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Abstract: The present study assesses the in-structure shock of an underground structure induced 

by a nearby subsurface detonation. Both the rigid body motion of the entirely buried structure and 

the local response of the structural element are considered in characterizing the in-structure shock. 

Soil-structure interaction, behaving as an interfacial damping, is taken into account and the effect 

of different surrounding soils is investigated. A response spectrum is plotted for assessing 

in-structure shock induced by a typical subsurface detonation and subsequently the safety of the 

internal facilities and equipments mounted on the buried structure is evaluated. For safety purpose, 

the protective structures are better constructed in a site with small acoustic impedance and large 

attenuation factor. Results show that the proposed in-structure shock assessment method is 

effective and can be used as a supplement to TM-5-855-1 and TM-5-1300.  
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Introduction 

Underground structures buried in soil usually provide safer shelters comparing to 

those aboveground due to the penetration resistance of the soil. However, in design of 

such underground buried structures, not only should the potential structural damage 

be assessed, but the shock load to the equipments contained in the structure should 

also be evaluated. The shock load from certain distance, normally with a very short 

duration such as some milliseconds, not causing significant damage to the structure, 

but vital to some delicate devices and equipments mounted internally on the structure, 

is termed as in-structure shock. In determination of the shock level within an 

underground structure, the most challenging task is to obtain the structural response to 

the shock in considering the soil-structure interaction (SSI). The effect of SSI can be 

neglected when the structure is subjected to an underground nuclear explosion since 

the overall motion, both that of the surrounding soil and that of the structure, can be 

assumed as the same as free field values because of the relative uniformity of the 

stress field. However, if the underground structure is under a shock caused by 

conventional weapons, the movement of the structure becomes more complex because 

the stress field is no longer uniform but attenuates with standoff distance quickly. In 

such cases, taking the SSI into account becomes a must. 

    To determine the structural shock response, various available numerical methods 

have been applied: the boundary element method (BEM) (Stamos and Beskos 1992), 

the finite-element method (FEM) (Yang 1997), the combined finite-difference method 

(FDM)/FEM (Steven and Krauthammer 1988; Chen and Krauthammer 1989), and the 
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combined smoothed particle hydrodynamics (SPH)/FEM (Wang et al. 2005; Lu 2005) 

have been applied. For the combined methods, the FDM or SPH was usually 

employed in the domain with large deformation, such as the soil near the detonation, 

wheareas the traditional FEM was adopted in the rest of the domain. In addition, the 

uncertainties in dynamic SSI were investigated numerically (Wong 1984). A distinct 

advantage of the numerical methods is that the comprehensive models can be 

established readily to represent the real detonation and response situations. However, 

the numerical methods could be very computationally intensive. In addition, relevant 

critical parameters are difficult to determine; further verification of the numerical 

models against analytical or experimental works is a prerequest.  

    Experimental results are considered to be most reliable and can be applied to 

verify analytical and numerical models. However, constructing and testing 

underground structures subjected to blast load is costly, labor-intensive, and 

time-consuming. In addition, because of the nature of such experiments, test results in 

open literatures is rare. In the research found, the rigid body motion (RBM) and SSI 

of an underground structure subjected to a subsurface explosion were studied through 

small scale experiment (Baylot and Hall 1995). 

    For theoretical methods, some design codes for evaluating the shock level of 

underground structures can be referred. Among the most frequently consulted are 

Fundamentals of Protective Design for Conventional Weapons (TM-5-855-1) (U.S. 

Army 1986) and Structures to Resist the Effects of Accidental Explosion (TM-5-1300) 

(U.S. Army 1990). According to TM-5-855-1, the in-structure displacement, velocity, 
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and acceleration are obtained by directly modifying the corresponding free-field 

values, which highly oversimplifies the problem. To effectively incorporate the SSI 

into the analysis, the structural response is taken into account to modify the loading 

applied on the structure (Wong and Weidlinger 1983). Further, the effects of structure 

motion on the soil flow near the structure and subsequent change in the structural 

loads and response were analyzed for a detonation very close to a structure (Baylot 

2000). However, almost all the available analytical studies of underground structure 

dynamic response are based on single-degree-of-freedom (SDOF) models (Weidlinger 

and Hinman 1988; Alwis and Lam 1994; Chen and Chen 1996), which can be 

categorized into two approaches: 1) considering the entire structure as an rigid SDOF 

system, whereas the local response of the structural element is neglected; 2) 

simplifying a structural element as an SDOF system, whereas the global response of 

the structure was ignored. In fact, the SSI relies on the structural deformation;, 

therefore, a more appropriate consideration of the SSI requires adopting a continuous 

model.  

    When subjected to a subsurface detonation, in general, an underground structure 

undergoes two kinds of motions: RBM as a whole and local response of the structural 

element. To the writers’ knowledge, a continuous model for underground structural 

response, induced by a subsurface explosion with consideration of RBM, has not been 

analytically established.  

To assess the shock level within the underground structure more accurately, an 

analytical model consisting of the RBM and local deflection is presented in this study. 
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Due to the relative large distance between the detonation and the structure in which 

case no significant damage occurs, the effect of soil flow change on structural loads 

may be negligible (Baylot 2000). In the current model, the responses of the structural 

element are obtained in consideration of both the SSI and the RBM effects. The 

derived structural response then acts as the excitation for the equipments internally 

mounted on the structure. The response of the equipment thus can be obtained and 

compared with the specified tolerance to check its safety. The present paper mainly 

focuses on the derivation of the structural responses by combining the global RBM 

and the local element response, in which an interfacial damping is introduced to 

reflect the SSI. 

 

Methodology 

When subjected to a soil-transmitted blast load, the underground structure undergoes 

RBM as well as deflection simultaneously. It is difficult even impossible to obtain 

both the RBM and the deflection at the same time analytically. In the present study, to 

determine the gross response of certain structural element, the displacement of the 

structural element is decoupled into two parts: one from RBM and the other from the 

pure deflection. Based on this decoupling, the lower and upper bounds of the 

structural element are obtained. Consider two extreme cases:  

(a) Without RBM, the load applied totally contributes to the deformation of the 

structural element. 

(b) Without deflection, the load applied totally contributes to the RBM. 
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    It is obvious that the response of case (a) is significantly greater than that of case 

(b) for a typical underground structure subjected to a subsurface detonation. Case 

study calculation results in the following section will confirm this. 

    In deriving the RBM response, the structure is assumed rigid and undergoes pure 

translation. Obviously, the assumption of rigid structure will lead to an 

over-prediction of the RBM response. Subsequently, the load allocated to cause pure 

deflection of the structural element is under-estimated. 

    The real situation is the soil-transmitted blast load contributes to both the RBM 

and the deflection simultaneously. The overly-predicted RBM and the 

under-estimated deformation will result in gross responses lower than the real 

situation. It is not conservative and can be considered as the lower bound of the gross 

response of the structural element. 

Furthermore, the upper bound of the gross response is determined by assuming 

no RBM and the structural element only undergoes pure deflection. 

With no doubt, the response of the structural element in real situation is in 

between of these upper and lower bounds. In a typical in-structure shock problem, the 

upper and lower bounds responses are close to each other thus the real response is 

approximately found. In the present study, the method is formulated analytically in 

detail and validated in a case study. 

 

Shock load and soil-structure interaction 

According to TM-5-855-1, the peak stress wave intensity induced by a subsurface 
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detonation of a conventional weapon is 

                             0 1/3
β ρ

r

s s

R
P f c

W



 
  

 
                      (1) 

where 0P = peak free-field pressure; f = coupling factor of the explosion energy to soil; 

ρs sc = acoustic impedance of soil; r= attenuation factor of soil; W= TNT equivalent 

weight; R= distance measured from the explosion center to the structure; and  =160. 

    The shape of the shock wave depends on that of the charge. For a most 

frequently encountered point detonation, the shock wave develops and transmits to all 

directions spherically. In engineering practice, when the standoff distance is relatively 

large, the part of the wave encountering a structure is assumed to be an equivalent free 

field plane wave (U.S. Army 1986) as follows, 
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                  (2a) 

where  = reduction factor, defined as the ratio of the equivalent uniformly distributed 

load to the maximum pressure in the actual load distribution; and dT = equivalent 

blast duration, equal to two times the arrival time of the shock wave from the 

detonation point to the structure (Weidlinger and Hinman 1988), such that 

2d aT t                                (2b) 

According to Wong and Weidlinger (1983), the load applied on the underground 

structure is a free-field pressure overlapped with the interfacial pressure, 

                        σ σ σ 2σ ρf i f s sc u                            (3) 

where u = velocity of a certain material point in the structure. The above formula is 

valid only when the SSI exists, which implies that the soil has larger particle velocity 
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than the structure. If the soil particle velocity is smaller than that of the structure, the 

SSI vanishes and there is no load applied on the structural element from soil at this 

interface. 

 

Rigid body motion of the entire structure 

Conservatively, the most adverse situation is analyzed where the nearest point to the 

subsurface detonation is the center of certain structural element.  If the underground 

explosion occurs in a location where the nearest point from the structure to the 

detonation is a corner, the problem is further complicated. In this situation, generally, 

the RBM of the assumed rigid structure will be a combination of translation and 

rotation, rather than pure translation, which is out of the scope of the current study. 

    For a box-type underground structure subjected to a blast load induced, generally, 

there are several loading phases for the RBM, loading only on the nearest structural 

element, loading on both nearest and farthest structural elements, loading only on the 

farthest element and the phase in which only the soil resistance exists on the farthest 

element. For a typical detonation case, the most important phase is the first one, in 

which the maximum acceleration and velocity of the entire structure always occur. 

Therefore only the first loading phase is considered (Weidlinger and Hinman 1988, 

1991; Alwis and Lam 1994). As stated in the methodology, when analyzing the RBM, 

the structural deflection is ignored thus the structure is assumed as a rigid body. The 

friction between the side walls and the surrounding soil is negligible compared to the 

blast load thus it is ignored. In addition, among the resistances from the back side of 
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the structure, only the major part induced by the velocity difference between the 

structure and the surrounding soil is considered (Weidlinger and Hinman 1988, 1991; 

Alwis and Lam 1994).  

Taking the SSI into consideration, we have: 

     2

,N N2
σ ρ ρf s s s s

d U t dU t dU t
M A c V c

dt dt dt

    
      

     

        (4) 

where M = mass of the whole structure; A= area of a structural element subjected to a 

blast load; ,Nσ f  and VN= free field pressure and soil particle velocity at the nearest 

structural element, respectively; and  U t = RBM displacement of the structure. In 

consideration of , Nσ ρf N s sc V  and Eq. (2a), Eq. (4) becomes 
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where  0τ / 2 ρs sM A c  is defined as the characteristic response time. 

With a stationary initial condition with zero displacement and zero velocity 

assumed for the structure, the time histories of the RBM which do not consider the 

structural deflection can be derived as: 
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    (6a)                 
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        (6c) 

It is worth noting that the derived RBM response is obviously greater than that in the 

real situation by assuming no deflection, ignoring the side friction and some 

resistance from the back side. 
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Structural element response to shock load 

Kirchhoff plate model 

For a typical box-type underground structure, each of the structural elements is 

considered as a Kirchhoff plate in consideration that the thickness-to-span and the 

maximum-deflection-to-thickness ratios are, in any time, both smaller than 1/5, in 

which the Kirchhoff-Love plate theory can be applied. In a real structure, each plate 

of the buried structure is neither fixed nor simply supported to other structural 

elements. For safer consideration, the plate is assumed to be simply supported in the 

current analysis. 

In the present study, in-structure shock rather than damage is of major concern. 

Therefore it is reasonable to assume that the structural response is within the elastic 

limit. According to Baylot and Hall (1995), in a small scale experiment, when the 

distance between the detonation and the structure is relatively large, the structure 

experiences a shock and the structural element deforms elastically without major 

damage. The governing equation for a plate subjected to dynamic load is: 

                 
 

 
2

4

2

, ,
, , ρ , ,

w x y t
D w x y t h P x y t

t


  


                (7) 

In view of the SSI in Eq. (3), the governing equation can be rewritten as:  

 
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where  3 2/ 12 1D Eh   
 

 is the flexural rigidity of the plate;  and h= density 



 11 

and thickness of the plate, respectively. Assume the displacement of the structural 

element as: 

                         
1 1

, , , ηmn mn

m n

w x y t U t W x y t
 
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recall that  U t = RBM displacement;  ,mnW x y = m, nth mode shape, in which m, n 

denote the order of the vibration in two orthogonal directions; and  ηmn t = 

generalized coordinate in the generalized space, or modal space. Since the RBM in 

fact is the zeroth order of the vibration mode and does not affect the deflection of the 

structural element, through analyzing the specific mode, with the simply supported 

boundary condition, the m, nth mode can be expressed as   

 
2 π π

, sin sin
ρ

mn
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W x y

a bhab
                (10) 

where a and b = in-plane dimensions of the plate, respectively. 

 

Deformation Response in the blast duration 

Substituting Eq. (9) into Eq. (8), and rewrite the governing equation: 
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According to the orthogonality condition of the normal modes, the governing equation 

for the m, nth mode is 
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To demonstrate the effect of the SSI, the m, nth interfacial damping ratio is defined as 
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                 (13) 

where mn = m, nth natural frequency of the plate. The interfacial damping ratio, 

induced by the presence of the interface between the structure and the surrounding 

soil, delineates the SSI by incorporating nearly all the properties from both the 

structure and the soil, inclusive of the acoustic impedance of the soil, the in-plane 

dimensions, mode order numbers, density, thickness and flexural rigidity of the 

structural element. From the expression, one can know that the interfacial damping 

ratio decreases with the increase of orders in two directions, which means the 

damping ratios are greater for lower modes and smaller for higher modes. The same 

structure buried in different soils have different interfacial damping ratios. For a 

typical protective structure in certain kinds of soils, the first or first several modes of 

the structural element may be interfacially over-damped while the higher modes 

under-damped. The corresponding structural responses are derived as follows. 

 

Case I: ζ 1mn   

Assume the arrival time of the blast wave as the time origin. At zero time, both the 

displacement and the velocity are zero no matter in the physical space or the 

generalized space. Combining the governing equation and the initial conditions, for an 

interfacial damping ratio larger than 1, the local structural responses are obtained, e.g. 

the m, nth order contribution to the deflection is 
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the velocity contributed by m, nth mode is 

 
 

,3 ,4

0

,3 ,4

/ τ

,1 ,2

2 π π
, , sin sin

ρ ω

mn mnD t D t

mn mn mn mn

mn t

mn mn mn mn

E D e F D em x n y
w x y t

a bhab Q D D e


 
 
  
 

    (15) 

and the corresponding acceleration is 
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                                                                 (16) 

The aforementioned solutions are valid only in blast loading phase in which the 
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structural element deforms to the maximum deflection.  

 

Case II: ζ 1mn   

When the interfacial damping ratio is smaller than 1, with the same method, the m, nth 

order contribution to the displacement is 
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and the corresponding acceleration is 
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Again the results above are valid only in the time intersection of the blast duration and 

time period ranging from zero to maximum deflection.  

In practical engineering, it stands very rare chance to have an interfacial damping 

ratio exactly equal to 1. However, if it happens, for mathematical derivation 

convenience and the physical nature, it can be considered as an interfacially 

over-damped case.  

 

Gross response in the blast duration 

The gross response of the structural element consisting of the RBM and pure 

deflection is of concern and is also the response lower bound when considering both 

the RBM and the deflection simultaneously. The response contribution by the pure 

deflection, under-estimated, is derived above.   

    When analyzing the RBM by assuming no deflection, the pure RBM responses 

are overly-predicted thus when analyzing the RBM and the deflection simultaneously, 

the force allocated for the RBM part    ρ ρs shU t c U t  (see right hand side of the 

Eq. (11)) is also overly-predicted. Subsequently the RBM contribution to the gross 

response of the structural element is higher than that in the real situation. 

    Equations (20a)(20b) are the RBM velocity and acceleration time histories when 

considering RBM and deflection simultaneously. 
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where  / ρeh M A  represents the effective thickness of the whole structure.  

Equations (21a)(21b)(21c) are the pure deflection, gross velocity and gross 

acceleration time histories of the structural element while considering RBM and the 

deformation simultaneously: 

     
1 1

, , , ηd mn mn

m n

w x y t W x y t
 

 

                    (21a) 
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1 1
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m n

w x y t U t W x y t
 

 

               (21b) 

       
1 1

, , , ηm mn mn

m n

w x y t U t W x y t
 

 

               (21c) 

Amongst, pure deflection, Eq. (21a), rather than the gross displacement, is of 

interest since only the pure deflection has contribution to the stress distribution in the 

structure element while the RBM displacement part has no contribution. For a typical 

in-structure shock problem, structural failure is not the major concern due to the thick 

wall and the relatively distant explosion location. The gross acceleration time history, 

Eq. (21c), consisting of the contributions both from the RBM and the pure deflection, 

is of most significance since it is the direct excitation for the inside device attached to 

the structural element and related to the force developed within the equipment and 

directly determine its safety. 

    The response after the blast duration can be calculated with the application of the 

terminal conditions of the blast duration phase as initial conditions. In fact, for a 

typical problem of in-structure shock of underground structure subjected to a 

subsurface detonation, the response time histories in the blast duration will suffice 
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since the acceleration response used to excite the device achieves peak value initially 

and decays at a high rate, making the major shock in the initial stage of the blast 

duration.  

Theoretically, the exact responses are achieved by combining all the 

contributions of modes from first order to infinity. In fact, higher order modes 

generally make trivial contribution therefore finite modes are used to approximately 

represent the exact response. The number of modes needed depends on the physical 

nature of the problem (for dynamic problem with short load duration, more modes are 

needed) as well as the result accuracy desired. Generally, for a problem of an 

underground structure with typical geometrical configuration subjected to a typical 

subsurface-detonation induced blast, 20-30 modes in each direction is sufficient. 

Until now, the lower bound responses of a structural element are derived. Further, 

the upper bound responses are calculated by assuming no RBM. Then the real 

responses can be approximately found. 

 

A case study and discussions 

Consider a box-shaped underground structure subjected to a subsurface detonation 

loading on one of its structural element, made of reinforced concrete with the Young’s 

modulus of 30 GPa, the Poisson’s ratio of 0.2, and the density of 2500 kg/m
3
. The 

length, width, and height of the structure are assumed to be 12.8 m, 14 m, and 8 m, 

respectively. All the structural elements have the uniform thickness of 1 m. The 

surrounding soils are dry sand and two typical soils in Singapore, i.e. Kallang soil and 
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Bukit Timah soil (Anand 2007, properties are shown in Table 1), respectively. 

Amongst, Bukit Timah soil has the largest acoustic impedance and the smallest 

attenuation factor while the dry sand has the smallest acoustic impedance and the 

largest attenuation factor. The scaled distance, defined as the standoff distance divided 

by the cubic root of the TNT equivalent weight, is 2 m/kg
1/3

 (R=10 m, W=125 kg). 

The shock load duration is 20 ms. All of the parameters used are typical for an 

underground detonation. First 30 modes in each direction are used to approximate the 

exact responses and the results converge without any “visible” oscillation. 

Obviously, for a scenario that the detonation lies in the extended line through two 

opposite structural element centers, shown in Fig. 1, the center of the nearest plate to 

the detonation is the most dangerous point and needs special inspections. 

Figure 2 gives the upper and lower bounds of structural element center pure 

deflection, gross velocity and gross acceleration surrounded by Kallang soil. The 

bounds of pure deflection of the element center are far from each other thus it is 

difficult to approximate the real deflection. As stated previously, deflection is not the 

major concern for in-structure shock problem due to the thick structure wall and 

relatively distant standoff. In this case, the maximum deflection is smaller than 14 

mm, compared to the 1 m thickness, the deformation is elastic. Amongst, for 

acceleration time history, the two bounds are close and the real acceleration can be 

readily approximated.  

In engineering practice, the relationship between the maximum response values 

and the scaled distance is concerned. Figure 3 indicates the maximum deflection 
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excluding the RBM decreases with the increase of the scaled distance, so do the 

maximum gross velocity and acceleration. It is desirable to know the upper and lower 

bounds of maximum acceleration are close to each other. One can read the 

approximate peak acceleration of the structural element for specific scaled distance 

readily.  

Recall that in deriving the RBM response, the friction between the side walls and 

surrounding soil and some resistances from the back side are neglected. From the 

results above, the ignored items are not significant compared to the considered ones. 

The reason is if the effects of the ignored items are significant and incorporated into 

the calculation, the lower bound response will become remarkably higher, much 

closer to the upper bound. However, the upper and lower bounds are sufficiently close 

to each other and there is not much room for the lower bound to become higher (for 

instance, of most significance, consider the gross acceleration of the structural 

element). 

To validate the method used in the present study, the structural dimension along 

the direction parallel to the blast load is increased to a large value thus the mass of the 

structure is large. Figure 4 indicates that the lowered bounds of the responses 

including maximum deflection, maximum gross velocity and maximum gross 

acceleration are very close to, and even coincide with the upper bound responses 

respectively, confirming the methodology to calculate the lower bound of the gross 

responses of the structural element. 

Further, the influence of different surrounding soils on the gross responses of the 
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structural element is investigated. The average values of the response bounds, rather 

than the bounds themselves, are calculated and plotted against scaled distance. Figure 

5 indicates that the maximum displacement excluding the RBM decreases with the 

increase of the scaled distance, so do the maximum gross velocity and acceleration. 

Among the response quantities, the most significant one is the maximum acceleration. 

Different from the maximum displacement exclusive of the RBM and maximum gross 

velocity, the maximum gross acceleration is highly sensitive to soil types. For instance, 

for the same structure and the same scaled distance, the maximum gross acceleration 

may be 10 times greater when buried in the Bukit Timah soil than in dry sand. 

Therefore, it can be stated that for safety purpose, a buried structure should be 

installed in a site with small acoustic impedance and large attenuation factor such as 

the dry sand. 

In TM-5-855-1, the maximum acceleration prediction of a buried structure under 

a subsurface blast load is rather coarse since only an average acceleration value across 

the structure in a RBM manner is given, in which the density of the surrounding soil 

and more importantly, the information of the structure is missing, such as the material 

density, the thickness of the structure element and how hollow the structure is. In the 

perspective of the shock mechanism, the model in the present study is more 

reasonable, where both the effects from the RBM and the local deflection are 

considered. Therefore, this model may be used as a supplement to the design codes. 

 

Response spectrum analysis of in-structure shock 
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Underground structure subjected to subsurface detonation undergoes rigid body 

motion as a whole and local deflection of its structural elements, posing a shock 

excitation for the equipments and personnel within the structure. Devices, with their 

fixtures combined together can be simplified as SDOF systems, shown in Fig. 6. The 

mass and stiffness of an SDOF system can be represented by only one parameter: the 

natural frequency. Then a series of SDOF systems of varying natural frequencies can 

represent a variety of devices with supports. When the shock input does not exceed 

the equipment tolerance, the equipment can be hard-mounted to the structure. For 

instance, if a device is small and rugged, it is usually hard-mounted as it could 

withstand high accelerations. However, those devices that cannot withstand such 

strong shock should be shock-isolated. 

    Shock response spectra are a series of relationships between the maximum 

responses of SDOF systems and their corresponding natural frequencies under the 

same base excitation (Gupta 1990). For each SDOF system, the absolute maximum 

value of the response of interest from the corresponding time history is calculated. In 

response calculation, the sign is often not considered since, for design purpose, the 

maximum positive and negative values are assumed to have equal effect. 

    In the present study, it is assumed that the mass of the structural element is 

significantly larger than that of the device with mounting thus the responses of the 

device and the structural element can be decoupled. When analyzing the responses of 

the structural element, the effect from the attached device is ignored. Then the gross 

acceleration time history of the structural element center is used to excite the attached 
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devices. 

Figure 7 is the total shock response spectra for the current case study. Generally, 

systems with lower natural frequencies undergo higher displacements, while the 

systems with higher natural frequencies experience higher accelerations instead. For a 

series of SDOF systems with different natural frequencies, those with mediate natural 

frequencies have larger velocity responses.  

Table 2 lists some typical equipment shock tolerances (U.S. Army 1986). For a 

specific underground detonation, the shock level to the equipment can be readily 

obtained using the present method. Comparison of these shock values, especially the 

maximum accelerations, with their corresponding tolerances (drawn in Fig. 7) 

indicates whether the equipment is safe under such shock. If the shock tolerance is 

exceeded, isolation is needed. For the specific shock parameters applied in this study, 

the response spectra are plotted against the equipment natural frequencies. From Fig. 

7, for a specific device, the stiffness of the system consisting of the device and its 

fixture should not exceed a certain value. 

In simple summary, an integrated analytical prediction method is proposed to 

evaluate the shock level within an underground structure subjected to a subsurface 

explosion. This method can also be extended to evaluate the shock level within a 

submarine subjected to an underwater explosion, shock of nuclear power plant and 

shock caused by launching and landing of spacecrafts, etc., since these shocks and 

vibrations may have the similar nature to the one induced by a subsurface detonation. 

 

Conclusions 



 23 

In-structure shock evaluation of an underground structures subjected to a subsurface 

detonation, especially the structural shock response, is investigated analytically. An 

interfacial damping is incorporated to represent the soil-structure interaction. Rigid 

body motion of the structure as a whole and the local structural element deflection are 

analyzed. Shock response spectra are employed to evaluate the shock level within the 

structure. Comparison of the equipment shock level with the shock tolerance indicates 

whether the built-in equipment or device is safe or shock isolation is needed. The 

maximum deformation, gross velocity and gross acceleration are greater in soil with 

larger acoustic impedance and smaller attenuation factor, which results in higher 

equipment shock level and, thus, more detrimental. Especially, the maximum 

acceleration of the structural element is highly sensitive to soil types, thus the 

protective structure is better constructed in a site with small acoustic impedance and 

large attenuation factor for safety purpose. Results show that the proposed in-structure 

shock assessment method is effective and can be used as a supplement to TM-5-855-1 

and TM-5-1300.  

 

 

Notation 

The following symbols are used in this paper: 

A   area of the structural element closest to the subsurface detonation; 

a, b   in-plane dimension; 

cs   acoustic velocity of the surrounding soil; 

D   flexural rigidity of the structural element; 
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E   Young’s modulus of the structure material; 

f    coupling factor of the explosion energy to soil; 

h   thickness of the structural element; 

he   effective thickness of the whole structure; 

M   mass of the whole structure; 

P0   free-field peak pressure; 

R   distance from center of explosion to structure; 

r   attenuation coefficient of blast wave in soil; 

Td   blast duration; 

t   time starting at the arrival of the blast wave; 

ta   travel time of shock wave from detonation to structure; 

U(t)   rigid body motion displacement of the whole structure; 

W    TNT equivalent charge weight; 

w(x,y,t)  gross displacement time history of the structural element; 

Wmn(x,y)  m, nth mode shape of the structure element; 

wmn(x,y,t) m, nth mode contribution to pure deflection of the structural element; 

x, y in-plane coordinate with origin at a corner; 

α   reduction factor; 

β   a factor equal to 160 in imperial unit system; 

ηmn(t)  m,nth mode general coordinate; 

σf   free-field pressure time history; 

ρ, ρs  mass density of the structure and soil; 
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ζmn   m, nth mode interfacial damping ratio; 

ν   Poisson’s ratio of the structural material; 

τ0   characteristic response time of the whole structure; 

ωmn   m, nth mode natural frequency of the structural element. 

 

Subscripts 

m   mode order in direction along edge a; 

n     mode order in direction along edge b. 
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Figure captions 

Fig. 1. Underground structure subjected to subsurface detonations  

Fig. 2. Time histories of upper and lower bounds of deformation, gross velocity and 

gross acceleration at the structural element center, Kallang soil 

(a) Deformation  

(b) Gross velocity 

(c) Gross acceleration 

Fig. 3. Upper and lower bounds of maximum deformation, gross velocity and gross 

acceleration at the structural element center versus scaled distance, Kallang 

soil 

(a) Maximum deformation  

(b) Maximum gross velocity 

(c) Maximum gross acceleration 

Fig. 4. Upper and lower bounds of maximum deformation, gross velocity and gross 

acceleration at the structural element center versus scaled distance, Kallang 

soil (dimension in movement direction = 300 m, for validation of the solution) 

   (a) Maximum deformation 

   (b) Maximum gross velocity 

(c) Maximum gross acceleration 

Fig. 5. Maximum deformation, gross velocity and gross acceleration of structural 

element center versus scaled distance, different soils: 

(a) Maximum deformation 

(b) Maximum gross velocity 

(c) Maximum gross acceleration 

Fig. 6. Illustration of SDOF systems for shock response spectra 

Fig. 7. Shock response spectra of devices subjected to in-structure shock, Kallang soil 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7
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Table 1 Properties of dry sand and two typical soils in Singapore. 

Soil type Density (kg/m
3
) 

Acoustic velocity 

(m/s) 

Attenuation 

coefficient 

Dry sand 1633 305 2.75 

Kallang soil 1420 1350 2.5 

Bukit Timah soil 1800 1650 2.25 
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Table 2 Equipment shock resistance 

Item Horizontal tolerance (g’s) Vertical tolerance (g’s) 

Air handling units 4 4 

Diesel engine generators 30 30 

Gas turbine generators 31 4 

Computers 53 54 

 


