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Abstract. We present an autoadaptive algorithm for in-use parame-
ter estimation of MEMS inertial accelerometers and gyros1 using multi-
level quasi-static states for greater accuracy and reliability. Multi-level
quasi-static states are detected robustly using data from both gyros and
accelerometers. Proper estimation of time-varying sensor parameters al-
lows us to develop a mixed-reality real-time hand-held orientation tracker
with dynamic accuracy of less than 20. Existing methods like Kalman
filters do not take time-varying nature of parameters into account, in-
stead modelling the time-variation as higher values in noise covariance
matrices; thus underestimating the sensor capabilities.

1 Introduction

Micro-Electro-Mechanical System (MEMS) based inertial accelerometers and gy-
ros are used in a wide range of applications such as human motion tracking [1]
and surgical applications [2] because of their low cost, small size and sourceless [3]
nature. Veltink et al. [4] used uni-axial accelerometers for detecting static and
dynamic activities. Detecting levels of activity has been used in many applica-
tions like rehabilitation treatment of patients [4] and activity monitoring.

However, accelerometer and gyro based devices suffer from substantial drift
due to time-varying nature of bias and other parameters. Recent research has fo-
cused on integrating multisensor signals of gyros and accelerometers to estimate
orientation [1],[8] using Kalman filters. However, Kalman filtering has a serious
drawback of high computational cost, which is unacceptable in some applications
that require real-time output or are computationally constrained. Furthermore,
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performance of Kalman filters depend critically on estimating a large number of
modelling parameters. Failing to capture the time-varying nature of parameters,
they instead overestimate the noise covariance matrices. To capture the time-
varying nature of bias, Foxlin [8] used bias values as a part of the state vector
of the Kalman filter. In such an algorithm, bias values are re-estimated at every
sample, which is inefficient; because bias of the gyro changes slowly and there is
no need to re-estimate it so frequently.

We propose a new autoadaptive method to re-estimate and update the sensor
parameters while in use, by detecting multi-level quasi-static states for use in
a mixed-reality orientation tracking device. We combine data from both tri-
axial accelerometers and gyros to robustly detect multi-level quasi-static states,
providing the accuracy and reliability needed for its use in parameter estimation,
which was not possible by using uni-axial accelerometers alone.

Accurate parameter estimation using multi-level quasi-static states allows the
development of a real-time handheld orientation tracker for a mixed reality device
used in HMDs (Head Mounted Displays) [1], surgical applications and other
applications [10], [11]. The basic goal of this algorithm is to allow the system to
automatically adjust to variations in external conditions and sensor parameters.
In this work, we present a method of processing signals from tri-axial gyros,
accelerometers, and magnetometers to obtain a drift-less and accurate estimate
of orientation that is not possible with gyros, accelerometers or magnetometers
alone. Bachmann et al. [3] has used tri-axial accelerometers as inclinometers on
the assumption that magnitude of the kinematic linear acceleration is negligible
in comparison to gravity. In this paper, we show that re-estimating the bias in
quasi-static states is good enough for accurate orientation tracking. Results of
the orientation tracking in a hand-held instrument are also discussed.

2 Modelling of Sensors

We use a sensor model similar to that described in [5]:

ug = Kg · Rg · ωs + bg (1)

ua = Ka ·Ra · as + ba (2)

um = Km · Rm · hs + bm (3)

where Kg is the diagonal matrix for gyro gain, ωs is the angular velocity in
cartesian coordinates, bg is the bias, Rg is orientation matrix to convert each
sensor output to a single cartesian coordinate system, compensating errors due
to misalignment. Similar convention follows for accelerometers (eq. (2)) and mag-
netometers (eq. (3)) respectively.

3 Calibration

3.1 Pre-calibration

Pre-calibration of the sensors is performed once, while manufacturing the device
similar to the method described by Ferraris [5], and estimates the sensor param-
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eters listed in Sect. 2. The bias and gain of gyros and accelerometers (bg, Kg,
ba, Ka) vary with time from the pre-calibrated values because of temperature
and other random factors.

3.2 Detecting Quasi-static States

We propose a novel fuzzy algorithm to detect quasi-static states. These states
are detected when the sensor signals are changing insignificantly over time. A
constant acceleration or an exact cancellation of acceleration is unlikely to hap-
pen with typical hand movements [6] because of the physiological constraints,
therefore a quasi-static state is a good indicator of the object being at rest. Dur-
ing the static state, the white gaussian noise Ns, for L samples in each of the
sensor signals can be estimated (during start-up calibration) as:

Ns =
L∑

i=1

s2[i]
L

(4)

where s[i] is the sensor signal. If the estimated noise is
[
Ngx, Ngy, Ngz

]
for gyros

and
[
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]
for accelerometers, then the decision rule for static state is:

γ[j] =
1
6

(
1

s2
ge

∑

q=x,y,z

s2
gq[j]
Ngq

+
1

s2
ae

∑

q=x,y,z

s2
aq[j]
Naq

)
(5)

where sge and sae is the expected RMS value of signal during normal device
use ( for example for gyro it is 600/sec and 1m/s2 for accelerometers ). Then
γ is low pass filtered (LPF) to get γL. This ensures that the static state is of a
minimum duration.

γL[i] = LPF{γ[i]} (6)

If γL[i] < threshold, which can be determined experimentally or dynamically
adjusted with a learning algorithm, then it is a quasi-static state. Using multiple
threshold levels, we can detect different levels of static states and make a high-
level decision for the amount of correction to be made in the parameters. Fig. 1
shows the performance of the quasi-static state detector (with only one sensor
signal shown). The graph demonstrates that even when variation in a single
sensor is low, other sensors help make an accurate decision for a static state.

3.3 In Use Calibration of Gyros and Accelerometers

In quasi-static state, the calibrated output ωs ideally should be zero. However,
it is not zero because of the time-varying nature of the bias. The change in bias
∆bg is estimated during quasi-static state, and the bias parameter is updated
as

bnew
g = bg − ∆bg (7)

The parameters for the accelerometer, like sensitivity and bias, are also re-
estimated in static state, similar to the method described in [6].
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Fig. 1. Output of Quasi-Static State detector shown with x-axis acceleration along
with digital static state graph. Digital 1 means quasi-static while 0 means not. The
detector detects static states robustly because it combines information from all the
sensors

4 Orientation Estimate
Using Multi-level Quasi-static States

4.1 Algorithm

Block diagram of the system for estimating the orientation is shown in Fig. 2.
The sensor data is calibrated and processed to get orientation and acceleration
in the body frame. We define two levels of static state: (A) Quasi-Static: when
device is almost static, and (B) Semi-Static: when the device is moving very
slowly, detected as described in Sect. 3.2. In the quasi-static state, we re-calibrate
the sensors as described in Sect. 3.3, and in semi-static state we correct the
orientation for drift using information from accelerometers and magnetometers.

In our ongoing research, we are developing algorithms to determine posi-
tion from accelerometers. This involves obtaining kinematic linear acceleration
(acceleration without gravity). Since accelerometers measure acceleration plus
gravity, orientation information is needed to subtract gravity vector from the ac-
celeration signals. An error of δθ results in an error of g sin δθ in the acceleration
components, creating a false horizontal acceleration in the output of the inertial
navigator [1], making position error unbounded because of double integration
involved in the filters. Therefore accurate estimation of orientation is essential.
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Fig. 2. Block diagram for calculating orientation. Static-State Detector signals the In-
Use Calibrator to re-estimate parameters, and Drift Eliminator to correct for gyro
drifts using information from accelerometers and magnetometers
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4.2 Orientation from Gyros

The angular velocity is filtered and then integrated to get the change in angles,
relative to the local axis. The evolution of θ(t) for δt is approximated by Taylor
series expansion [8] and for first order integration the error rate is 1

2ω2δt, about
0.540/sec (for 100Hz sampling rate and typical 600/sec angular velocity). This
approximation is valid because performance is limited by the cumulative errors
because of the integration of the time-varying bias in the angular velocities.
We focus on correcting this error by an accurate estimate of bias during in-use
calibration of gyros and correction by accelerometer and magnetometer data.

4.3 Orientation Correction Using Accelerometers
and Magnetometers

In semi-static state, there is no significant kinematic linear acceleration, and the
signal from the accelerometers can be used as inclinometers giving the gravity
vector in local coordinates. Orientation error due to drift in parameters of gyros,
is corrected by determining the absolute orientation from the gravity vector and
earth’s magnetic field H as the reference. The magnetometers give H which
maintains a fixed value and direction in absence of magnetic disturbance;this
can be detected [7]. Let ĝ = g

|g| be the unit vector of gravity, and Ĥ = H
|H| be

the unit vector of the earth’s magnetic field. Let v̂ = g ∗ H be the unit vector
perpendicular to both of them. Let (σ0, µ0, τ0) represent reference coordinate
frame (initial starting position) and (σ1, µ1, τ1) represent the coordinate frame
of rotated local body frame. Then, in reference frame, the unit vectors ĝ, Ĥ and
v̂ can be expressed as:

ĝ = a11σ0 + a12µ0 + a13τ0 (8)

Ĥ = a21σ0 + a22µ0 + a23τ0 (9)

v̂ = a31σ0 + a32µ0 + a33τ0 (10)

where a1j and a2j are the estimated values of acceleration and earth’s magnetic
field and a3j are calculated coefficients in local frame (σ0, µ0, τ0). Let A represent
the matrix formed by aij . Similarly, in the rotated frame (σ1, µ1, τ1), the matrix
B can be calculated. It contains the coefficients of ĝ, Ĥ and v̂ in rotated local
frame (σ1, µ1, τ1). We obtain

A[σ0µ0τ0] = B[σ1µ1τ1] (11)

Thus, the transformation matrix T = B−1A gives the absolute orientation which
takes us to the current rotated frame from the reference world frame, which is
used to obtain driftless orientation by correcting the orientation in the semi-
static states.
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5 Experiments

5.1 Hardware Description

We test our algorithm on a sensor system prototype fabricated by QCAT
(Queensland Centre for Advanced Technologies, CSIRO, ICT Centre) named
EiMU. It is comprised of two ADXL202JQC (two-axis) accelerometers (±2g
range), three Honeywell’s HMC1001/1002 (single axis magnetic sensors with
±2G range), three Analog Device ADXRS150 gyros (single-axis with ±1500/s
range), containing a D60 HC12 processor board which sends sampled data at
100Hz to the computer.

5.2 Results and Discussion

When the device is held still, the error is less than 0.50/hour. This is achieved
because of the robust static-state detector.

To study dynamic accuracy, experiments were conducted by rotating the
device with different angular velocities on a turntable. The Fig. 3(a) shows short-
term error in estimating orientation, calculated by gyros only, which optimizes
error for frequencies of interest (i.e., which are present in human motion) but
gives us mean error of 0.320/sec. Correcting the orientation by accelerometers
and magnetometers in semi-static states reduces the error to 0.180/sec.

Fig. 3(b) shows the effect of bias re-estimator. We have large drifts in orien-
tation using gyros alone, which is improved by correction using accelerometers
and magnetometers. Using the bias re-estimator reduces dynamic error to less
than 20 assuming one semi static state per minute.

This is a significant improvement over other orientation trackers using the
same sensors. For comparison Xsense [9] achieved 10 static accuracy, and 30 rms
accuracy. Foxlin [1] used external acoustic sensors along with inertial sensors to
achieve accuracy of 1.50.

(a) Orientation Error for Gyros (b) Long Term Error Comparison

Fig. 3. (a) Short term orientation error vs. angular velocity in the absense of (upper
curve) and in presence of (lower curve) correction by accelerometer and magnetome-
ters (best fit curves of order 3). (b) Long term error in different cases;(1) dark line
shows error only caused by gyro, (2) dashed line shows error when only correction by
acclerometers and magnetometers is active, (3) dotted line shows error when both bias
re-estimation and correction by accelerometers and magnetometers are active. It shows
an improvement in performance using our algorithm
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6 Conclusion

This paper presents an algorithm to robustly detect multi-level quasi-static states
from inertial sensors, allowing the proper re-estimation of the time-varying sen-
sor parameters while the device is in use. The performance of the proposed
algorithm was demonstrated by developing a mixed-reality real-time orientation
tracker. Thus, we demonstrated that properly estimating the parameters of in-
ertial sensors can help in improving performance. The proposed algorithm is a
step towards development of a self-organizing sensory motor system. In the fu-
ture the system can be improved by applying evolutionary algorithms to finetune
the internal parameters and architecture of the motion estimation system.
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