ISA capability can reduce launch loads as compared to a 

preassembled spacecraft.  Similar to the computer industries “plug-and-play” architecture, modular design must be 

coupled with standard interfaces to achieve full functionality for on-orbit upgrades.  Advances in system approaches 

to non-traditional ISA based modular design are needed to achieve acceptable risk, reliability, and performance 

measures. 

 

B. Autonomous Robotics  

Autonomy for both space and terrestrial applications has made major advances over the last decade
40-42

. For 

example, The Orbital Express spacecraft were launched March 8, 2007 and completed the demonstration while 

achieving all mission success criteria and objectives. This quote from Refs. 43-44 summarizes the program purpose: 

“The Orbital Express program was created to prove that the technical obstacles to satellite servicing were 

surmountable -- to “take the technical excuse off the table” as it were. This mission demonstrated short range and 

long range autonomous rendezvous, capture and berthing, on-orbit electronics upgrades, on-orbit refueling, and 

autonomous fly-around visual inspection using a demonstration client satellite.”  

 

A full summary of the autonomous rendezvous, proximity operations, docking, and undocking of the Orbital 

Express vehicles is presented in Ref. 45. This program was a major achievement in the aerospace industry showing 

that in-space transfer of orbit replacement units could be done autonomously. In fact, the technology to assemble 

small telescopes is now in development in academia
46

. From these efforts, it appears that state-of-the-art robotic 

autonomy can support ISA today, provided that the vehicles are designed for modular assembly with connectors that 

provide not only mechanical joining, but also power and data connectivity.  

 

C. In-Space Additive Manufacturing 

Additive manufacturing (AM or three-dimensional (3-D) printing) is another technical discipline at the intersection 

of robotic manufacturing and structural assembly. Free-form fabrication of near-net shape parts with metals
47

 and 
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plastics
48

, and development of optimized processes for micro-g fabrication are underway. By using these new AM 

capabilities, the possibilities for in-space assembly and fabrication are endless. 

 

In fact, new design paradigms are emerging called “digital materials”
 49

 where mass-efficient hierarchical structures 

can be created using AM. Large-scale space structures are envisioned using robotic mobility with AM technology as 

discussed in Ref. 50. The potential for using this technology in space is just now being investigated. Issues 

associated with thermal distortions, inferior material properties, and contamination from the by-products of 

processing represent some of the challenges to be overcome before widespread use of AM in space is practical. 

Nevertheless, AM technology will continue to be developed since it is enabling for long term exploration on Mars 

where in-situ resource utilization (ISRU) is mandatory.  

 

Hybrid approaches involving AM joining of structural components instead of mechanical latching need to be 

explored.  AM material systems that lend themselves to bonding and unbonding would be attractive for repair and 

repurposing of spacecraft components.  Development of intelligent precision jigging robots
38-39

 and smart end-

effectors to control geometric errors during the joining process are being investigated. Reducing system complexity, 

controlling manufacturing volatiles, and achieving the desired stiffness and strength for AM manufactured structures 

should be the focus of near-term AM research and development. 

 
V. Summary 

 
A review of in-space assembly applications for future NASA missions has identified key technology drivers; some 

are crosscutting and some are very specific to certain vehicle classes. Prior and current technology development 

efforts are presented to clarify the remaining gaps for a robust ISA capability for government and industry. In 

addition, a relatively new and potentially game-changing technology for ISA is additive manufacturing (3-D 

printing). This “push” technology combined with new ISA-based structural design approaches can make future 

spacecraft systems more affordable and reusable. 

 

Autonomous robotic assembly has been demonstrated in space and advances in autonomy technology for terrestrial 

applications continues. The state-of-the-art appears to have moved beyond teleoperation to some form of 

“supervised autonomy” whereby human intervention is only required in special unanticipated circumstances. 

Continued work on modularity and standard interfaces is needed to achieve the full potential of robotic assembly of 

space systems.  

 

Efficient structural assembly in space, namely structures with low mass and high-stiffness and strength, can be 

achieved by system-level design that takes advantage of robotic assembly. The key technology gaps in the structures 

discipline needed to provide robust ISA capabilities are the joining and unjoining technology (mechanical and 

electrical), design modularity, and mass efficient long reach manipulators.  

 

It is the authors’ intention to focus research and development efforts to close the remaining technology gaps for ISA 

(most of which are structures related). This will enable a new ISA-based spacecraft design capability that makes 

future systems more affordable than the current single-launch, single-use approach to space vehicle design.  

Modular, repairable spacecraft will provide for increased operational life and potential multi-mission applications 

through reuse of vehicle components.  Continuing to develop technology that reduces complexity and risk of ISA 

operations will lead to lower cost, more resilient space systems for NASA’s exploration and science missions. 
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