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Abstract—Despite active research and significant progress in the last 30 years, eye detection and tracking remains challenging due to

the individuality of eyes, occlusion, variability in scale, location, and light conditions. Data on eye location and details of eye

movements have numerous applications and are essential in face detection, biometric identification, and particular human-computer

interaction tasks. This paper reviews current progress and state of the art in video-based eye detection and tracking in order to identify

promising techniques as well as issues to be further addressed. We present a detailed review of recent eye models and techniques for

eye detection and tracking. We also survey methods for gaze estimation and compare them based on their geometric properties and

reported accuracies. This review shows that, despite their apparent simplicity, the development of a general eye detection technique

involves addressing many challenges, requires further theoretical developments, and is consequently of interest to many other

domains problems in computer vision and beyond.

Index Terms—Eye, eye detection, eye tracking, gaze estimation, review paper, gaze tracking, object detection and tracking,

human-computer interaction.
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1 INTRODUCTION

AS one of the most salient features of the human face,
eyes and their movements play an important role in

expressing a person’s desires, needs, cognitive processes,
emotional states, and interpersonal relations [141]. The
importance of eye movements to the individual’s perception
of and attention to the visual world is implicitly acknowl-
edged as it is the method through which we gather the
information necessary to negotiate our way through and
identify the properties of the visual world. Robust non-
intrusive eye detection and tracking is, therefore, crucial for
the development of human-computer interaction, attentive
user interfaces, and understanding human affective states.

The unique geometric, photometric, and motion char-
acteristics of the eyes also provide important visual cues for
face detection, face recognition, and understanding facial
expressions. For example, one of the primary stages in the
Viola and Jones face detector is a Haar feature correspond-
ing to the eye region [147]. This demonstrates the
importance of the eyes for face detection. Additionally,
the distance between the eyes is often utilized for face
normalization, for the localization of other facial landmarks,
as well as in filtering out structural noise. Gaze estimation
and tracking are important for many applications including
human attention analysis, human cognitive state analysis,
gaze-based interactive user interfaces, gaze contingent

graphical displays, and human factors. A gaze tracker is a
device for analyzing eye movements. As the eye scans the
environment or fixates on particular objects in the scene, a
gaze tracker simultaneously localizes the eye position in the
image and tracks its movement over time to determine the
direction of gaze.

Research in eye detection and tracking focuses on two
areas: eye localization in the image and gaze estimation.
There are three aspects of eye detection. One is to detect
the existence of eyes, another is to accurately interpret eye
positions in the images, and finally, for video images, the
detected eyes are tracked from frame to frame. The eye
position is commonly measured using the pupil or iris
center. The detected eyes in the images are used to
estimate and track where a person is looking in 3D, or
alternatively, determining the 3D line of sight. This process
is called gaze estimation. In the subsequent discussion, we
will use the terms “eye detection” and “gaze tracking” to
differentiate them, where eye detection represents eye
localization in the image while gaze tracking means
estimating gaze paths.

This paper focuses on eye detection and gaze tracking in
video-based eye trackers (a.k.a. video-oculography). A
general overview of the components of eye and gaze trackers
is shown in Fig. 1. Video-oculography systems obtain
information from one or more cameras (Image data). The eye
location in the image is detected and is either used directly in
the application or subsequently tracked over frames. Based
on the information obtained from the eye region and possibly
head pose, the direction of gaze can be estimated. This
information is then used by gaze-based applications, e.g.,
moving the cursor on the screen. The outline of this paper
follows the components shown in Fig. 1 and is organized as
follows: In Section 2, we categorize eye models and review
eye detection techniques using the eyemodels. An eyemodel
canbeused todeterminegaze andmodels for gaze estimation
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are reviewed in Section 3. Applications of eye tracking are

versatile and a summary is presented in Section 4. We

summarize and conclude the paper in Section 5 with

additional perspectives on eye tracking.

2 EYE MODELS FOR EYE DETECTION

In eye detection, it is essential to identify a model of the eye

which is sufficiently expressive to take account of large

variability in the appearance and dynamics, while also

sufficiently constrained to be computationally efficient. The

appearance of eye regions shares commonalities across race,

illumination, and viewing angle, but, as illustrated in Fig. 2,

even for the same subject, a relatively small variation in

viewing angles can cause significant changes in appearance.

Despite active research, eye detection and tracking remains

a very challenging task due to several unique issues,

including occlusion of the eye by the eyelids, degree of

openness of the eye, variability in either size, reflectivity or

head pose, etc. Applications of computer vision, such as

people tracking, face detection, and various medical

applications, encounter occlusions and shape variations,

but rarely of the same order of magnitude and frequency as

seen with the eyes.
The eye image may be characterized by the intensity

distribution of the pupil(s), iris, and cornea, as well as by

their shapes. Ethnicity, viewing angle, head pose, color,

texture, light conditions, the position of the iris within the

eye socket, and the state of the eye (i.e., open/close) are

issues that heavily influence the appearance of the eye. The

intended application and available image data lead to

different prior eye models. The prior model representation

is often applied at different positions, orientations, and

scales to reject false candidates.
Being either rigid or deformable, the taxonomy of eye

detection techniques consists of shape-based [138], [47], [68],

[166], [86], [167], [71], [36], [37], [36], [111], [44], [57], [76],

[75], [78], [77], [138], [149], [120], [129] [130], appearance-based

[117], [102], [61], [82], [148], [35], and hybrid methods [67],

[46], [98], [158], [50], [169].

Shape-based methods can be subdivided into fixed shape
and deformable shape. The methods are constructed from
either the local point features of the eye and face region or
from their contours. The pertinent features (Section 2.2) may
be edges, eye corners, or points selected based on specific
filter responses. The limbus and pupil are commonly used
features. While the shape-based methods use a prior model
of eye shape and surrounding structures (Section 2.1), the
appearance-based methods rely on models built directly on
the appearance of the eye region (Section 2.3). The
appearance-based approach (the holistic approach) concep-
tually relates to template matching by constructing an
image patch model and performing eye detection through
model matching using a similarity measure. The appear-
ance-based methods can be further divided into intensity-
and subspace-based methods. The intensity-based methods
use the intensity or filtered intensity image directly as a
model, while the subspace methods assume that the
important information of the eye image is defined in a
lower dimensional subspace. Hybrid methods combine
feature, shape, and appearance approaches to exploit their
respective benefits (Section 2.4).

2.1 Shape-Based Approaches

The open eye is well described by its shape, which includes
the iris and pupil contours and the exterior shape of the eye
(eyelids). Categorization of shape-based approaches de-
pends on whether the prior model is simple elliptical or of a
more complex nature. Shape models usually constitute two
components: a geometric eye model and a similarity
measure. The parameters of the geometric model define
the allowable template deformations and contain para-
meters for rigid (similarity) transformations and parameters
for nonrigid template deformations. Deformable shape
models often rely on a generic deformable template by
which the eye is located by deforming the shape model
through an energy minimization. An important property of
these methods is their general ability to handle shape, scale,
and rotation changes.

2.1.1 Simple Elliptical Shape Models

Many eye tracking applications (e.g., gaze estimation
described in Section 3) only need the detection and tracking
of either the iris or the pupil. Depending on the viewing
angle, both the iris and pupil appear elliptical and
consequently can be modeled by five shape parameters.
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Fig. 1. Components of video-based eye detection and gaze tracking.

Fig. 2. The shape of the eye may change drastically when viewed from
different angles. For example, the eyelids may appear straight from one
view but highly curved from another. The iris contour also changes with
viewing angle. The dashed lines indicate when the eyelids appear
straight, while the solid yellow lines represent the major axis of the iris
ellipse.



Simple ellipse models consist of voting-based methods [79],
[84], [111], [118], [142], [165] and model fitting methods [24],
[47], [89]. Voting methods select features that support a
given hypothesis through a voting or accumulation process,
while model fitting approaches fit selected features to the
model (e.g., ellipse). Kim and Ramakrishna [79] and Perez
et al. [118] use thresholds of image intensities to estimate the
center of the pupil ellipse. Edge detection techniques are
used to extract the limbus or the pupil boundaries. Several
regions in the image may have a similar intensity profile to
the iris and pupil regions and thresholds are therefore only
applicable to constrained settings. The Hough transform can
be used effectively to extract the iris or the pupil [111], [165],
but requires explicit feature detection. Often a circularity
shape constraint is employed for efficiency reasons, and
consequently, the model only works on near-frontal faces.
The computational demand may be reduced by observing
the fact that the iris variability can be modeled with two
degrees of freedom corresponding to pan and tilt [165].

Kothari and Mitchell [84] propose an alternative voting
scheme that uses spatial and temporal information to detect
the location of the eyes. They use the gradient field,
knowing that the gradient along the iris boundary points
outward from the center of the iris. Heuristic rules and a
large temporal support are used to filter erroneous pupil
candidates. A similar voting scheme is suggested by Valenti
and Gevers [142]. Their method is based on isophote
curvatures in the intensity image and uses edge orientation
directly in the voting process. The approach relies on a prior
face model and anthropomorphic averages to limit false
positives. Since these models rely on maxima in feature
space, they may mistake other features for eyes (e.g.,
eyebrows or eye corners) when the number of features in
the eye region decreases. These methods are typically used
when a constrained search region is available.

Daugman [24] proposes a different approach for pupil
and iris detection. His technique uses optimization of the
curve integral of gradient magnitudes under an elliptical
shape model. This model does not take the contour
neighborhood into account and may therefore disregard
useful information. Witzner and Pece [47] also model the
iris as an ellipse, but the ellipse is locally fitted to the image
through an EM and RANSAC optimization scheme. They
propose a likelihood model that incorporates neighboring
information into the contour likelihood model and further-
more also avoids explicit feature detection (such as
strongest gray-level gradient and thresholds). This method
allows for multiple hypothesis tracking using a particle
filter. The aim is to use the method in cases where
thresholds are difficult to set robustly. Similarly Li et al.
[89] also address low-cost eye tracking and propose the
Starburst algorithm for detecting the iris through an
elliptical shape model. The algorithm locates the strongest
gray-level differences along rays and recursively sparkles
new rays at previously found maxima. The maximum
likelihood estimate of the pupil location is found through
RANSAC. While framed differently, the Starburst algorithm
is essentially an active shape model, like Cootes and Taylor
[18], but allowing for several features to be used along each
normal. Simple shape models are usually efficient and they
can model features such as iris and pupil well under many
viewing angles. However, the simple models are not

capable of capturing the variations and intervariations of
eye features such as eyelids, eye corners, and eyebrows.
High contrast images and thresholds are often used for
feature extraction.

2.1.2 Complex Shape Models

Complex shape-based methods allow, by definition, for
more detailed modeling of the eye shape [166], [33], [18],
[158], [86]. A prominent example is the deformable template
model proposed by Yuille et al. [166]. The deformable eye
model consists of two parabolas representing the eyelids
(modeled with 11 parameters) and a circle for the iris as
illustrated in Fig. 3. The model is fitted to the image through
an update rule, which incorporates energy functions for
valleys, edges, image peaks, and internal forces. Experi-
mental research finds that the initial position of the
template is critical. For instance, the algorithm fails to
detect the eye when initializing the template above the
eyebrow. Another problem lies in the complexity of
describing the templates. In addition, the template-based
approach may have difficulty with eye occlusions due to
either eyelid closure or nonfrontal head pose.

The method proposed by Yuille et al. [166] can be sped
up by exploiting the positions of the eye corners [86], [167],
[71]. This requires the presence of four corners of each eye:
the left and right corners of the eye as well as the corners
formed by the iris and the upper eyelid. The four corners are
present only if the iris is partially occluded by the upper
eyelid. When the eyes are wide open or only occluded by the
lower lid, the method fails as these corners do not exist.
Using a face model, the eye corner locations are estimated
using an eye corner template. The eye corner locations are
used to initialize a deformable template that may be used for
estimating eye shape. Similarly, Lam and Yan [86] extend
Yuille’s method for extracting eye features by using corner
locations inside the eye windows as initialization points.
They use a nonparametric “snake” method to determine the
outline of the head. The approximate positions of the eyes
are then found by anthropomorphic averages. The detected
eye corners are used to reduce the number of iterations in
the optimization of the deformable template.

Ivins and Porrill [68] describe a method for tracking the
three-dimensional motion of the iris in a video sequence. A
five-parameter scalable and deformable model is developed
to relate translation, rotation, scaling due to the changes in
eye-camera distance, and partial scaling due to the
expansion and contraction of the pupil. The method
requires high-quality and high-resolution images. Colombo
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Fig. 3. (a) Yuille et al. model [166], (b) eye detection results (courtesy of
Yuille and Hallinan).



and Del Bimbo [15] propose an eye model with six
deformation parameters consisting of two semiellipses that
share the same major axis. Coarse estimates of the left and
right eye locations and shapes are initially calculated. The
templates are then optimized similarly as in Yuille et al.’s
method. Combining the elliptical models with complex eye
models may speed up the localization and improve
accuracy [13], [25].

Deformable template-based methods seem logical and
are generally accurate and generic, but they suffer from
several limitations. They are:

1. computationally demanding,
2. may require high contrast images, and
3. usually need to be initialized close to the eye for

successful localization. For large head movements,
they consequently need other methods to provide a
good initialization.

4. Deformable contour models may face additionally
problems when using IR light as the boundary of
the sclera and the face may appear weak (see
Section 2.5.1).

5. They may not be able to handle face pose changes
and eye occlusions well.

While some deformable models, such as snake models,
allow for much shape variability, other deformable models
do not take into account the large variability of eye shapes.
Further research is needed to produce models that can cope
with large shape variations and even handle deformations
such as eye closure or inconsistent feature presence (i.e.,
features appearing and disappearing with changes in scale).

2.2 Feature-Based Shape Methods

Feature-based methods explore the characteristics of the
human eye to identify a set of distinctive features around
the eyes. The limbus, pupil (dark/bright pupil images), and
cornea reflections (see Section 2.5.1) are common features
used for eye localization. Compared to the holistic
approaches, feature-based methods aim to identify infor-
mative local features of the eye and face that are less
sensitive to variations in illumination and viewpoint.

2.2.1 Local Features by Intensity

The eye region contains several boundaries that may be
detected by gray-level differences. Herpers et al. [57] propose
a method that detects local features, such as edges and lines,
their orientation, lengths, and scale, and use a prior eye shape
model to direct local contour following. The method initially
locates a particular edge and then uses steerable Gabor filters
to track the edge of the iris or the corners of the eyes. Based on
the eyemodel and the features, a sequential search strategy is
initiated in order to locate the eye position, shape, and
corners.

Waite and Vincent [149] suggest a part-based model,
where a part, such as eye corners or eyelid, is called a
microstructure. They present a multilayer perception method
to extract face features by locating eyes within the face
image. Based on their work, Reinders et al. [120] propose
several improvements by using multiple specialized neural
networks. The trained neural network eye detector can
detect rotated or scaled eyes and can work under various

light conditions, although it is trained on frontal view face
images only. A detailed eye model is used subsequently to
refine the eye localization.

Bala et al. [4] propose a hybrid approach for eye
classification by using an evolutionary algorithm to identify
a subset of optimal features (mean intensities, Laplacian,
and entropy) to characterize the eye. Feng and Yuen [36],
[37] describe an eye model consisting of six landmarks (eye
corner points). Initially, the eye landmarks are located and
used to guide the localization of the iris and eye boundary.
The methods assume the availability of an eye window in
which the eye is the only object. The gray-scale face model
used for estimating the eye window is described in [37]. The
precise eye position is determined and verified by using the
variance projection function [36]. Variance projection func-
tions use the variance of intensities within a given eye
region to estimate the position and the size of the iris or the
positions of the eyelids. The variance projection function
can be shown to be orientation and scale invariant.
Experiments show that this method fails if the eye is closed
or partially occluded by hair or face orientation. It is
influenced by shadows and eye movements. In addition,
this technique may mistake eyebrows for eyes.

Instead of detecting eye features, Kawato and Ohya [75],
[76] detect the area between the two eyes. The between-eyes
area has dark parts on its left and right (eyes and eyebrows)
and comparably bright on the upper side (forehead) and
lower side (nose bridge). The area is argued to be common
for most people, viewable for a wide range of angles, and is
believed to be more stable and easier to detect than the eyes
themselves. They employ a circle-frequency filter to locate
candidate points. The spurious points are subsequently
eliminated from the candidates based on studying the
intensity distribution pattern around the point. To prevent
the eyebrows or other hair parts from being taken as eye-
like regions, this method is made more robust by construct-
ing a fixed “between-the-eyes” template to identify the true
one from within the candidates [78], [77]. Experiments show
that the algorithm may fail when hair covers the forehead or
when the subject wears black rimmed glasses.

2.2.2 Local Feature by Filter Responses

Filter responses enhance particular characteristics in the
image while suppressing others. A filter bank may therefore
enhance desired features of the image and, if appropriately
defined, deemphasize irrelevant features. The value of the
pixels in the image after filtering is related to the similarity
of the region to the filter. Regions in the image with
particular characteristics can therefore be extracted through
the similarity value. Sirohey et al. [129], [130] present
methods for eye detection using linear and nonlinear
filtering and face modeling. Edges of the eye’s sclera are
detected with four Gabor wavelets. A nonlinear filter is
constructed to detect the left and right eye corner
candidates. The eye corners are used to determine eye
regions for further analysis. Postprocessing steps are
employed to eliminate the spurious eye corner candidates.
A voting method is used to locate the edge of the iris. Since
the upper part of the iris may not be visible, the votes are
accumulated by summing edge pixels in a U-shaped
annular region whose radius approximates the radius of
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the iris. The annulus center receiving the most votes is
selected as the iris center (c.f., Section 2.1.1). To detect the
edge of the upper eyelid, all edge segments are examined in
the eye region and fitted to a third-degree polynomial.
Experiments show that the nonlinear filtering method
obtains better detection rates than traditional edge-based
linear filtering methods. High-quality images are essential
for this method. D’Orazio et al. [26] convolve an image with
a circular filter intended for gradient directions. The largest
value of the convolution provides a candidate center of the
iris circle in the image. Symmetry and distance heuristics
are used to locate both eyes.

2.2.3 Pupil Detection

When the eye is viewed sufficiently closely, the pupil is a
common and fairly reliable feature for eye detection. The
pupil and iris may be darker than their surroundings and
thresholds may be applied if the contrast is sufficiently
large. Yang et al. and Stiefelhagen et al. [162], [132], [133]
introduce an iterative threshold algorithm to locate the
pupils by looking for two dark regions that satisfy certain
anthropometric constraints using a skin-color model. Their
method is limited by the results of the skin-color model and
it will fail in the presence of other dark regions such as
eyebrows and shadows. Even applying the same thresholds
for both eyes seems likely to fail, especially considering
different face orientations or different light conditions.
Simple darkest pixel finding in search-windows centered
around the last found eye positions is used for tracking.
This scheme fails when there are other regions with similar
intensity or during eye closure. Dark region detection may
be more appropriate when using IR light than when using
visible light (see Section 2.5.1).

The majority of the previously described methods are
limited by not being able to model closed eyes. Tian et al.
[138] propose a method to track the eye and recover the eye
parameters through a dual state model (open/closed eyes)
to overcome this limitation. The method requires manual
initialization of the eye model. The eye’s inner corner and
eyelids are tracked using a modified Lucas-Kanade tracking
algorithm [94]. The edge and intensity of the iris are used to
extract the shape information of the eye using a Yuille et al.-
like [166] deformable template. The method, however,
requires high contrast images to detect and track eye
corners and obtain a good edge image.

The feature-based methods generally report good robust-
ness during illumination changes. For cameras with a wide
field of view, eye candidates must be filtered, since several
regions may be similar to the eyes. Pupil detection can be
made more effective through techniques relying on proper-
ties reminiscent of red eye images in flashphotography.More
details on these methods are given in Section 2.5.1. These
techniques work better indoors and even in the dark, but
might be more difficult to apply outdoors because the pupils
become smaller in bright environments and their intensities
vary with illumination changes. Eye tracking and detection
methods committed to using explicit feature detection (such
as edges) may not be robust due to the change in light, image
focus, and occlusion.

2.3 Appearance-Based Methods

While the shape of the eye is an important descriptor, so is its
appearance. The appearance-based methods are also known
as image template or holistic methods. The appearance-based
methods detect and track eyes directly, based on the
photometric appearance as characterized by the color
distribution or filter responses of the eye and its surround-
ings. These methods are independent of the actual object of
interest and are, in principle, capable of modeling other
objects besides eyes. The term appearancemay be understood
as one or several images (templates) defined pointwise with
appearance given by the changes of intensity or their filter
responses. The appearance-based approaches are carried out
either in the spatial or in a transformed domain. One of the
main benefits of performing eye detection (object detection in
general) in a transformed domain is to alleviate the effect of
illumination variation by preserving subbands that are less
sensitive to illumination and removing bands that are
sensitive to illumination change. Such techniques, however,
are in practice only tolerant tomoderate illumination change.

Appearance-based methods can be image template-
based, where both the spatial and tensity information of
each pixel are preserved or holistic in approach, where the
intensity distribution is characterized by ignoring the
spatial information. Image template-based methods have
inherent problems with scale and rotational changes. In
addition, single-template models are limited by not model-
ing interperson variations. Even changes in head pose and
eye movements within the same person can negatively
influence them.

Holistic approaches use statistical techniques to analyze
the intensity distribution of the entire object appearance and
derive an efficient representation, defined in a latent space,
to handle variations in appearance. Given a test image, the
similarity between the stored prototypes and the test view
is carried out in the latent space. The appearance-based
methods usually need to collect a large amount of training
data representing the eyes of different subjects, under
different face orientations and different illumination condi-
tions, but the underlying models are essentially indepen-
dent of the object class. Through the model of pixel
variations, a classifier or regression model can then be
constructed.

2.3.1 Intensity Domain

Tracking and detecting eyes through template-based
correlation maximization is simple and effective [42], [44].
Grauman et al. [42] use background subtraction and
anthropomorphic constraints to initialize a correlation-
based tracker. Hallinan [44] uses a model consisting of
two regions with uniform intensity. One region corresponds
to the dark iris region and the other to the white area of the
sclera. His approach constructs an idealized eye and uses
statistical measures to account for intensity variations in the
eye templates. Huang et al. [59] and Zhu et al. [168] detect
eyes using support vector machines. Polynomials of second-
degree kernels yield the best generalization performance.
The natural order in which facial features appear in frontal
face images motivated Samaria and Young [124] to employ
stochastic modeling, using hidden Markov models (HMMs)
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to holistically encode frontal facial information. The method
assumes size and location normalized images of frontal
faces. Only coarse-scale eye location is possible, and thus,
further processing is needed to precisely locate the eyes.

Subspace methods may improve detection efficiency and
accuracy of eyes using dimensionality reduction. The now
standard Eigen analysis (PCA on image vectors) of image
templates is capable of modeling variations in the training
data such as eyes [58], [102] in a low-dimensional space.
Pentland et al. [117] extend the eigenface technique to the
description and coding of facial features each called
eigeneyes, eigennoses, and eigenmouths. Eye detection is
accomplishedbyprojectinghypothetical imagepatches to the
low-dimensional eigeneye-space. Huang and Mariani [102]
employ eigeneyes for initial eyes localization.After obtaining
the initial eye position, the precise location of the iris is
determined by a circle with homogeneous dark intensity.

Image template methods inherently lack size invariance,
so either a constant face size or multiscale grid solutions
need to be employed. Since no direct model of the eye is
present in the image, these methods lack direct access to
specific eye parameters.

2.3.2 Filter Responses

The filter response methods for appearance models differ
from those for feature-based methods by using the response
values directly without making a selection of which features
to use. Huang and Wechsler [61] present a method to
represent eye images using wavelets in a Radial Basis
function classifier. They treat the eye detection as binomial
classification. Their experiments show improved perfor-
mance of the wavelet RBF classifier compared to using
intensity images. After eye region detection, they obtain
precise eye location information such as the center and radius
of the eyeballs by combining contour and region information.

The idealized eye features used by Hallinan [44] are
essentially Haar features. The Viola and Jones face detector
[147] learns the most discriminative Haar feature set for face
detection through Adaboost. Similar approaches are found
for eye detection [35], [50].Witzner andHansen [50] improve
eye detection by combining information from glints (IR) and
a Viola and Jones-like eye detector. Fasel et al. [35] use
Gentleboost for separately training face and eye models.
Using the same fundamental likelihood ratio detection
model, they initially locate the faces at multiple scales and
then the eyes. The main advantage of Haar features is their
computational efficiency. Although the Haar features are
easy to compute, their discriminating efficiency may be
limited, especially in the final stages of the cascade. For
complex patterns, the number of single weak classifiers may
be high, where each only deals with a marginal number of
negative cases.

The features and the selection procedure used in the
Viola and Jones detector are simple and intuitive. However,
the feature selection procedure uses brute-force search in a
predefined feature pool and requires a significant time and
memory consumption. In addition, Haar wavelet features
are mainly applicable for detecting eyes on frontal faces.
These limitations have inspired Wang et al. [152], [153] to
propose the recursive nonparametric discriminant feature for
face and eye detection using nonparametric discriminant

analysis on image patches and Adaboost for training. The
method overcomes the limitations of using Haar features.
They report good detection and pupil localization results
with a reduced number of discriminating features. The use
of more complex features comes at the price of decreased
runtime performance.

2.4 Hybrid Models

Hybrid methods aim at combining the advantages of
different eye models within a single system to overcome
their respective shortcomings.

2.4.1 Shape and Intensity

The combination of shape and appearance can, for example,
be achieved through part-based methods. Part-based
models attempt to build a general model by using a shape
model for the location of particular image patches. In this
way, a model of the individual part variances can be
modeled explicitly while the appearance is modeled
implicitly. Xie et al. [158], [159] suggest a part-based model
employing a prior shape model consisting of several
subcomponents. The eye region is initially detected through
thresholding and binary search and is then divided into
several parts: the whole eye region, two regions represent-
ing the sclera, the whole iris, and the occluded and
unoccluded portions of the iris. The irises and the eyelids
are modeled by circles and parabolas that have predeter-
mined parameters and intensity distribution. Matsumoto
and Zelinsky [98] use 2D image templates to represent facial
features located on a 3D facial model. The iris is located by
the circular Hough transform. The 2D image templates
associated with the 3D model are used for matching
purpose. The limitations of the part-based models are that
they do not model the image intensities directly in the
nonpatch areas and person specific models need to be built.

Other methods combine shape and appearance models
more explicitly. Ishikawa et al. [67] and Witzner et al. [46]
propose methods that combine shape and appearance
models through an Active Appearance Model (AAM) [17].
In these models, both shape and appearance are combined
into one generative model. The model can then be fitted to
the image by changing the parameters according to a
learned deformation model. Fig. 4 shows generated eyes
along the first principal directions of the model [45].

For facial feature detection, a modified AAM model is
suggested by Cristinacce and Cootes [22]. They use a local
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appearance (patch) model for each landmark point and a
global shape constraint for the spatial relationships. The
active appearancemodels and their variants are able tomodel
both shape and texture variations in a fairly low-dimensional
subspace. In principle, they should be able to handle
significant variations if trained on it. In practice, however,
they are strongly influenced by sidelight. The standard active
appearance model has relatively high computational de-
mands, but Ishikawa et al. [67] report a modified AAMwith
very high efficiency. Like deformable models, active appear-
ance models also need to be initialized close to the actual eye
position in order to obtain a good fit. This means that these
modelsmust rely on anothermechanism tohandle largehead
movements. The models also face difficulties modeling the
large eye appearance variability as the AAM methods are
based on linear decompositions.

2.4.2 Colors and Shape

The color distribution at the eye region is reliably different
from its surroundings. Despite this fact, color models of the
eye have received very little attention.1 Colors have mostly
been employed for skin-color modeling [5], [38], [162], [132],
[133], [76], [75], [78], [77], but there are also some attempts to
model the color distribution of eye regions [46], [48]. Sole use
of skin color may be prone to errors since skin colors can be
similar to other textures in the scene such as certain wood
types. Thus, prior eye location data are needed.Witzner et al.
[46] use a color model for a mean-shift color tracker [16] for
coarse-scale tracking and a gray-scale active appearance
model for precise localization. A color-based active appear-
ance model was attempted, but did not improve overall
accuracy. The limitations of this approach are that the two
models are separate and the active appearance model is
dependent on the results from the color tracker.

2.5 Other Methods

A few methods, such as symmetry operators (Section 2.5.2),
methods employing temporal information (Section 2.5.3),
and active light (e.g., IR, described in Section 2.5.1), are not
fully described by the previous model categories. Methods
employing IR light are ubiquitous not particular to any eye
model category.

2.5.1 Eye Detection under Active IR Illumination

Indoor video eye and gaze tracking systems utilize
infrared (IR) light in practically all stages (detection,
tracking, and gaze estimation) and its use dominates
current eye tracker developments. Methods relying on
visible light [89], [47], [166] are called passive light

approaches; otherwise, the methods are called active. Most
active light implementations use near IR light sources with
wavelength around 780-880 nm. These wavelengths can be
captured by many commercially available cameras and are
invisible to the human eye and therefore do not distract
the user or cause the pupil to contract. The amount of light
emitted by current systems, whether IR light or visible
light, is subject to international safety standards currently
under development.

If a light source is located close to the optical axis of the
camera (on-axis light), the captured image shows a bright
pupil since most of the light reflects back to the camera.
This effect is reminiscent to the red-eye effect when using a
flash in photography. When a light source is located away
from the optical axis of the camera (off-axis), the image
shows a dark pupil. The use of IR illumination is shown in
Fig. 5.

Several investigations have beenmade on the relationship
between the intensity of the bright pupil and parameters
such as head pose, gaze direction, and ethnic background [1],
[101], [110]. Their studies show that bright pupil responses
vary significantly between subjects and ethnic groups.
Changes in head position or head pose affect the apparent
brightness of the pupil. The brightest pupil responses occur
when the eye is turned away from the light source.

Several objects in the background may generate patterns
similar to the dark and bright pupil images, but the pupil
effects rarely occur simultaneously for objects other than
eyes. Eye models based on active remote IR illumination
may therefore use the difference of dark and bright pupil
images by switching between on and off-axis light sources,
and often need to be synchronized with the camera through
a video decoder [19], [31], [30], [32], [69], [107], [106], [53],
[115], [49], [164]. The major advantages of the image
difference methods are their robustness to global light
changes, simplicity, and efficiency.

Manually defined thresholds are straightforward and
fairly effective when differential lighting schemes are
employed [31], [69], but should be made adaptive to the
variations in pupil response. Ji and Yang [69] use the
Kullback-Leibler Information distance for setting the thresh-
old. Geometric and temporal criteria are used to filter blob
candidates. Larger and fast head movements cause larger
differences in the dark-bright pupil images. Methods to
compensate for these effects have been suggested, using
limited precision ultrasound to range the user’s face,mirrors,
and pan and tilt [134], [96]. To ensure that the eyes are within
the view of the camera, other methods employ several
cameras with pan and tilt [8], [116]. Tomono et al. [139], [34]
propose systems in which three CCD cameras and two near
IR light sources of different wavelengths are used. In
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Fig. 5. (a) Dark and (b) bright pupil images. (c) Bright pupil images with varying intensity. Notice the small reflection (often referred to as the glint) on
the cornea surface in the dark and bright pupil images.

1. This may be due to the common use of IR light.



addition, filters are used to control the captured information
according to its polarization. Two cameras (one with a
polarizing filter) are sensitive to only one wavelength while
the third is sensitive to the second wavelength, effectively
exploiting the dark and bright pupil images. Amir et al.
propose a hardware solution tomeet the requirements of fast
eye pupil candidate detection [2]. Reflection of IR light
sources on glasses is a generic and challenging research
problem, which has only been partially solved, e.g., through
pupil brightness stabilization techniques [30].

Many existing eye trackers are based on active light
schemes. These systems are particularly efficient indoors
and in dim environments, where ambient light is less of a
complication. Most of these methods require distinct
bright/dark pupil effects to work well. The success of such
a system strongly depends on the brightness and size of the
pupils. The brightness is affected by several factors,
including eye closure, eye occlusion due to the face rotation,
external illumination interferences, the distance of the
subject to the camera, and the intrinsic properties of the
eyes (i.e., the bright pupil reflection tends to be darker for
older people). Furthermore, thick eye glasses tend to
disturb the infrared light so much that the pupils appear
very weak and often with many reflections. Conditions
under which bright pupils are not necessarily reliable
include eye closure and oblique face orientations, the
presence of other bright objects (due to either eye glasses
glare or motion), and external illumination interference. As
discussed by Nguyen et al. [110] and shown in Fig. 5, even
minor off-plane head rotation for the same subject may
cause the bright pupil intensity to vary.

In order to overcome some of these challenges, Haro et al.
[53] propose pupil tracking based on combining eye
appearance, the bright pupil effect, and motion character-
istics so that pupils can be distinguished from other equally
bright objects in the scene. To do so, they verify the pupil
blobs using conventional appearance-based matching meth-
ods and the motion characteristics of the eyes. Their method
cannot track closed or occluded eyes or eyes with weak
pupil intensity due to disadvantageous ambient light levels.

Zhu et al. propose a real-time, robust method for eye
tracking under variable lighting conditions and face
orientations [169]. The bright pupil effect and appearance
of eyes (intensity distribution) are utilized simultaneously
for eye detection and tracking. Support Vector Machines
and mean-shift object tracking are employed for appear-
ance-based pupil detection and tracking, which is combined
with the bright pupil effect so that the pupil can be detected
and tracked under variable head position and illumination.
Witzner and Hammoud [49] propose a similar strategy by
formulating a likelihood model to be used in a particle filter.
They propose (either through mean-shift or directly) to
weigh the contributions of the image patch before construct-
ing the intensity distribution as to preserve some spatial
location while maintaining flexibility to spatial variations.

Droege et al. [27] compare the accuracy of several dark
pupil detection algorithms under relatively stable indoor
conditions. Their study revealed only marginal performance
differences. However, future work may show a larger
performance variation under more challenging conditions.

A further discussion on the purpose of IR and cameras
for gaze estimation is given in Section 3, where gaze
estimation is discussed.

2.5.2 Symmetry Operators

Symmetry is an important cue for human perception [91],
[92] and has been investigated for the purpose of automated
eye and face detection [121], [90], [126], [85], [81], [39]. A
well-known symmetry operator is Reisfeld and Yeshurun’s
generalized symmetry transform, which highlights regions of
high contrast and local radial symmetry [121]. Their
symmetry operator is based more on intuition than on
formal grounds. It involves analyzing the gradient in a
neighborhood for each point. Within this neighborhood, the
gradients at pairs of points symmetrically arranged about
the central pixel are used as evidence of radial symmetry
and a contribution to the symmetry measure of the central
point is computed. Rather than determining the contribu-
tion each pixel makes to the symmetry of pixels in its
neighborhood, Loy and Zelinsky [93] propose the Fast
Radial Symmetry Transform by considering the contribution
of a local neighborhood to a central pixel. Their approach
has a time complexity lower than those previously outlined.
A study on the comparative complexity of symmetry
operators was conducted by Loy and Zelinsky [93]. Gofman
and Kiryati [40] introduced a global optimization approach
similar to an evolutionary algorithm for the detection of
local reflection symmetry using 2D Gabor decomposition.
The use of symmetry operators for eye detection and
tracking is limited by the need for thresholds to perform
feature selection and a time complexity that scales with the
size of the radius of the feature.

2.5.3 Blinks and Motion

Blinks are involuntary and periodic and usually simulta-
neous in both eyes. Blinking is necessary in order to keep
the eyes moist, cool, and clean. These dynamic character-
istics may be exploited for eye detection. Recently, eye
motion and eye blinks have been used as a cue to detect
eyes and faces [5], [23], [42], [77], [138]. Grauman et al. [42]
locate eyes by assuming a fixed head position. Hypothetical
eye positions are extracted based on the thresholded
differences of successive frames. The most likely set of eye
regions is chosen through anthropomorphic heuristics. Bala
et al. [5] extract a face region based on a combination of
background subtraction and skin-color information by
analyzing luminance differences between successive images
in the face region in order to extract eye blinking. On the
successful localization of the eye regions, a dark circle-like
region (pupil) is searched within each eye area. The center
of the pupil is then taken as the center of the eye pattern and
stored for the following matching process. A similar work
was proposed by Crowley and Berard [23], where eye blink
detection is based on luminance differences in successive
images in small boundary areas of the eye.

Both of the above methods, however, assume static head,
at least between two successive images where blinks occur.
Kawato and Tetsutani [77] use eye blinks for initializing a
between-the-eyes template. Their approach uses the differ-
ences between successive images, which distinguishes
eyelid movements from head movement in order to detect
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blinks even while the head is moving. Blink detection may
be achieved through relatively simple measures of the eye
region (e.g., template correlation or the variation from the
intensity mean). However, fast blinking and head move-
ments make reliable blink detection challenging. Keeping
track of eye characteristics during blinks may be necessary,
thus, noneye features may be more reliable (e.g., using
between-the-eyes templates). Furthermore, eye detection
based on blinking is currently limited to detecting eyes in
near-frontal faces. One possible solution to detecting blink
during head movements is to track the motion of a few
rigid feature points on the face, and subtract their motion
from that of the eye motion to minimize the effect of the
head movement.

2.6 Discussion

In this section, we summarize different techniques for eye
detection and tracking. Based on their geometric and
photometric properties, the techniques can be classified as
shape-based, feature-based, appearance-based, and hybrid.
Alternative techniques may exploit motion and symmetry.
Active IR illumination may be employed by various
techniques. Each technique has its advantages and limita-
tions, but the optimal performance of any technique also
implies that its particular optimal conditions with regard to
image quality are met. These conditions relate to illumina-
tion, head pose, ethnicity, and degree of eye occlusion. For
example, the techniques based on active IR illumination
work well indoors, while techniques based on shape and
appearances can work reasonably well both indoors and
outdoors. The existing methods are to a large extent only
applicable to near frontal view angles, fully open eyes, and
under relatively constrained light conditions. In addition,
the eye appearance may change significantly with changes
in scale. Features defined on one scale do not exist or have
changed dramatically in another scale. It is therefore
challenging to apply a single-scale eye model to multiple
scales. It would therefore be instructive to determine
distributions of features and feature responses for the class
of eyes, as in natural image statistical approaches, so as to
be better able to control for changes in eye appearance over
scale. It remains a challenge to detect and track the eyes due
to wide, complex variations in the eye image properties due
to ethnicity, illumination conditions, scale, head pose, and
eye state (open/closing eyes). Recently, patch-based meth-
ods for object detection, recognition, and categorization
have received significant attention as they show promising
results. As a feature-based method, they tend to be more
discriminative, more robust to face pose, and illumination
variant than the holistic eye detection approaches.

Fig. 6 summarizes and qualitatively compares various
eye detection methods presented in this section. The table
categorizes techniques and summarizes their relative
performance under various image conditions. The intention
is that readers can determine suitable techniques for their
particular applications.

Before concluding this section, we also want to discuss a
few related issues: 1) In order to develop effective eye
detection techniques, the training and testing of eye data
are essential. Various eye and face databases such as BioID
and Yale [123] can be used to validate eye detection

techniques but others are also available [14]. 2) The eye
image requirements differ among the methods discussed in
this section. While hardware choice plays an important
role, we have so far avoided placing too much emphasis on
these issues, but rather chosen to describe hardware-
independent eye detection techniques. Some applications
use fairly high-quality cameras with variable lenses and
sometimes with pan and tilt heads in order to perform
accurate and robust eye detection under conditions of large
head movements. These applications incur high cost. On
the other hand, some applications aim to use low-quality
consumer cameras to minimize cost to the consumer. Low-
cost solutions with a standard lens may require the camera
to be close to the eye and the head to be relatively
stationary. 3) The detection techniques discussed in this
section are specifically developed for eye detection, but
some techniques can easily be extended to detect and track
other objects. While the simple ellipse-based methods can
be used to detect and track any circular or elliptical object,
the complex deformable shape models can be used to
detect and track complex objects like the hand and human
organs in medical imaging. The appearance-based methods
of both intensity and subspace domains have been widely
applied to face detection, animal detection (e.g., horses),
and vehicles. The local feature-based methods have been
applied to the detection and tracking of other facial
features including mouth corners and nose corners.

3 GAZE ESTIMATION

The primary task of gaze trackers is to determine gaze. Gaze
should in this context be understood as either the gaze
direction or the point of regard (PoR).2 Gaze modeling
consequently focuses on the relations between the image
data and the point of regard/gaze direction.

Basic categorizations of eye movements include saccades
and fixations. A fixation occurs when the gaze rests for
some minimum amount of time on a small predefined area,
usually within 2-5 degrees of central vision, usually for at
least 80-100 ms. Saccades are fast, jump-like rotations of the
eye between two fixated areas, bringing objects of interest
into the central few degrees of the visual field. Smooth
pursuit movements are a further categorization that de-
scribe the eye following a moving object. Saccadic eye
movements have been extensively investigated for a wide
range of applications including the detection of fatigue/
drowsiness, human vision studies, diagnosing neurological
disorders, and sleep studies [28]. Fixations are often
analyzed in vision science, neuroscience, and psychological
studies to determine a person’s focus and level of attention.
Properties of saccades and fixations may provide diagnostic
data for the identification of neurological, vision or sleep
disorders. Eye positions are restricted to a subset of
anatomically possible positions described in Listing’s and
Donder’s laws [140]. According to Donder’s law, gaze
direction determines the eye orientation uniquely and the
orientation is furthermore independent of the previous
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positions of the eye. Listing’s law describes the valid subset
of eye positions as those which can be reached from the so-
called primary position through a single rotation about an
axis perpendicular to the gaze direction.

When light falls on the curved cornea of the eye (see Fig. 7),
some of it is reflected back in a narrow ray pointing directly
toward the light source. Several reflections occur on the
boundary between the lens and the cornea, producing the so-
called Purkinje images [28]. The first Purkinje image or corneal
reflection is often referred to as the glint.

To exemplify the importance of light sources for gaze
estimation, consider looking directly at a light source. The
distance between the glint and the center of the pupil is
small. However, looking away increases this distance. This
implies that if the sole purpose of the gaze tracker is to
determine whether a person is looking at a specific light
source, all that is needed is to make a simple classification
(threshold) on the length of the pupil-glint vector. This also
illustrates that high-accuracy gaze estimation may not be
necessary for all applications.

People move their heads when using a gaze tracker. A
person’s gaze is determined by the head pose (position and
orientation) and eyeball orientation. A person can change
gaze direction by rotating the eyeball (and consequently also

the pupil) while keeping the head stationary. Similarly, a
person can change gaze direction by moving the head while
keeping the eye stationary relative to the head. Usually, a
person moves the head to a comfortable position before
orienting the eye. Head pose, therefore, determines the
coarse-scale gaze direction while the eyeball orientation
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Fig. 7. Light is reflected on the eye and results in various Purkinje
images (first, second, etc.).

Fig. 6. Eye Detection models: The “Method Type” column corresponds to the method category. The “Info” column refers to the information that can
be obtained directly from the model: Pupil (P), Iris (I), Corners (C), Entire Eye (E), Between-the-Eyes (BE). The “Light” column indicates under which
light conditions the method operates: Indoor(I), Outdoor (O), or under IR light (IR). The “Invariance” column considers the robustness to scale (S),
head pose (H) changes, and to occlusion (O) due to the eye blinks or closed eyes. The “requirements” column includes high-resolution (H) eye
images, High contrast (C), Temporal (T) dependencies, Good Initialization (G). Superscript � indicates robustness to some degree and � indicates
robustness to a minor degree. Methods may consequently possess properties not reported here (e.g., capable of using IR in both indoor and outdoor
conditions). Values given in parentheses are optional.



determines the local and detailed gaze direction. Gaze
estimation therefore needs to (either directly or implicitly)
model both head pose and pupil/iris position. The problem
of ensuring head pose invariance in gaze trackers is
important and constitutes a challenging research topic. Head
pose invariance may be obtained through various hardware
configurations and prior knowledge of the geometry and
cameras. Information on head pose is rarely used directly in
the gaze models. It is more common to incorporate it
implicitly either through the mapping function (regression-
based method described in Section 3.1) or through the use of
reflections on the cornea (3D model-based approaches
described in Section 3.2).

All gaze estimation methods need to determine a set of
parameters through calibration. We clarify the calibration
procedures into the following:

1. camera-calibration: determining intrinsic camera
parameters;

2. geometric-calibration: determining relative locations
and orientations of different units in the setup such
as camera, light sources, and monitor;

3. personal calibration: estimating cornea curvature,
angular offset between visual and optical axes; and

4. gazing mapping calibration: determining parameters of
the eye-gaze mapping functions.

Some parameters may be estimated for each session by
letting the user look at a set of predefined points on the
monitor; others need only be calculated once (e.g., human
specific parameters) and yet other parameters are estimated
prior to use (e.g., camera parameters, geometric and
physical parameters such as angles and location between
camera and monitor). A system where the camera para-
meters and geometry are known is termed fully calibrated.
This classification will be used to differentiate the assump-
tions made in various methods.

Desirable attributes in a gaze tracker include minimal
intrusiveness and obstruction, allowing for free head
movements while maintaining high accuracy, easy and
flexible setup, and low cost. A more detailed description of
eye tracker preferences is given by Scott and Findlay [125].
Only a few years ago, the standard eye tracker was
intrusive, requiring, for example, a reflective white dot
placed directly onto the eye or attaching a number of
electrodes around the eye [63]. Use of headrests, bite-bars,
or making the eye tracker head mounted were common
approaches to accommodate significant head movements.
Head movements are typically tracked using either a
magnetic head tracker, another camera, or additional
illuminators. Head and eye information is fused to produce
gaze estimates [122], [151].

Compared to the early systems, video-based gaze
trackers have now evolved to the point where the user is
allowed much more freedom of head movements while
maintaining good accuracy (0.5 degree or better). As
reviewed in this section, recent studies show that using
specific reflections from the cornea allows gaze trackers to
be easily and cheaply produced, and enhances stable and
head pose invariant gaze estimation. However, commercial
eye trackers remain regrettably expensive.

Current gaze estimation methods are mostly feature-
based (described in the subsequent section), but we will
later review others such as appearance-based methods.

3.1 Feature-Based Gaze Estimation

Gaze estimation methods using extracted local features
such as contours, eye corners, and reflections from the eye
image are called Feature-based methods. The primary
reasons for using feature-based methods are that the pupil
and glints (under active light models) are relatively easy to
find and that these features can, as indicated above, be
formally related to gaze. This encompasses aspects related
to the geometry of the system as well as to eye physiology.
For these reasons, they have become the most popular
approach for gaze estimation.

Two types of feature-based approaches exist: the model-
based (geometric) and the interpolation-based (regression-
based). The interpolation-based methods [11], [31], [46],
[47], [69], [104], [157] that assume the mapping from image
features to gaze coordinates (2D or 3D) have a particular
parametric form such as a polynomial [104], [131] or a
nonparametric form such as in neural networks [69], [45].
These methods avoid explicitly calculating the intersection
between the gaze direction and gazed object. The 3D model-
based methods, on the other hand, directly compute the gaze
direction from the eye features based on a geometric model
of the eye. The point of gaze is estimated by intersecting the
gaze direction with the object being viewed [113], [144],
[151], [100], [8].

In the following sections, we first describe regression-
based methods (Section 3.1), and follow with a review of the
3D model-based approaches in Section 3.2, which are
further subdivided based on their hardware requirements.
A discussion of gaze estimation methods and a table
summarizing the models are given in Section 3.3.

3.1.1 2D Regression-Based Gaze Estimation

Early gaze tracking systems employed a single IR light
source to improve contrast and obtain stable gaze estima-
tion results. The erroneous assumption implicitly made by
many single-glint methods is that the corneal surface is a
perfect mirror, so, if the head is kept fixed even when the
cornea surface is rotated, the glint remains stationary. The
glint is therefore considered the origin of a glint-centered
coordinate system. The difference between the glint and the
pupil center is in this view used to estimate gaze direction.
A mapping from the pupil-glint difference vector to the
screen is often conducted.

As early as 1974, Merchant et al. [99] proposed a real-
time video-based eye tracker employing IR light (dark-
bright pupil images) using a single camera. A collection of
mirrors and galvanometers allows for head movements.
They use the pupil-glint vector and a linear mapping to
estimate the point of regard (POS) and notice nonlinearities
with large pupil-glint angles. They compensate for these
using polynomial regression. Similarly, and much later,
Morimoto et al. [103] also used a single camera and
utilized one second order polynomial for the x and
y directions separately to represent a direct mapping of
the glint-pupil difference vector to the point of regard.
Unfortunately, the calibration mapping decays as the head
moves away from its original position [104]. A similar
approach, but without using glint information, is described
by Stampe [131]. He additionally proposes polynomial
functions to model the correlation between pupil centers.
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White et al. [156] assume a flat cornea surface and

propose a polynomial regression method for PoR estimation

in a similar way as Morimoto et al. and Merchant et al.

[103], [99]. They additionally propose using a first order

linear regression to account for gaze imprecision resulting

from lateral head movements. During calibration, a set of

four calibration mappings for different head locations is

estimated by exploiting spatial symmetry. Head positions

are accurately located by creating a second glint using

another IR light source. Using two light sources as points of

reference and exploiting spatial symmetries, a single static

calibration can be adjusted as the head moves. They

mention that, in practice, higher order polynomial functions

do not provide better calibration and argue that gaze

estimation can be done independently of eye rotation and

head translation—a fact that was later generalized and

proved to be true [43], [128].
Neural networks and their variants are popular tools for

regression tasks. Ji and Zhu [70] suggest a generalized

regression neural network-based method in which the pupil

parameters, pupil-glint displacement, orientation and ratio

of the major and minor axes of the pupil ellipse, and glint

coordinates are used to map the screen coordinates. The

intention and advantage of the method is that no calibration

is necessary after initial training. This method only

improves head movement moderately. It is reported that

the method handles head movements while still producing

accuracies of about 5 degree. Zhu et al. [171] suggest the use

of Support Vector Machines to describe the mapping from

the pupil and single glint to screen coordinates.
Most gaze estimation methods do not offer a way of

knowing when the current inputs are no longer compatible

with the calibration data. Witzner et al. [45], [46] use

Gaussian process interpolation to exploit the covariance of

the training data and new inputs as an indicator of when

gaze predictions deviate from the inputs of the calibration

data (e.g., a head movement) and to make predictions.

Two-dimensional interpolation methods do not handle
head pose changes well. Helmets may be of some help,
but, contrary to the intentions behind mounting the eye
trackers on the head, they may still move after calibration
and thus influence accuracy. Kolakowski and Pelz
propose a set of heuristic rules for adjusting minor
slippage of head mounts [83].

Using a single camera, the 2D regression methods model
the optical properties, geometry, and the eye physiology
indirectly and may therefore be considered as approximate
models, which may not strictly guarantee head pose
invariance. They are, however, simple to implement, do
not require camera or geometric calibration, and may still
provide good results under conditions of small head
movements. More recent 2D regression-based methods
attempt to improve performance under larger head move-
ments through compensation, or by adding additional
cameras [171], [170]. Zhu and Ji introduce a 2D regression-
based method [170] using two cameras to estimate 3D head
position. They use the 3D eye position to modify the
regression function to compensate for head movements.
However, contrary to other regression methods, the
method of Zhu and Ji [170] needs a prior stereo calibration
of the cameras.

3.1.2 3D Model-Based Gaze Estimation

Three-dimensinoal model-based approaches model the
common physical structures of the human eye geometri-
cally so as to calculate a 3D gaze direction vector. By
defining the gaze direction vector and integrating it with
information about the objects in the scene, the point of regard
is computed as the intersection of the gaze direction vector
with the nearest object of the scene (e.g., the monitor).

Fig. 8 shows the structures of the eye used in gaze
tracking. The eyeball is approximately spherical, with a
radius of about 12-13 mm. The parts of the eye that are
visible from the outside are the pupil, the iris (colored
part), and the sclera (the white part of the eye). The
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boundary between the iris and the sclera is called the
limbus. The pupil is the aperture located in the center of
the iris and it regulates the amount of light entering the
eye by continuously expanding and contracting. The
cornea is a protective transparent membrane on the surface
of the eye in front of the iris with a radius of about
7.8 mm [43]. Behind the iris is the biconvex multilayered
structured lens. The shape of the lens changes so as to
focus objects at various distances on the retina, which is a
layer coating the back of the eye containing photosensitive
cells. The fovea is a small region in the center of the retina,
in line with the central 5 or so degrees of vision. The
fovea contains the majority of color sensitive cells, and
these cells are more tightly packed and more differentially
connected to the optic nerve than cells in peripheral areas
of the retina. The fovea is responsible for the perception
of fine details. Gaze direction is either modeled as the
optical axis or as the visual axis. The optical axis (a.k.a.
line of gaze (LoG)) is the line connecting the pupil center,
cornea center, and the eyeball center. The line connecting
the fovea and the center of the cornea is known as visual
axis (a.k.a. the line of sight (LoS)). The line of sight is
assumed to be the true direction of gaze. The visual and
optical axes intersect at the cornea center (a.k.a. nodal
point of the eye) with subject-dependent angular offsets.
In a typical adult, the fovea is located about 4-5 degrees
horizontally and about 1.5 degrees below the point of the
optic axis and the retina and may vary up to 3 degrees
between subjects [12], [43]. Knowledge of the 3D location
of the eyeball center or the corneal center is a direct
indicator for the head location in 3D space and may
obviate explicit head location models. The estimation of
these points is therefore the cornerstone of most head
pose invariant models.

The parameters used for geometric modeling of the eye
can be divided into extrinsic, fixed eye intrinsic, and variable
categories [8]. The extrinsic parameters model 3D eye
position (center of the eyeball) and optical axis. The fixed
eye intrinsic parameters include cornea radii, angles between
visual and optical axes, refraction parameters (e.g., in
aqueous humor), iris radius, and the distance between the
pupil center and cornea center. They remain fixed during a
tracking session, but may change slowly over the years.
Parameters such as the visual axis, refraction indexes,3 the
distance between the cornea center and pupil center, and
the angles of the visual axis and optical axis are subject-
specific, some of which are difficult to measure directly. The
variable parameters change the shape of the eye model and
include the pupil radius.

Most 3D model-based (or geometric) approaches [151],
[144], [145], [156], [43], [105], [100], [112], [109], [128], [127]
rely on metric information and thus require camera
calibration and a global geometric model (external to the
eye) of light sources, camera and monitor position, and
orientation. Exceptions to this are methods that use
projective invariants [164], [20] or simplifying assumptions

[47]. It is out of the scope of this paper to provide
mathematical details of these methods, but most follow
the same fundamental principles. Euclidean relations such
as angles and lengths can be employed through calibrated
cameras. The general approach is to estimate the center of
the cornea, and thus, the optical axis in 3D. Points on the
visual axis are not directly measurable from the image. By
showing at least a single point on the screen, the offset to
the visual can be estimated. The intersection of the screen
(known in fully calibrated setups) and the visual axis yield
the point of regard.

Model-based approaches typically estimate gaze direc-
tion by assuming spherical eyeball and cornea surfaces.
Only a few methods model these structures as ellipsoid [8].
The spherical models of the cornea may not be suitable for
modeling the boundary area of the cornea and often lead to
greater inaccuracies when the user moves the eye to the
extremities of the display (e.g., glints move on a non-
spherical surface). Both the optical and visual axes intersect
at the cornea center making the cornea center an important
parameter to estimate in a geometric approach.

With a known cornea curvature, it is possible to find the
cornea center using one camera and two light sources.
However, estimation of the cornea center requires at least
two light sources and two cameras when the eye-specific
parameters are unknown [128]. Instances of applying these
results in a fully calibrated setup have been proposed by
several authors [105], [127], [43]. Estimation of the angles
between the optical and visual axes is also needed to find
the direction of gaze, requiring at least a single point of
calibration [127]. For simplicity, anthropomorphic averages
for the cornea curvature are frequently used [112], [51].

The following sections describe methods and formal
relations of point features such as center of pupil with
varying geometry and cameras. Starting with one light
source and a single camera, each subsequent section
reviews models with increasing number of light sources
and cameras. Calculating the importance of refraction
requires additional work and quantification and will only
be quantified when applicable.

B1: Single camera and single light. Due to their
simplicity and effectiveness, single camera and single glint
approaches were quite common in early gaze tracker
implementations. Regression-based methods (Section 3.1)
mostly employ a single camera and a single light source;
but for the remainder of this section, attention is only
given to the geometric approach, i.e., the 3D model-based
approach. A few geometric methods use a single light
source [115], [43]. Ohno et al. [115] describe a model-based
approach using a single calibrated camera and single glint.
They use population averages for the cornea curvature,
distance between pupil center and the center of cornea, as
well as a constant refraction index (1.336) to estimate the
optical axis. Later, Ohno argues that personal calibration
can be reduced to two fixation points using two light
sources and a single camera [114].

Shih et al. [128] prove that the use of a single glint and
the pupil center cannot lead to head pose invariant gaze
estimation. Their results explain the need for additional
constraints such as additional cameras to compensate for
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3. Refraction occurs when light passes from one transparent medium to
another; it changes speed and bends. The degree of bending depends on the
refractive index of the mediums and the angle between the light ray and the
normal to the surface separating the two mediums. The consequences of
refraction are a nonlinear displacement of the observed location of features
such as the pupil and may, thus, influence the estimation of the 3D location.



head pose changes in single glint systems, using population
averages or a spherical eyeball model to obtain the optical
axis [115].

Guestrin and Eizenman [43] generalize these results for
calibrated systems, showing that the gaze direction can be
determined by using only a single glint given the distance
between the eye and the monitor or keeping the head fixed.
Much of the theory behind geometric models using fully
calibrated setups has been formalized by Guestrin and
Eizenman [43]. Their model covers a variable number of
light sources and cameras, human specific parameters, light
source positions, and camera parameters. The model,
however, is limited by requiring euclidean information
(e.g., fully calibrated setups).

The majority of the results of Guestrin and Eizenman [43]
regard point sources such as center of the pupil, center of
glint etc. Villanueva and Cabeza [146] show that, in fully
calibrated setups, the ellipse information of the pupil
(disregarding refraction) can be used to reduce the number
of light sources to one and still provide head pose
invariance. Consequently, there may be several unrevealed
results using pupil or iris contours.

A common misconception of single glint systems is that
the pupil-glint difference vector remains constant when the
eye or the head moves. The glint will clearly change
location when the head moves, but it is less obvious that
the glint shifts position when changing gaze direction. The
eye rotates around the eyeball center and not around the
cornea center. This means that a change of gaze direction
also moves the cornea in space, and thus, the glint will not
remain fixed. Second, minor changes of glint position may
also be due to a nonspherical cornea. The influence of small
head movements on the difference vector is indeed
minimal. The technique is used somewhat successfully in
gaze trackers, where the camera is fixed relative to the eye
to compensate for small amounts of slippage. However,
larger head movements cause significant changes in the
difference vector.

B2: Single camera and multiple lights. Adding light
sources to the setup is a small step from the previous
methods, but, as it turns out, a giant leap for obtaining head
pose invariance. Shih et al. [128] and Guestrin and Eizen-
man [43] show that the cornea center and, in turn, also gaze
direction can be estimated in fully calibrated settings using
two or more light sources and known cornea curvature.
Guestrin and Eizenman’s system4 allows for only small
head movements, but it appears that their well-founded
approach would allow for greater head movements with a
higher resolution camera [43]. They also make simplifying
assumptions on refraction in the aqueous humor. Several
authors follow this approach with minor adjustments to the
model [100], [144], [127], [55]. In fact, only one calibration
point is needed to estimate the cornea curvature, cornea
center, and visual axis (single angle) when using two light
sources [146]. These methods are usually accurate, but
ongoing collection and maintenance of geometric and
camera calibrations usually entails errors.

The gaze tracking systems relying on this approach are
consequently inflexible when attempting to change the
geometry of light sources, camera (e.g., zoom), and screen

to particular needs. They may also result in heavy systems.
This type of approach seems to be the foundation of several
commercial systems.

Contrary to the previous methods, Yoo and Chung [164]
describe a method which is capable of determining the
point of regard based solely on the availability of light
source positions information (e.g., no camera calibration)
by exploiting the cross-ratio of four points (light sources) in
projective space. Yoo and Chung [164] use two cameras
and four IR light sources placed around the screen to
project these corners on the corneal surface, but only one
camera is needed for gaze estimation. When looking at the
screen, the pupil center should ideally be within the four
glint areas. A fifth IR light emitter is placed on axis to
produce bright pupil images and to be able to account for
nonlinear displacements of the glints. In order to account
for the nonlinear displacements of the projected glints on
the cornea, they learn four �i parameters, initially asking
the user to look at the light sources. Coutinho and
Morimoto [20] extend the model of Yoo and Chung [164]
by using the LoS-LoG offset as an argument for learning a
constant on-screen offset. Based on this, they argue that a
simpler model can be made by learning a single � value
rather than four different values as originally proposed.
They show significant accuracy improvements compared to
the original paper, provided that the user does not change
their distance to the camera and monitor. The method is not
robust to depth-scale changes since a constant LoS-LoG
offset does not yield a constant offset on the screen when
changing the distance of the eye to the screen. The model of
cross-ratios is also an approximation since the pupil is
located on a different plane from that determined by the
(corrected) corneal reflections. The advantage of the
method is that it does not require a calibrated camera. It
only requires light source position data relative to the
screen. One limitation is that the light sources should be
placed right on the corners of the screen—a task which is
not entirely trivial. In practice, the method is highly
sensitive to the individual eye, and formal analysis of the
method is presented by Kang et al. [72].

The intersection of gaze direction vectors from two eyes
provides information about the 3D point of gaze and has
recently motivated researchers to propose methods remi-
niscent of stereo vision for 3D PoR estimation [29],[56].
Methods for 3D PoR seem to obtain fairly reliable results,
but are still in an early stage of development.

In general, multiple light sources are faced with
increased chance that one of the glints might disappear.
There may therefore need to be physical restraints on the
actual head locations in order to ensure that all glints
appear in the image.

B3: Multiple cameras and multiple lights. Fixed single
camera systems are faced with the dilemma of trading head
movements against high-resolution eye images. A large field
of view is required to allow for free head motion, but a
limited field of view is needed to capture sufficiently high-
resolution eye images to provide reliable gaze estimates.
Multiple cameras are utilized to achieve these goals either
throughwide-angle lens cameras or amovable narrow-angle
lens cameras. Multiple cameras also allow for 3D eye
modeling. The first remote eye tracking systems appearing
in the literature that use multiple cameras, either have
separate cameras for each eye or use one camera for head
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4. A particular instance of their model with a single camera and two light
sources.



location tracking to compensate for head pose changes and
another camera for close-up images of the eye [70], [171],
[151]. Whenever the eye moves outside the range of the
narrow field of view camera, some systems mechanically
reorient the narrow field of view camera toward the new eye
position using a pan and tilt head [135], [113]. Acquisition
time of pan and tilt cameras can be improved by replacing
them with mirrors [112]. Only recently have the geometric
constraints known from stereo been used effectively [8], [11],
[113], [128].

1. Head pose compensation using multiple cameras. Regres-
sion-based gaze estimation methods are sensitive to
head pose changes. A direct solution to compensate
for minor head movement is to use one camera for
observing the head orientation and another camera
for eye images and then combine the information
[70], [73], [171]. The methods are more complex due
to the need for additional geometric calibrations and
it is not obvious how to fuse observed head
orientations and regression parameters into gaze
coordinates. Applying multiple cameras in this way
does not use the available stereo constraints effec-
tively, since eye information is only coarsely defined
in one of the cameras. In the following section, we
describe methods where multiple cameras are used
in a more common stereo setup.

2. Stereo and Active Cameras: Stereo makes 3D eye
modeling directly applicable [8], [11], [80], [113],
[127]. In fact, it can be shown that information of the
optical axis can be estimated in fully calibrated stereo
systems without any session calibration [128] and
only one calibration point is needed when also
modeling the visual axis (one angle) [127]. A recent
implementation of this is suggested by Zhu and Ji
[170]. Differently from Shih’s method, their method
can estimate gaze when the optical axis of the eye
intersects or is close to the line connecting the nodal
points of the two cameras.

Tomono et al. [139] discuss a setup consisting of three
cameras and two light sources and mirrors. Even though
stereo is used, they employ a simplified face model (rather
than modeling the center of the eye) together with an eye
model to estimate LoS.

Beymer and Flickner present an elaborate system model-
ing the eye in 3D and estimate LoS with four cameras: two
stereo wide-angle cameras and two stereo narrow field of
view cameras [8]. A separate stereo system is used to detect
the face in 3D and to direct galvanometermotors to orient the
narrow field of view cameras. They use dark-bright pupil
principle, but do not exploit information about the light
sources. Inspired by Beymer and Flickner, Brolly and
Mulligan [11] use a mirror galvanometer system for rapid
headmovement tracking, but onlyusing a single narrow field
camera. Rather than explicitly modeling the eye and the
mappings from the stereo and the galvo-coordinates, they
propose learning the polynomial regression model. In spite
of a lower resolution of the eye images as well as a
simpler modeling problem, they obtain accuracies similar
to those obtained by Beymer and Flickner [8].

Combinations of stereo systems with pan-tilt have been
suggested [135], [113]. Talmi and Liu [135] suggest combin-
ing a stereo system for face modeling with a pan-tilt for

detailed eye images [135]. Ohno and Mukawa utilize three
cameras, two fixed stereo wide-angle cameras and a
narrow-angled camera mounted on a pan-tilt unit [113].
Their main result, however, is that two calibration points
are necessary in order to estimate the visual axis.

Noureddin et al. [112] suggest a two-camera solution,
where a fixed wide-angle camera uses a rotating mirror to
direct the orientation of the narrow-angled camera. They
show that the rotating mirror speeds up acquisition in
comparison to a pan-tilt setup.

Multiple camera solutions have also been successfully
applied with head mounts, where one or more cameras are
oriented toward the user and one pointing away. The
camera that is pointing away is synchronized with the gaze
direction [9]. The use of multiple cameras seems to produce
robust results, but requires stereo calibration. They are
faced with the usual problems of stereo (e.g., point
matching, occlusion, and more data to process).

3.2 Other Methods

IR light and feature extraction are important for most
current gaze estimation methods. This section reviews
methods that follow another path. These alternative
approaches include use of visible light [15], [150], [157],
[45], the appearance-based approaches [6], [160], [157], and
methods that only use the reflections from the layers of the
eye avoiding extraction of pupil and iris features (dual-
purkinje methods [21], [108]).

3.2.1 Appearance-Based Methods

Feature-based methods require detection of pupils and
glints, but the extracted features may be prone to errors.
Besides, there may be latent features conveying information
about gaze that is not modeled by the chosen features.
Similarly to the appearance models of the eyes, appearance-
based models for gaze estimation do not explicitly extract
features, but rather use the image contents as input with the
intention of mapping these directly to screen coordinates
(PoR). Consequently, the hope is that the underlying
function for estimating the point of regard, relevant features,
and personal variation can be extracted implicitly, without
requirements of scene geometry and camera calibration. One
such approach employs cropped images of eyes to train
regression functions, as seen inmultilayer network [6], [133],
[160] or Gaussian processes [157] or manifold learning [136].
Images are high-dimensional representations of data, which
are defined on a lower dimensional manifold. Tan et al.
employ Locally Linear Embedding to learn the eye image
manifold [136]. They use a significantly lower number of
calibration points while improving accuracy as compared to
Baluja and Pomerleau [6]. Williams et al. [157] use a sparse
Gaussian process interpolation method on filtered visible
spectrum images, and consequently, obtain gaze predictions
and associated error measurements.

Appearance-based methods typically do not require
calibration of cameras and geometry data since the
mapping is made directly on the image contents. Thus,
they resemble the interpolation-based methods described in
Section 3.1. The appearance models have to infer both the
geometry and the relevant features from the images, and
therefore, tend to require a significant number of calibration
points. The relatively high number of calibration points are
for some applications less of a problem. It may be more
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relevant to avoid processing the image (e.g., in the case of a
low-resolution eye region) or not requiring glints (e.g., for
outdoor use). While appearance methods intend to model
the geometry implicitly, no method has reported head pose
invariance. The reason is that the appearance of the eye
region may look the same under different poses and gaze
directions. In addition, given the same pose, change in
illumination will also alter the eye appearance and possibly
lead to less accuracy. Future methods may reveal how to
place geometric priors on appearance models.

3.2.2 Natural Light Methods

Natural light methods are a natural alternative to the use of
IR. Natural light approaches face several new challenges
such as light changes in the visible spectrum, lower contrast
images, but are not as sensitive to the IR light in the
environment, and may thus, be potentially better suited
when used outdoor [109], [89], [15], [47], [46], [157], [151].

Colombo andDel Bimbo [15] model the visible portions of
the user’s eyeball as planar surface and regard any gaze shift
due to an eyeball rotation as a translation of the pupil in the
face plane. Knowing the existence of a one-to-one mapping
of the hemisphere and the projective plane, Witzner and
Pece [47] model the point of regard as a homographic
mapping from the iris center to the monitor. This is only an
approximation as the nonlinear one-to-one mapping is not
considered. These methods are not head pose invariant.
Newman et al. [109] andWang and Sung [150], [151] propose
two separate systems employing stereo and face models to
estimate gaze direction. Newman et al. [109] model the eyes
as spheres and estimate the point of regard by intersecting
the two estimates of line of gaze for each eye. The eyeball
center is estimated from a head pose model. Personal
calibration is also employed. Wang and Sung [150], [151]
also combine a face pose estimation system with a narrow
field of view camera to compute the line of gaze through the
two irises [150] and one iris [151], respectively. They assume
that the iris contour is a circle to estimate its normal direction
in 3D through novel eye models.

Gaze estimation methods using rigid facial features have
also been proposed [54], [67], [161]. The location of the iris
and the eye corners are tracked with a single camera, and by
imposing structure-from-motion-like algorithms, the visual
axis is estimated. To estimate the point-of-gaze, Matsumoto
et al. [97] propose the use of stereo cameras.

These methods work without IR lights, but accuracy is
low (about 5 degrees); however, they are in an early stage of
development and thus are nonetheless promising for use in
a wide range of scenarios. Single camera models are
currently limited by the same degenerate configurations
as structure-from-motion algorithms, with the implication
being that the scale of the head must remain constant.

Methods using visible may also employ corneal reflec-
tions since the results obtained using IR are also applicable
to visible light. The difference is that the required image
features are less accurately depicted in the images, and that
visible light may disturb the user and cause the pupil to
contract.

3.2.3 Dual Purkinje

A single light source may produce several glints due to
reflections from different layers of the eye [21], [108]. When
the eye undergoes translation, both the first and fourth

reflections (see Fig. 7) move together, but, during rotation,
the interdistance of the reflections changes. This inter-
distance provides a measure of the angular orientation of
the eye. Methods using the difference between these
reflections (purkinje-images) are called dual-purkinje meth-
ods. The accuracy of the Dual-Purkinje-Image technique is
generally high, but, since the fourth purkinje image is weak,
heavily controlled light conditions are necessary.

3.3 Discussion

Several alternative approaches to gaze estimation have been
presented of which the feature-based methods encompass
the majority. We have reviewed current techniques expres-
sing the relationships among gaze, eye features (pupil and
glints), hardware choice (light sources and cameras), prior
geometry information, and pose. Calibration of cameras
and geometry, in-session calibration, and the presence of
glints are often needed for these techniques to be effective.
Additional human-specific parameters may require further
calibration. These methods often obtain head pose invar-
iance through the use of glints. Explicit modeling of head
pose is most common when glints are not available, e.g., in
visible spectrum methods.

Two-dimensional interpolation-based approaches, often
used with single camera setups, are relatively simple but are
mainly effective when the head remains motionless with
reference to the camera(s), either physically restrained or
used with head-mounted gaze trackers. Changes in head
movements may be compensated for in single glint systems
by using additional (explicit) head models, pan-tilt cameras,
or by incorporating a rotating mirror. Since the main
advantage of a single camera system is low cost and
simplicity, these methods seem to complicate matters
unnecessarily and disregard the relatively accurate 3D eye
modelsusually obtainedby stereo cameras orwith additional
lights. Methods relying on fully calibrated setups are most
common in commercial systems but are limited for public use
unless placed in a rigid setup. Any change (e.g., placing the
camera differently or changing the zoom of the camera)
requires a tedious recalibration. A procedure for effectively
performing accurate and automatic system calibration has
not yet been reported.Headpose invariance is obtainedusing
at least two light sources in a fully calibrated setup. In the
partially calibrated case, a good approximation to the PoR,
which is robust to head pose changes, can be obtained with
multiple light sources (known position w.r.t. monitor). The
3D model-based approaches, while involving more complex
setup and algorithms, can handle head movement robustly
and with good accuracy. Stereo approaches obtain 3D
measurements only in the overlapping areas of the two
visual fields and so the model, and hence, user movement is
constrained to this region. Pan-tilt camera solutions allow for
greater movement, but have to be reoriented mechanically,
whichmayslow themdown.Mirrorshavebeenused to speed
up acquisition.

A comparison of the accuracy of different trackers, both
research and commercial systems, and a short description of
themain characteristics of each system are provided in Fig. 9.
Although speed of computation and the number of points
necessary for a calibration are important attributes in an eye
tracking system, they are not discussed in this review due to
both a general lack of formal data and available data being
outdated. Note that the numbers reported in the table refer to
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the publications and one should be careful when comparing
accuracy since these data come from various sources and
because gaze estimates might have been temporally regular-
ized (i.e., smoothing the output).

Theoretical aspects of feature-based gaze tracking based
on point sources in a fully calibrated setup are to a large
extent understood [43]. However, the estimated fixation
points at the border of the monitor tend to be less accurate
than those at the central portion of the monitor. There are
several identifiable causes for this inaccuracy.

1. The fovea is modeled as a point, but physically, it
exists over a small area on the retina.

2. The angle between the line of sight and the optical
axis may vary from one fixation point to the next,
but the angle is usually modeled as a constant.

3. A spherical model of the eyeball may be sufficient
for the central part of the cornea, but it is not
representable enough for its periphery, i.e., tracking
accuracy may be degraded if the curvature of the
cornea varies greatly between subjects.

4. Fixations are used to measure accuracy, but they are,
contrary to their name, not stable as the eye jitters due
to drift, tremor, and involuntary microsaccades [163].

Refraction and glasses may nonlinearly change the
appearance and reflective properties of the eyes as well as
the locations of reflections. Refraction causes points pre-
sumed to be located on 3D to appear on different lines. The
image of the pupil is also altered nonlinearly. Villanueva
and Cabeza [146] point out that refraction is an important

parameter when modeling pupil images. The difference in
gaze accuracy may differ more than 1 degree depending on
whether refraction is accounted for. It would therefore be
valuable to compare methods using the iris (which is less
influenced by refraction) with similar models for the pupil.
The use of glasses may likewise confound the physical
assumptions of such models (e.g., reflections come from
glasses and not from the cornea). We are not aware of any
models that geometrically (explicitly) model glasses. Ap-
pearance-based interpolation methods implicitly model
these nonlinearities.

Eye tracking hardware can be produced and sold with
predefined configurations. In this case, applying models
where fixed geometry is assumed may be viable. However,
these systems do not allow the tailoring of hardware
arrangements to particular needs (e.g., in wheelchairs) and
may be costly since 1) time-consuming, precise hardware
calibration is needed and 2) rigid, purpose-built frames
need to be constructed to keep the hardware fixed. Relaxing
the prior assumptions of the systems or using low-grade
cameras may decrease gaze accuracy and require more
session calibration. Note that even the best methods do not
guarantee head pose invariance. However, they may, in
practice, produce good results if only under optimal
working conditions. Depending on the intended applica-
tion, high accuracy may not be needed. For some cases, it
may be more important to lower the price by using Web
cameras, allowing for easy and flexible hardware config-
urations, and avoid IR light and feature detection ( e.g., for
outdoor use). For example, high accuracy may be required

494 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 3, MARCH 2010

Fig. 9. Comparison of gaze estimation methods with respective prerequisites and reported accuracies (e.g., based on different data and scenarios).
The “cameras” column shows the number of cameras necessary for the methods. An additional “+1” means that an extra pan and tilt camera is used.
If this is given in parenthesis, the pan and tilt is used in the implementation, but not necessary by the method. The column “Lights” indicates the
number of light sources needed and with an additional set of parenthesis to indicate if extra lights have been used in the implementations. “Gaze
info” describes the type of gaze information being inferred by the method (PoR), optical (LoG), or visual axes (LoS). When LoG/LoS is used, it is
implicitly assumed that an additional 3D scene model is needed to get the point of regard. The column “Head pose” shows if the methods are head
pose invariant (

p
), if approximate solutions are proposed (�), or an external head pose unit is needed (—). The “Calibration” column indicates if

explicit calibration of scene geometry and cameras are needed prior to use. aAdditional markers, iris radius, parallel with screen. bPolynomial
approximation. c3D face model. dExperiments have been conducted with three glints, but two ought to be sufficient. eAppearance-based.



when using gaze for analyzing Web pages or in clinical
experiments, while a lower accuracy is required in applica-
tions such as environmental control or eye typing, where
only a few buttons need to be activated. Similarly, it may be
that, for some applications, it is acceptable to use multiple
session calibration points, while for others, it is necessary to
have only a few (e.g., working with children). Uncalibrated
or partially calibrated setups allow for more flexibility but
lead to a more difficult modeling problem. Future research
may reveal the potential of partially calibrated gaze trackers
(e.g., unknown position of light sources, but calibrated
cameras) or identify other eye features that provide
sufficient information to ensure head pose invariance.
Several approaches address the uncalibrated scenario by
relying on approximations, and the use of multiple glints is
an obvious choice for obtaining robust solutions. However,
glints may disappear as the eye or head is moving, and
thus, using multiple light sources may restrict user move-
ments in practice. A combination of geometry-based feature
methods and appearance-based methods could potentially
benefit from the relative strengths of both types of methods.

Both 2D regression-based and appearance-based meth-
ods map image data directly to the point of regard.
Contrary to the 3D feature-based methods, this method
requires multiple in-session calibration points. The gaze
estimation problem has an inherent set of parameters
associated with it. In fully calibrated settings, the majority
of these parameters have been calibrated prior to use, and
thus, only a few session calibration points are needed to
infer the remaining parameters. Appearance-based models
make few assumptions on image features and geometry,
and therefore, need to obtain the parameters through
session calibration. Comparing methods based on the
required number of calibration points should only be done
with care. The choice of model depends on multiple factors:
required accuracy, hardware cost, image quality/eye region
resolution, available information in the image (e.g., glints),
and flexibility of setup.

There are several possible important findings, which
could benefit current models. For example, Donder’s and
Listing’s laws and recent discoveries about the cognitive or
perceptual processes underlying eye movements are rarely
used explicitly. Besides this, features such as the iris and
pupil contour as well as other facial features provide useful
additional information that could be used to reduce the
required number of light sources [146].

4 EYE DETECTION AND GAZE TRACKING

APPLICATIONS

Eye detection and gaze tracking have found numerous
applications in multiple fields. Eye detection is often the
first and one of the most important steps for many
computer vision applications such as facial recognition,
facial feature tracking, facial expression analysis, as well as
in iris detection and iris recognition. The accuracy of eye
detection directly affects the subsequent processing and
recognition. In addition, automatic recovery of eye position
and eye status (open/close) from image sequences is one of
the important topics for model-based coding of videophone
sequences and driver fatigue applications.

Gaze tracking offers a powerful empirical tool for the
study of real-time cognitive processing and information

transfer. Gaze tracking applications include two main fields
of application, namely, diagnostic and interactive [28].
Diagnostic eye trackers provide an objective and quantita-
tive method for recording the viewer’s point of regard. This
information is useful when examining people watching
commercials, using instruments in plane cockpits, and
interacting with user interfaces, and in the analysis and
understanding of human attention [3], [41], [119], [155].

In contrast, gaze-based interactive user interfaces react to
the user’s gaze either as a control input [7], [10], [52], [87],
[154] or as the basis of gaze-contingent change in display.
Gaze-contingent means that the system is aware of the
user’s gaze and may adapt its behavior based on the visual
attention of the user, e.g., for monitoring human vigilance
[28], [66], [65], [69], [143]. Thus, the system tends to adapt its
behavior according to the gaze input, which, in turn, reflects
the person’s desires. This property of eye movements, as
well as the fact that eye tracking facilitates hands-free
interaction with little muscle strain, makes gaze tracking
systems a unique and effective tool for disabled people,
where eye movements may be the only available means of
communication and interaction with the computer and
other people. Specifically, early work on interactive eye
tracking applications focused primarily on users with
disabilities [62], [88], [137]. Among the first applications
were “eye typing” systems, where the user could produce
text through gaze inputs (for a review, see [95]). For some
applications, eye movements are more natural, fast, and
comfortable means of communication, and the tendency
now is to develop gaze-based applications for the benefit of
all. For example, anyone reading foreign languages could be
provided with suggestions for words and sentences based
on eye movement patterns as they read [64]. Using eye
trackers ubiquitously may require gaze-based application
designers to be more conscious of current challenges such as
higher noise levels on gaze estimates. A new approach
addressing navigation and selections in large information
spaces with noisy inputs is suggested by Witzner et al. [51].
Nonintrusive gaze tracking may be used for interaction
with computer in a similar way to using the mouse, or in
game-like interaction with videos, where the viewer
seamlessly interacts and defines the narrative of the video.
Eye tracking also seems to be gaining interest in the vehicle
industry for driver vigilance and safety. Another important
and yet perhaps least investigated application involves
using eye movements to gain some insight into the way that
people view synthesized images and animations, with the
dual purpose of optimizing perceived quality and devel-
oping more efficient algorithms.

5 SUMMARY AND CONCLUSIONS

We have presented a review categorizing eye tracking
systems from numerous angles; from the different methods
of detecting and tracking eye images to computational
models of eyes for gaze estimation and gaze-based
applications. Specifically, for eye detection and tracking,
we have discussed various techniques using different
properties of the eyes including appearance, shape, motion,
or some combination.

While these methods have been successful in improving
eye detection and tracking, there remains significant
potential for further developments. Reliably detecting and
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tracking eyes in conditions of variable face pose and
variable ambient lighting remains largely problematic. It
appears that an integrated approach exploiting several
available attributes is the promising direction for further
development. While eyes are nonrigid, their spatial relation
to other parts of the face is relatively stable. These relations
are of potential interest for eye detection models, for
example, through patch-based approaches.

We have reviewed several categories of techniques for
gaze estimation. While the regression-based methods using
a single glint are simple and fairly accurate, they are only
suited to particular applications due to their restrictions
with regard to head movements. This restriction can be
relaxed by using a wide-angle face camera and a pan-tilt-
controlled eye camera. However, this setup increases both
the complexity and cost. The 3D model-based eye tracking
systems can tolerate natural head movements, but they
usually require a one-time system and geometric calibration.
In the fully calibrated setup, considering possible light and
camera configurations, the one-camera and two-light-source
configuration appears to be an interesting choice (especially
for commercial systems) since its setup is simple and robust
to head pose changes. Adding an additional camera may
reduce the number of calibration points since the assump-
tion of the known cornea curvature is no longer needed.
When only modeling the visual and not the optical axes, the
number of calibration points can be reduced from two to
one, in addition to the system calibration. A low number of
calibration points are preferable, but this requires complete
knowledge of the geometric arrangement of system parts
and the eye/face. The desire for a simple calibration
procedure with few calibration points therefore implies
decreased flexibility and increased price. Appearance-based
methods, on the other hand, are not based on known
parameters of feature extraction, setup, and light conditions,
and may therefore be more flexible and simple. Since they
must infer more parameters, they require more session
calibration and do not ensure head pose invariance.

In summary, future gaze tracking systems should still be
low cost, easy to setup, minimal or no calibration, and good
gaze estimation accuracy under varying illumination con-
ditions and natural head movements. Some of these
requirements are currently conflicting, for example, flex-
ibility and a low number of calibration points.

Future directions for the eye and gaze trackers include:

. Limit the use of IR: IR light is useful for eye
trackers, mainly because it is not only invisible to the
user but also it can be used for controlling light
conditions, obtaining higher contrast images, and
stabilizing gaze estimation. A practical limitation of
systems using IR light is that they are not necessarily
reliable when used outdoors. Future eye tracking
systems should also be able to function outdoors.
Current efforts in this direction employ structure-
from-motion methods on facial feature points. These
techniques remain in an early stage of development
and further research is needed.

. Head mounts: While significant emphasis has been
placed on remote gaze tracking, head-mounted gaze
trackers could be experiencing a renaissance due to
both the challenges facing remote eye trackers, and
to the increased interest in mobile eye tracking and

tiny head-mounted displays. In these cases, eye
trackers could facilitate hands-free interaction and
improve the quality of the displays. Head-mounted
eye trackers may also be more accurate since they
are less affected by external changes (head pose,
lights, etc.) and the simplified geometry may allow
for more constraints to be applied. For example, the
use of glints may become unnecessary.

. Flexible setup: Many current gaze trackers require
calibration of the camera(s) and the geometric
arrangement. In some situations, it would be
convenient for the light sources, cameras, and
monitor to be as needed, but without requiring
explicit calibration of geometry and cameras. For
example, this would benefit eye trackers intended
for mobility and the mass market, as the rigid frames
can be avoided, resulting in more compact, light-
weight, adaptable, and cheap eye trackers.

. Limit calibration: Current gaze models either use a
strong prior model (hardware calibration) with little
session calibration or weak prior model, but more
calibration points. Another future direction will be
to develop methods that do not require any
calibration. This does not seem to be possible given
the current eye and gaze models. New eye models
and theories need to be developed to achieve
calibration-free gaze tracking.

. Costs: The costs of current eye tracking systems
remain too high for general public use. The main
reason for this is the cost of parts, especially high-
quality cameras and lenses, the cost of development,
and the relatively small market. Alternatively,
systems may opt for standard or even off-the-shelf
components such as digital video and Web cameras
and exploit the fast development in this area [46],
[47], [89]. While advances in new camera and sensor
technology may add to the continuing progress in
the fields, new theoretical developments are needed
in order to perform accurate gaze tracking with low-
quality images.

. Higher degree of tolerance: Tolerance toward
glasses and contact lenses is a practical problem
that has been solved only partially. The use of
several light sources, synchronized according to the
users’ head movement relative to the camera and
light source, may remove some of the associated
problems. However, more detailed modeling such as
modeling glass themselves may be needed if eye
trackers are to be used outdoors, where light
conditions are less controllable.

The tendency to produce mobile and low-cost
systems may increase the ways in which eye tracking
technology can be applied to mainstream applica-
tions, but may also lead to less accurate gaze tracking.
While high accuracy may not be needed for such
applications, mobile systems must be able to cope
with higher noise levels than eye trackers indoor use.

. Interpretation of gaze: Besides the technical issues
of localizing the eye and determining gaze, the
interpretation that the cognitive and affective states
underlying gaze behavior is also important. The
analysis of eye movement behavior involves
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understanding human visual perception and cog-
nition, as well as the emotional and cognitive
states associated with the task. Development of
applications that exploit a combination of gaze
with other gestures and known neuropsychological
correlates of human eye movements certainly
provides sufficient material for long-term research.

While the techniques surveyed in this paper focus on eye
detection and gaze tracking, many of the same techniques
can be useful for detection and tracking of other objects
(e.g., faces). Despite the fact that describing the structure of
the eye is relatively simple, the complexities in its
appearance make the eye a challenging research topic.

Eye and gaze tracking and their applications involve
unique and clearly defined problems, which have already
spawned new models, influencing research beyond eye
tracking [157], [166], but eyes could also be seen as a
primary case for future models in image analysis, geometry,
and machine learning due to the inherent challenging
properties of the eye as a trackable subject. For this reason,
research in the area of eye tracker development is of
increasing interest to a wide variety of research fields.
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