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Abstract 

 

The aim of this paper is to introduce the 𝑔∗𝑠∗  closure, 𝑔∗𝑠∗  interior, 𝑔∗𝑠∗ 

derived set and discuss some basic properties of the 𝑔∗𝑠∗ -closure, 𝑔∗𝑠∗ interior, 

𝑔∗𝑠∗ derived set in a topological space. 
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1. Introduction 

 

In 1963, N. Levine [3] introduced semi-open sets in topological space.  In 1970, 

N. Levine [4] initiated the study of generalized closed sets. In 1987, Bhattacharya  



6970                                 R. Rajendiran and M. Thamilselvan 

 

and Lahiri [2] defined and studied the concepts of semi generalized closed sets. In 

1990, Arya and Nour [1] introduced the concept of generalized semi closed sets. 

In 2000, M.K.R.S.Veerakumar [6] studied the notion of 𝑔∗ closed sets which is 

properly placed between closed sets and generalized closed sets. In 2014, 

R.Rajendiran[5] introduced and discussed the notion of 𝑔∗𝑠∗ closed sets.  In 

this paper we analyze the various properties of 𝑔∗𝑠∗ -closure, 𝑔∗𝑠∗ interior, 

𝑔∗𝑠∗ derived set in a topological space. 

 

2.  PRELIMINARIES 

Definition 2.1.  A subset of a topological space (𝑋, 𝜏) is called   

(i) generalized closed (briefly 𝑔 closed ) [4] if 𝑐𝑙(𝐴) ⊂ 𝑈 whenever 

𝐴 ⊂ 𝑈 and  𝑈 is open in 𝑋. 

(ii) generalized semi closed (briefly 𝑔𝑠  closed ) [1] 𝑠𝑐𝑙(𝐴) ⊂ 𝑈 

whenever 𝐴 ⊂ 𝑈 and  𝑈 is open in 𝑋. 

(iii) Semi generalized closed(briefly 𝑠𝑔 closed)[2] 𝑠𝑐𝑙(𝐴) ⊂ 𝑈 whenever 

𝐴 ⊂ 𝑈 and  𝑈 is semi open in 𝑋. 

(iv) Generalized star closed (briefly 𝑔∗  closed)[6]  if 𝑐𝑙(𝐴) ⊆ 𝑈 

whenever 𝐴 ⊆ 𝑈 and 𝑈 is 𝑔 open. 

(v) 𝑔∗𝑠∗ closed [5] if 𝑠𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is 𝑔∗ open. 

 

3 .  𝒈∗𝒔∗ Interior and their properties 

 

Definition 3.1. Let (𝑋, 𝜏) be a topological space and 𝑥 ∈ 𝑋.  A subset 𝑁 𝑜𝑓 𝑋 

is said to be 𝑔∗𝑠∗neighborhood of 𝑥 if there exists a 𝑔∗𝑠∗ open set 𝑈 in 𝑋 

such that 𝑥 ∈ 𝑈 ⊂ 𝑁. 

Definition: 3.2.  Let 𝐴 be a subset of a topological space  (𝑋, 𝜏), a point 𝑥 ∈

𝑋 is said to be   𝑔∗𝑠∗ interior point of 𝐴, if there exists a 𝑔∗𝑠∗ open set 𝑈 

such that 𝑥 ∈ 𝑈 ⊂ 𝐴. The set of all 𝑔∗𝑠∗ interior points of 𝐴 is called 𝑔∗𝑠∗  
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interior of 𝐴 and is denoted by 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). 

Theorem 3.3. Let 𝐴 be a subset of a space 𝑋, then 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) is the union of 

all 𝑔∗𝑠∗ open sets which are contained in A. 

Proof: Let 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Then  𝑥 is a 𝑔∗𝑠∗  interior point of  𝐴. Hence                                              

there exists a 𝑔∗𝑠∗  open set 𝐺  such that  𝑥 ∈ 𝐺 ⊂  𝐴 . Therefore                                                

𝑥 ∈ ∪ { 𝐺/ 𝐺 is 𝑔∗𝑠∗  open and 𝐺 ⊂ 𝐴}. So 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴)  ⊆ ∪ { 𝐺/ 𝐺 is 𝑔∗𝑠∗ 

open and 𝐺 ⊂ 𝐴} . Conversely, let 𝑥 ∈∪ { 𝐺/  𝐺 is 𝑔∗𝑠∗  open and 𝐺 ⊂ 𝐴}. 

Then 𝑥 belongs to a 𝑔∗𝑠∗ open set 𝐺  contained in 𝐴. Hence 𝑥 is an 𝑔∗𝑠∗ 

interior point of 𝐴.That is  𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴).   So  ∪ { 𝐺/ 𝐺 is 𝑔∗𝑠∗ open and 

𝐺 ⊂ 𝐴}  ⊆   𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Therefore 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) = ∪ { 𝐺/  𝐺 is 𝑔∗𝑠∗  open and 

𝐺 ⊂ 𝐴}. 

Theorem. 3.4. Let 𝐴 be a subset of a space 𝑋, then 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ⊂ 𝐴. 

Proof: Let 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Then there exists a 𝑔∗𝑠∗  open set 𝐺  such that   

𝑥 ∈ 𝐺 ⊂  𝐴. Hence 𝑥 ∈  𝐴. Therefore 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ⊂ 𝐴. 

Theorem 3.5. If 𝐴  is  𝑔∗𝑠∗  open in a topological space (𝑋, 𝜏), then 

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) = 𝐴.  

Proof: For any subset 𝐴 𝑜𝑓 𝑋, 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ⊂ 𝐴.  Let 𝑥 ∈ 𝐴 . 𝑇ℎ𝑒𝑛 𝑥 ∈ 𝐴 ⊂ 𝐴 

and 𝐴  is 𝑔∗𝑠∗  open which implies 𝑥  is a 𝑔∗𝑠∗  interior of  𝐴 . Hence                  

𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Therefore 𝐴 ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Hence 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) = 𝐴. 

Theorem 3.6.  Let A and B be subsets of a space X . If B is any 𝑔∗𝑠∗-open set 

contained in A, then 𝐵 ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). 

Proof: Let 𝑥 ∈ 𝐵. Since B is 𝑔∗𝑠∗-open set contained in A,  𝑥  is a 𝑔∗𝑠∗ 

interior point of 𝐴.  𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Hence 𝐵 ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). 

Theorem 3.7. If 𝐴  is  𝑔∗𝑠∗  open in a topological space (𝑋, 𝜏),  then 

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) is also a 𝑔∗𝑠∗ open set in 𝑋. 

Proof:  From the theorem 3.5, if 𝐴 is  𝑔∗𝑠∗  open in a topological space 

(𝑋, 𝜏),then 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) = 𝐴. Therefore 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) is a 𝑔∗𝑠∗ open set in 𝑋. 

Theorem 3.8.  Let 𝐴 be a subset of a topological space (𝑋, 𝜏), then  
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𝑔∗𝑠∗𝑖𝑛𝑡(𝑔∗𝑠∗𝐼𝑛𝑡(𝐴)) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). 

Proof: Let x ∈ 𝑔∗𝑠∗𝑖𝑛𝑡(𝑔∗𝑠∗𝐼𝑛𝑡(𝐴)).   Then 𝑥  is  𝑔∗𝑠∗  interior point of 

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴).  Hence there exists an  𝑔∗𝑠∗  open set 𝑈  such that 𝑥 ∈ 𝑈 ⊂

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ⊂ 𝐴. So that there exists a 𝑔∗𝑠∗ open set 𝑈 such that 𝑥 ∈ 𝑈 ⊂ 𝐴. 

Therefore 𝑥 is a 𝑔∗𝑠∗ interior point of 𝐴 That is 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Therefore 

 𝑔∗𝑠∗𝑖𝑛𝑡(𝑔∗𝑠∗𝐼𝑛𝑡(𝐴)) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). 

Theorem. 3.9. If (𝑋, 𝜏) is a topological space, then   𝑔∗𝑠∗𝐼𝑛𝑡(∅) = ∅  and 

𝑔∗𝑠∗𝐼𝑛𝑡(𝑋) = 𝑋. 

Proof: 𝑔∗𝑠∗𝐼𝑛𝑡(∅) =∪ { 𝐺/ 𝐺 is 𝑔∗𝑠∗ open and 𝐺 ⊂ ∅}. Since ∅ is the only 

𝑔∗𝑠∗ open set contained in ∅, 𝑔∗𝑠∗𝐼𝑛𝑡(∅) = ∅. 

𝑔∗𝑠∗𝐼𝑛𝑡(𝑋) =∪ { 𝐺/ 𝐺 is 𝑔∗𝑠∗  open and 𝐺 ⊂ 𝑋}. Since 𝑋 is 𝑔∗𝑠∗  open set 

contained in 𝑋, 𝑔∗𝑠∗𝐼𝑛𝑡(𝑋) = X ∪ { 𝐺/ 𝐺 is 𝑔∗𝑠∗ open and 𝐺 ⊂ 𝑋} = 𝑋. 

Theorem 3.10. If 𝐴 𝑎𝑛𝑑 𝐵 are any two subsets of a topological space (𝑋, 𝜏) 

and 𝐴 ⊂ 𝐵 then 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵). 

Proof: Let 𝑥 ∈ 𝑋 and 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Then by the definition of 𝑔∗𝑠∗ interior, 

there exists a 𝑔∗𝑠∗ open set 𝑈 such that 𝑥 ∈ 𝑈 ⊂ 𝐴. Since 𝐴 ⊂ 𝐵,  then 𝑥 ∈

𝑈 ⊂ 𝐴 ⊂ 𝐵. Hence 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵). Therefore 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵). 

Theorem 3.11. If 𝐴 𝑎𝑛𝑑 𝐵 are any two subsets of a topological space (𝑋, 𝜏) 

and  𝐴 ∩ 𝐵 = ∅ then 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∩ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵) = ∅ 

Proof: Given 𝐴 ∩ 𝐵 = ∅. To prove that 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∩ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵) = ∅. We 

prove this  by method of contradiction. Assume that 𝑥 ≠ ∅ ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∩

𝑔∗𝑠∗𝐼𝑛𝑡(𝐵). Therefore 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) and 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵). Hence there exists 

an  𝑔∗𝑠∗  open sets 𝑈 𝑎𝑛𝑑 𝑉  such that 𝑥 ∈ 𝑈 ⊂ 𝐴, 𝑥 ∈ 𝑉 ⊂ 𝐵.  So 𝑥 ∈ 𝑈 ∩

𝑉 ⊂ 𝑈 ⊂ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝑈 ∩ 𝑉 ⊂ 𝑉 ⊂ 𝐵. For this reason 𝑥 ∈ 𝐴 ∩ 𝐵 . This is 

contradiction to 𝐴 ∩ 𝐵 = ∅. Consequently, 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∩ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵) = ∅. 

Theorem 3.12. If 𝐴 𝑎𝑛𝑑 𝐵 are any two subsets of a topological space (𝑋, 𝜏) 

then 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∪ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴 ∪ 𝐵). 

Proof: Let 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∪ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵) . Then 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴)  or 𝑥 ∈

𝑔∗𝑠∗𝐼𝑛𝑡(𝐵). 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) implies that there exists a 𝑔∗𝑠∗open set 𝑈 such  
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that 𝑥 ∈ 𝑈 ⊂ 𝐴 ⊂ 𝐴 ∪ 𝐵.  So ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴 ∪ 𝐵)  .  𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵)  implies 

that there exists a 𝑔∗𝑠∗ open set 𝑉  such that 𝑥 ∈ 𝑉 ⊂ 𝐵 ⊂ 𝐴 ∪ 𝐵.  So 𝑥 ∈

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴 ∪ 𝐵) .  Consequently  𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∪ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴 ∪

𝐵). 

Theorem  3.13. If 𝐴 𝑎𝑛𝑑 𝐵 are two subsets of a topological space (𝑋, 𝜏) then 

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∩ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵) 

Proof: Let 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴 ∩ 𝐵). Then there exists a 𝑔∗𝑠∗ open set 𝑈 such that 

𝑥 ∈ 𝑈 ⊂  𝐴 ∩ 𝐵 ⊂ 𝐴.  This implies that 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴).  Also 𝑥 ∈ 𝑈 ⊂  𝐴 ∩

𝐵 ⊂ 𝐵.  So 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵).  Hence 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∩ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵). Therefore 

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ∩ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐵). 

 

4 .  𝒈∗𝒔∗ closure and their properties 

Definition 4.1. For any subset 𝐴  in the space 𝑋,  the 𝑔∗𝑠∗  closure of 𝐴, 

denoted by 𝑔∗𝑠∗𝐶𝑙(𝐴), is defined by the intersection of all 𝑔∗𝑠∗ closed sets 

containing 𝐴. 

Theorem 4.2.  For a subset 𝐴 of a space 𝑋, then 𝐴 ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴) 

Proof: Let 𝑥 ∈ 𝐴. By the definition of   𝑔∗𝑠∗ closure of , 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴). So 

𝐴 ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴). 

Theorem 4.3. The  𝑔∗𝑠∗ closure of 𝐴 is the intersection of all 𝑔∗𝑠∗ closed sets 

containing 𝐴. 

Proof: By the definition of   𝑔∗𝑠∗ closure of 𝐴, 

𝑔∗𝑠∗𝐶𝑙(𝐴) =∩ {𝐹/ 𝐹 is 𝑔∗𝑠∗ closed and 𝐴 ⊂ 𝐹}. 

Theorem 4.4. If 𝐵 is any 𝑔∗𝑠∗ closed set and 𝐴 ⊂ 𝐵 then 𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂ 𝐵. 

Proof: By the definition of 𝑔∗𝑠∗  closure,  𝑔∗𝑠∗𝐶𝑙(𝐴) =∩ {𝐹/  𝐹  is 𝑔∗𝑠∗ 

closed and 𝐴 ⊂ 𝐹}. Therefore  𝑔∗𝑠∗𝐶𝑙(𝐴) is contained in every 𝑔∗𝑠∗ closed 

set containing 𝐴.  Since 𝐵 is  𝑔∗𝑠∗ closed set and 𝐴 ⊂ 𝐵, 𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂ 𝐵. 

Theorem 4.5.  If 𝐴 is  𝑔∗𝑠∗ closed set in (𝑋, 𝜏) then 𝐴 = 𝑔∗𝑠∗𝐶𝑙(𝐴). 

Proof: By the definition of 𝑔∗𝑠∗ closure, 𝐴 ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴). Also 𝐴 ⊂ 𝐴 and 𝐴 

is 𝑔∗𝑠∗ closed set, by theorem 4.4,  𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂ 𝐴. Hence 𝐴 = 𝑔∗𝑠∗𝐶𝑙(𝐴). 
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Theorem 4.6. In a topological space (𝑋, 𝜏), 𝑔∗𝑠∗𝐶𝑙(∅) = ∅ and 𝑔∗𝑠∗𝐶𝑙(𝑋) =

𝑋. 

Proof: By the definition of 𝑔∗𝑠∗ closure, 𝑔∗𝑠∗𝑐𝑙(∅) = Intersection of all 𝑔∗𝑠∗ 

closed sets containing ∅.  Hence 𝑔∗𝑠∗𝑐𝑙(∅) = ∅.   Also   𝑔∗𝑠∗𝑐𝑙(𝑋) = 

Intersection of all 𝑔∗𝑠∗ closed sets containing 𝑋. Hence 𝑔∗𝑠∗𝑐𝑙(𝑋) = 𝑋. 

Theorem 4.7.  If 𝐴 and 𝐵 are any subsets of a space (𝑋, 𝜏) and 𝐴 ⊂ 𝐵 then  

𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐵). 

Proof: Let 𝒙 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴). By the definition,  𝑔∗𝑠∗𝑐𝑙(𝐵) =     ∩ {𝐹/ 𝐵 ⊂ 𝐹 ∈

𝑔∗𝑠∗𝐶(𝑋)} .  If 𝐵 ⊂ 𝐹 ∈ 𝑔∗𝑠∗𝐶(𝑋),  then 𝑔∗𝑠∗𝑐𝑙(𝐵) ⊂ 𝐹.  Since 𝐴 ⊂ 𝐵,  A ⊂

𝐵 ⊂ 𝐹 ∈ 𝑔∗𝑠∗𝐶(𝑋),  we have 𝑔∗𝑠∗𝑐𝑙(𝐴) ⊂ 𝐹.  Therefore 𝑔∗𝑠∗𝑐𝑙(𝐴) ⊂ 𝐹 =

∩{𝐹/ 𝐵 ⊂ 𝐹 ∈ 𝑔∗𝑠∗𝐶(𝑋)} = 𝑔∗𝑠∗𝑐𝑙(𝐵). That is 𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐵). 

Theorem 4.8.  If 𝐴 and 𝐵 are any subsets of a space (𝑋, 𝜏) then  

 𝑔∗𝑠∗𝐶𝑙(𝐴) ∪ 𝑔∗𝑠∗𝐶𝑙(𝐵) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴 ∪ 𝐵). 

Proof: Let A and B be subsets of X. Clearly 𝐴 ⊂ 𝐴 ∪ 𝐵 and 𝐵 ⊂ 𝐴 ∪ 𝐵.  By 

theorem 4.7, we have 𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴 ∪ 𝐵)   and 𝑔∗𝑠∗𝐶𝑙(𝐵) ⊂

𝑔∗𝑠∗𝐶𝑙(𝐴 ∪ 𝐵). Hence 𝑔∗𝑠∗𝐶𝑙(𝐴) ∪ 𝑔∗𝑠∗𝐶𝑙(𝐵) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴 ∪ 𝐵). 

Theorem 4.9. If 𝐴 and 𝐵 are any subsets of a space (𝑋, 𝜏)  and   𝑔∗𝑠∗𝐶𝑙(𝐴) ∩

𝑔∗𝑠∗𝐶𝑙(𝐵) = ∅ then 𝐴 ∩ 𝐵 = ∅. 

Proof: Let 𝑔∗𝑠∗𝐶𝑙(𝐴) ∩ 𝑔∗𝑠∗𝐶𝑙(𝐵) = ∅. To prove that 𝐴 ∩ 𝐵 = ∅. We prove 

this by the method of contradiction.  Assume that 𝑥 ∈ 𝐴 ∩ 𝐵.  Then 𝑥 ∈

𝐴 & 𝑥 ∈ 𝐵.  Therefore 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴) & 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐵).  So 𝑥 ∈  𝑔∗𝑠∗𝐶𝑙(𝐴) ∩

𝑔∗𝑠∗𝐶𝑙(𝐵) which is contradiction. Hence 𝐴 ∩ 𝐵 = ∅. 

Theorem 4.10. If 𝐴 and 𝐵 are any subsets of a space (𝑋, 𝜏) then  

𝑔∗𝑠∗𝐶𝑙(𝐴 ∩ 𝐵) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴) ∩ 𝑔∗𝑠∗𝐶𝑙(𝐵). 

Proof: Let A and B be subsets of X. Also 𝐴 ∩ 𝐵 ⊂ 𝐴 & 𝐴 ∩ 𝐵 ⊂ 𝐵. Therefore by 

Theorem.4.7, we have 𝑔∗𝑠∗𝐶𝑙(𝐴 ∩ 𝐵) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴)) 𝑎𝑛𝑑   𝑔∗𝑠∗𝐶𝑙(𝐴 ∩ 𝐵) ⊂

 𝑔∗𝑠∗𝐶𝑙(𝐵).Therefore 𝑔∗𝑠∗𝐶𝑙(𝐴 ∩ 𝐵) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝐴) ∩ 𝑔∗𝑠∗𝐶𝑙(𝐵). 

Theorem 4.11. For an 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴) if and only if 𝑉 ∩ 𝐴 ≠ ∅ for every 

𝑔∗𝑠∗ open set 𝑉 containing 𝑥.  
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Proof: Let 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴). To prove 𝑉 ∩ 𝐴 ≠ ∅ for every 𝑔∗𝑠∗ open set 

𝑉 containing 𝑥. We prove by contradiction. Suppose that there exists a 𝑔∗𝑠∗ 

open set 𝑉 containing 𝑥 such that 𝑉 ∩ 𝐴 = ∅. Then 𝐴 ⊂ 𝑋\𝑉 and 𝑋\𝑉is 𝑔∗𝑠∗ 

closed  set . Hence 𝑔∗𝑠∗𝑐𝑙(𝐴) ⊂ 𝑋\𝑉.  Therefore 𝑔∗𝑠∗𝑐𝑙(𝐴) ∩ 𝑉 = ∅ . This 

implies that 𝑥 ∉ 𝑔∗𝑠∗𝐶𝑙(𝐴) which is contradiction. So 𝑉 ∩ 𝐴 ≠ ∅ for every 

𝑔∗𝑠∗ open set 𝑉 containing 𝑥. 

Conversely, let  𝑉 ∩ 𝐴 ≠ ∅ for every 𝑔∗𝑠∗ open set 𝑉 containing 𝑥. To prove 

that 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴).  We prove this by contradiction. Assume that 𝑥 ∉

𝑔∗𝑠∗𝐶𝑙(𝐴).Then there exists a 𝑔∗𝑠∗ open set 𝑉 containing 𝑥 such that 𝑉 ∩ 𝐴 =

∅ which is contradiction. Hence 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴). 

Theorem 4.12. If 𝐴 is 𝑔∗𝑠∗ closed set in 𝑋 then  𝑔∗𝑠∗𝐶𝑙(𝐴) is also 𝑔∗𝑠∗ 

closed set in 𝑋. 

Proof: If 𝐴  is 𝑔∗𝑠∗  closed set in 𝑋  then 𝑔∗𝑠∗𝐶𝑙(𝐴) = 𝐴.  Therefore 

𝑔∗𝑠∗𝐶𝑙(𝐴) is also a  𝑔∗𝑠∗ closed set in 𝑋. 

Theorem 4.13.  If 𝐴  is a subset of (𝑋, 𝜏)  then 𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂

𝑔∗𝑠∗𝐶𝑙{𝑔∗𝑠∗𝐶𝑙(𝐴)} 

Proof: If 𝐴 is a subset of (𝑋, 𝜏) then 𝑔∗𝑠∗𝐶𝑙(𝐴) is also a a subset of (𝑋, 𝜏). 

By definition of 𝑔∗𝑠∗ closure, 𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂ 𝑔∗𝑠∗𝐶𝑙{𝑔∗𝑠∗𝐶𝑙(𝐴)}. 

Theorem. 4.14. For any subset 𝐴 of a space 𝑋,   𝑋\𝑔∗𝑠∗𝐶𝑙(𝐴) = 𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴). 

Proof: For any point 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑋\𝑔∗𝑠∗𝐶𝑙(𝐴)  implies 𝑥 ∉ 𝑔∗𝑠∗𝐶𝑙(𝐴). Then 

there exists 𝑔∗𝑠∗ open set  𝑈  containing  𝑥 , 𝐴 ∩ 𝑈 = ∅.   So 𝑥 ∈ 𝑈 ⊂ 𝑋\𝐴 . 

Thus 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴).  Conversely, let 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴) . There exists a 

𝑔∗𝑠∗  open set 𝑈   such that 𝑥 ∈ 𝑈 ⊂ 𝑋\𝐴. So 𝑥 ∉ 𝑔∗𝑠∗𝐶𝑙(𝐴). This implies 

that ∈ 𝑋\𝑔∗𝑠∗𝐶𝑙(𝐴) . 

Theorem 4.15. For any subset 𝐴 of a space 𝑋,   𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) = 𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴). 

Proof: Let 𝑥 ∈ 𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Then 𝑥 ∉ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). That is every 𝑔∗𝑠∗ open 

set 𝑈  containing 𝑥  is such that 𝑈 ⊄ 𝐴 . That is every 𝑔∗𝑠∗  open set 𝑈 

containing 𝑥 is such that 𝑈 ∩ 𝐴𝐶 ≠ ∅. Then by theorem 4.11, 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝑋\

𝐴). Therefore 𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ⊂ 𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴). Conversely, 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴).  
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Then by theorem 4.11, every 𝑔∗𝑠∗ open set 𝑈 containing 𝑥 is such that 𝑈 ∩

𝐴𝐶 ≠ ∅. That is every 𝑔∗𝑠∗ open set 𝑈 containing 𝑥 is such that 𝑈 ⊄ 𝐴. This 

implies that by the definition of 𝑔∗𝑠∗  interior, 𝑥 ∉ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). That is 𝑥 ∈

𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝐴).  So 𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴) ⊂ 𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) . Consequently, 

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) = 𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴). 

 

Theorem 4.16. For any subset 𝐴 of a space 𝑋, 𝑔∗𝑠∗𝐶𝑙(𝐴) = 𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴) 

Proof: 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴).  Then by theorem 4.11, every 𝑔∗𝑠∗  open set 𝑈 

containing 𝑥 is such that 𝑈 ∩ 𝐴 ≠ ∅. Hence every 𝑔∗𝑠∗ open set 𝑈 containing 

𝑥  is such that 𝑈 ⊄ 𝑋\𝐴.  Therefore 𝑥 ∉ 𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴) . Hence 𝑥 ∈  𝑋\

𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴). Therefore 𝑔∗𝑠∗𝐶𝑙(𝐴) ⊂ 𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴). Conversely, let 𝑥 ∈

 𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴) . Then 𝑥 ∉ 𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴) . Hence every 𝑔∗𝑠∗  open set 𝑈 

containing 𝑥 is such that 𝑈 ⊄ 𝑋\𝐴. Then every 𝑔∗𝑠∗ open set 𝑈 containing 𝑥 

is such that 𝑈 ∩ 𝐴 ≠ ∅.  So 𝑥 ∈ 𝑔∗𝑠∗𝐶𝑙(𝐴).  That is  𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴) ⊂

𝑔∗𝑠∗𝐶𝑙(𝐴). Thus 𝑔∗𝑠∗𝐶𝑙(𝐴) = 𝑋\𝑔∗𝑠∗𝐼𝑛𝑡(𝑋\𝐴).  

Theorem 4.17.  For any subset 𝐴 of a space , 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) = 𝑋\𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴). 

Proof: Let 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴). Then there exists a 𝑔∗𝑠∗ open set 𝑈 such that 𝑥 ∈

𝑈 ⊂ 𝐴.  Hence 𝑥 ∉ 𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴) . Therefore 𝑥 ∈  𝑋\𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴).  Hence 

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) ⊂ 𝑋\𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴).  Conversely, let 𝑥 ∈  𝑋\𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴).  This 

implies that 𝑥 ∉ 𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴). Then there exists a 𝑔∗𝑠∗ open set 𝑈 such that 

𝑥 ∈ 𝑈 ∩ 𝑋\𝐴 = ∅.  That is there exists a 𝑔∗𝑠∗ open set 𝑈 such that 𝑥 ∈ 𝑈 ⊂ 𝐴. 

So 𝑥 ∈ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴).  Therefore 𝑋\𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴) ⊂ 𝑔∗𝑠∗𝐼𝑛𝑡(𝐴).  Hence 

𝑔∗𝑠∗𝐼𝑛𝑡(𝐴) = 𝑋\𝑔∗𝑠∗𝐶𝑙(𝑋\𝐴). 

 

𝟓. 𝒈∗𝒔∗ derived set and their properties   

              

Definition 5.1. Let 𝐴 be a subset of a topological space (𝑋, 𝜏).  A point 𝑥 ∈ 𝑋 

is said to be 𝑔∗𝑠∗ limit point of 𝐴 if for each 𝑔∗𝑠∗ open set 𝑈 containing 𝑥, 

𝑈 ∩ {𝐴\{𝑥}} ≠ ∅.  The set of all 𝑔∗𝑠∗ limit points of 𝐴 is called a  
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𝑔∗𝑠∗ derived set of 𝐴 and is denoted by 𝑔∗𝑠∗𝐷(𝐴). 

Theorem  5.2. In a topological space (𝑋, 𝜏), 𝑔∗𝑠∗𝐷(∅) = ∅. 

Proof: For all 𝑔∗𝑠∗  open set 𝑈  and for all 𝑥 ∈ 𝑋, 𝑈 ∩ {∅\𝑥} = ∅ . Hence 

𝑔∗𝑠∗𝐷(∅) = ∅. 

Theorem 5.3. Let 𝐴  be a subset of a space (𝑋, 𝜏). If 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴), then 𝑥 ∈

𝑔∗𝑠∗𝐷(𝐴\{𝑥}) 

Proof: Let 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴). Then for each  𝑔∗𝑠∗ open set 𝑈,   𝑈 ∩ {𝐴\ {𝑥}} ≠

∅. This implies that 𝑈 ∩ {(𝐴\ {𝑥}){𝑥}} ≠ ∅. Hence 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴\{𝑥}).   

Theorem 5.4. Let 𝐴 and 𝐵  be subsets of a space 𝑋.  If 𝐴 ⊂ 𝐵  then 

𝑔∗𝑠∗𝐷(𝐴) ⊂ 𝑔∗𝑠∗𝐷(𝐵). 

Proof:  Let 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴). Then  for each 𝑔∗𝑠∗  open set 𝑈 containing 𝑥,   

𝑈 ∩ {𝐴\  {𝑥}} ≠ ∅ . Since 𝐴 ⊂ 𝐵,  𝑈 ∩ {𝐵\  {𝑥}} ≠ ∅ .  Therefore 𝑥 ∈

𝑔∗𝑠∗𝐷(𝐵). Hence  𝑔∗𝑠∗𝐷(𝐴) ⊂ 𝑔∗𝑠∗𝐷(𝐵) 

Theorem 5.5. Let 𝐴 and 𝐵 be subsets of a space (𝑋, 𝜏). Then 𝑔∗𝑠∗𝐷(𝐴) ∪

𝑔∗𝑠∗𝐷(𝐵) ⊂ 𝑔∗𝑠∗𝐷(𝐴 ∪ 𝐵) 

Proof: Let 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴) ∪ 𝑔∗𝑠∗𝐷(𝐵). This implies that 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴) or ∈ 

𝑔∗𝑠∗𝐷(𝐵). If 𝑥 ∈  𝑔∗𝑠∗𝐷(𝐴)  then for each 𝑔∗𝑠∗  open set 𝑈  containing 𝑥,   

𝑈 ∩ {𝐴\ {𝑥}} ≠ ∅. Since 𝐴 ⊂ 𝐴 ∪ 𝐵, 𝑈 ∩ {𝐴 ∪ 𝐵\ {𝑥}} ≠ ∅. This shows that  

𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴 ∪ 𝐵). Otherwise if 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐵) then for each 𝑔∗𝑠∗ open set 𝑈 

containing 𝑥,   𝑈 ∩ {𝐵\ {𝑥}} ≠ ∅. Since 𝐵 ⊂ 𝐴 ∪ 𝐵, 𝑈 ∩ {𝐴 ∪ 𝐵\ {𝑥}} ≠ ∅. 

This shows that 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴 ∪ 𝐵).So 𝑔∗𝑠∗𝐷(𝐴) ∪ 𝑔∗𝑠∗𝐷(𝐵) ⊂ 𝑔∗𝑠∗𝐷(𝐴 ∪ 𝐵). 

Theorem 5.6.  Let 𝐴 and 𝐵 be subsets of a space 𝑋. Then  𝑔∗𝑠∗𝐷(𝐴 ∩ 𝐵) ⊂

𝑔∗𝑠∗𝐷(𝐴) ∩ 𝑔∗𝑠∗𝐷(𝐵) 

Proof: Let 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴 ∩ 𝐵). Then for each 𝑔∗𝑠∗ open set 𝑈 containing 𝑥,   

𝑈 ∩ {(𝐴 ∩ 𝐵\ {𝑥}} ≠ ∅. Since 𝐴 ∩ 𝐵 ⊂ 𝐴, 𝑈 ∩ {(𝐴\ {𝑥}} ≠ ∅.This implies that  

𝑥 ∈  𝑔∗𝑠∗𝐷(𝐴).  Also 𝐴 ∩ 𝐵 ⊂ 𝐵, 𝑈 ∩ {(𝐵\  {𝑥}} ≠ ∅ .This implies that  𝑥 ∈ 

𝑔∗𝑠∗𝐷(𝐵).  Therefore 𝑥 ∈ 𝑔∗𝑠∗𝐷(𝐴) ∩ 𝑔∗𝑠∗𝐷(𝐵) . Hence 𝑔∗𝑠∗𝐷(𝐴 ∩ 𝐵) ⊂

𝑔∗𝑠∗𝐷(𝐴) ∩ 𝑔∗𝑠∗𝐷(𝐵).  
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