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Abstract—Driving safety has been attracting more and more
interest due to the unprecedented proliferation of vehicles and
the subsequent increase of traffic accidents. As such the research
community has been actively seeking solutions that can make
vehicles more intelligent and thus improve driving safety in
everyday life. Among all the existing approaches, in-vehicle
sensing has become a great preference by monitoring the driver’s
health, emotion, attention, etc., which can offer rich information
to the advanced driving assistant systems (ADAS) to respond
accordingly and thus reduce injuries as much/early as possible.
There have been many significant developments in the past few
years on in-vehicle sensing. The goal of this paper is to provide
a comprehensive review of the motivation, applications, state-
of-the-art developments, and possible future interests in this
research area. According to the application scenarios, we group
the existing works into five categories, including occupancy de-
tection, fatigue/drowsiness detection, distraction detection, driver
authentication, and vital sign monitoring, review the fundamental
techniques adopted, and present their limitations for further im-
provement. Finally, we discuss several future trends for enhancing
current capabilities and enabling new opportunities for in-vehicle
sensing.

Index Terms—In-vehicle sensing, wireless sensing, artificial in-
telligence, advanced driving assistant systems (ADAS), occupancy
detection, fatigue/drowsiness, distraction/inattention, driver au-
thentication, vital sign monitoring, smart car

I. INTRODUCTION

THE last several decades have witnessed the unprece-
dented proliferation of automobiles, which has con-

tributed greatly in our daily commute, economy, business and
entertainment [1]. According to the American Automobile
Association (AAA) [2], there are roughly about 1.2 billion
vehicles operating on the planet every day with an average trip
of 15 minutes. The in-vehicle time grows up to 46 minutes per
day in the United States [3]. While we have benefited a lot
from the tremendous number of motor vehicles, it has been
shown [4] that the road accidents cause approximately 1.3
million deaths every year and about 20-50 million more non-
fatal injuries, many of which incur a lifelong disability [5].
Among those accidents, about 94%-96% of them are related
to some human error [6].

To improve driving safety, many efforts have been devoted
by both the government and car manufacturers such as leg-
islatively prohibiting the use of wireless devices and disabling
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some of the amusement features (i.e., Bluetooth setting) during
driving. However, driving is a complex task and requires a
combination of cognitive engagement and physical operations,
which makes it very hard for a driver to concentrate, especially
during long trips such as those for truck drivers.

As a promising safety enhancement, in-vehicle sensing has
been gaining an increasing attraction since it can continuously
monitor the driver’s status, from which the advanced driving
assistant system (ADAS) can predict human error and thus
react timely to prevent accidents from happening. In addition,
it can also provide other useful real-time information about the
interior of a vehicle, e.g. passenger status, or when a vehicle
is parked.

Significant efforts have been devoted to in-vehicle sens-
ing, which, according to the application scenarios, can be
classified into five categories, i.e., occupancy detection, fa-
tigue/drowsiness detection, distraction detection, driver au-
thentication and vital sign monitoring.

Occupancy detection [7]–[13] mainly aims to detect, local-
ize, classify the seat occupancy states and then remind the
driver before he/she leaves the vehicle. A particular case is
the child presence detection (CPD) to prevent a child from
being left alone in a closed vehicle, which may cause fatal
damage or even death due to heatstroke [14], [15]. Existing
studies about occupancy detection can be categorized into four
groups according to the adopted techniques, including sensor-
based [7]–[13], WiFi-based [16]–[18], image-based [19]–[21],
and radar-based [22]–[28] methods.

Fatigue/drowsiness can lead to slow reactions of a driver to
the surrounding changes and has caused more than 20% of the
reported accidents [29]–[31]. By enabling fatigue/drowsiness
detection in the ADAS system, fewer traffic accidents can be
expected, and safety and transportation efficiency can be im-
proved. Based on the features extracted, research about fatigue
detection can be roughly grouped into three types, i.e., 1) using
biological signals such as electrocardiography (ECG) [32]–
[48], electroencephalography (EEG) [49]–[66], electromyo-
graphy (EMG) [67]–[76], 2) using facial contexts such as
movement of the face [77]–[96], eye [97]–[110], etc., and
3) joint sensing of facial expressions and body/arm/leg/head
motions [111]–[128].

Compared to fatigue/drowsiness, distraction can only be
roughly defined since any activity that takes a driver’s at-
tention from the driving task can cause distraction [129]
such as talking to passengers, using mobile phones, etc. As
there are so many factors that may cause driver’s distraction,
the existing research on distraction detection mainly focuses
on analyzing the driver’s behaviors/activities when operating
the vehicle such as acceleration/braking, and mainly contains
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TABLE I: Mapping of Abbreviations

Abbreviation Meaning Abbreviation Meaning

AAA American Automobile Association IR Infrared

ADAS Advanced driving assistant systems ISED Innovation, Science and Economic
Development

AFLW Annotated facial landmarks in the wild KNN K-nearest neighbor

AR Autoregressive KSS Karolinska sleepiness scale

CAN Controller area network LGO Localized gradient orientation

CFO Channel frequency offset LRCN Long-term recurrent convolutional network

CFR Channel frequency response LSTM Long-short-term-memory

CIR Channel impulse response MB-LBP Multi block local binary patterns

COTS Commercial off-the-shelf MDF Median frequency

CPD Child presence detection MFV Mouth feature vector

CPAM Coordinate pair angle method MIMO Multiple-input and multiple-output

CNN Convolutional neural network MiRA Minimum required attention

CSI Channel state information MNF Mean frequency

DAQ Data acquisition NCAP New Car Assessment Programme

DNN Deep neural network OEM Original equipment manufacturer

EAR Eye aspect ratio OBD On-board diagnostic

ECG Electrocardiography PCA Principal component analysis

EEG Electroencephalography PERCLOS Percentage of eyelid closure

EMG Electromyography PIR Passive infrared sensor

EM Electromagnetic PLL Phase-locked loops

EFV Eye feature vector PPG Photoplethysmograph

EMD Empirical mode decomposition RF Radio frequency

ESM Eye screening mechanism RGB Red green blue

EVB Evaluation board RFID Radio frequency identification

FCC Federal Communications Commission RMS Root mean square

FastICA Fast independent component analysis RPs Recurrence plots

FIR Finite impulse response RPM Respiration-per-minute

FIS Fuzzy inference system RSSI Received signal strength indicator

FLIR Forward-looking infrared SAE Society of automotive engineers

FMCW Frequency modulated continuous wave SFO Sampling frequency offset

FOM Frequency of mouth SOC System on chip

FOV Field of view STO Symbol timing offset

FPR False positive rate SVDD Support vector domain description

FNR False negative rate SVIRO Synthetic dataset for vehicle interior rear seat
occupancy

GSR Galvanic skin response SVM Support vector machine

HF High frequency SVMPPM SVM-based posterior probabilistic model

HPE Head pose estimator SVRs Support vector regressors

HRV Heart rate variability UWB Ultra wide band

HVAC Heating, ventilation, and air conditioning WM Weighted mean

IBI Inter-beat-interval WPT Wavelet packet transform

IIR Infinite impulse response WSD Weighted standard deviation

LOS Line of sight YOLO You only look once

three different groups including joint sensing of human and
vehicle status [129]–[135], human sensing only [136]–[145],
and cognitive sensing [146]–[148] which monitors the emotion

of the driver to decipher whether he/she is focusing on driving
or not.

Driver authentication [149]–[152] can help to improve ve-
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(a) Distribition of different categories. (b) Overall contribution. (c) Comparison of different methods.

(d) Overview of the existing work.

Fig. 1: Related works of in-vehicle occupancy detection. (The data is obtained by searching on Google Scholar with the
combinations of key words: occupancy car, occupancy vehicle, occupancy automotive, child presence car, child occupancy,
and seat occupancy. We review the top 600 related papers and patents, from which we find a total of 99 ones that directly
study the topic of in-vehicle occupancy detection. Accessed Mar. 06, 2022.)

hicle security and user experience by automatically adjust-
ing settings of the heating, ventilation, and air conditioning
(HVAC), seats, and entertainment. Most of the current research
in this area focuses on determining a driver’s identity by jointly
considering the driving behaviors and biological signals.

Driver vital sign monitoring can assist in preventing ac-
cidents caused by unpredictable sudden health deterioration
of the driver as well as other in-vehicle sensing applications
such as emotion sensing. Most of the conventional vital sign
monitoring systems [153]–[158] require a user to wear a lot
of sensor pads such as ECG/EEG, which may distract driving
and thus are not applicable for driver’s vital sign monitoring.
Recent advances in wireless sensing techniques [159]–[163]
have made contactless vital sensing possible and thus shed
light on the future of driver’s vital sign monitoring.

The rest of the paper is organized as follows. The abbrevi-
ations used in this paper are summarized in Table I for easy
reference. Section II reviews the research about occupancy
detection and Section III reviews the existing works about
fatigue detection. Then, Section IV summarizes the existing
methods for distraction detection followed by an overview of
driver authentication and vital sign monitoring in Section V.
Finally, Section VI discusses the limitations and future works
while Section VII concludes this paper.

II. OCCUPANCY DETECTION

In-vehicle occupancy detection, which detects how many
seats of a car are occupied and what object (e.g., an
adults/kid/pet/inanimate item) is located at a particular seat
has been a key component to enhance driving safety by the
Society of Automotive Engineers (SAE) [164]. For example,
knowing which seat is occupied by a passenger can be utilized
to: 1) remind the passengers who are not wearing seat belts
since buckling up can help to reduce the risk of fatal injuries by
45% and moderate to critical injuries by 50% [165]; 2) trigger
the emergency system such as airbags in case of accidents
to save lives. More importantly, leaving children, especially
those who are less than 6 years old and have little ability
to exit the vehicle on his/her own, alone in an unattended
vehicle can cause very serious damages to organs/brain or
even deaths due to heatstroke [14], [15]. As a result, enabling
child presence detection has been proposed as a standard
feature on the road map of the European New Car Assess-
ment Programme (NCAP) [166], [167] to alert caregivers or
emergency services if a child is left alone. Towards this end,
many efforts have been devoted to developing accurate and
practical occupancy detection systems. Fig. 1 summarizes the
existing research about occupancy detection, which, according
to the technologies adopted, are categorized into four classes
as will be detailed next.
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TABLE II: Sensor-based Occupancy Detection

Reference Devices & Input Methodology Results & Advantages Limitations

[7], [8] Pressure sensor on
the seat

Compare the object
weight with a threshold

-Easy to deploy
-Fast response

-Limited coverage on the seat
-Unable to distinguish human from
inanimate items

[13] Pressure sensor on
the buckle

Compare the forced
pressure with a threshold

-Easy to implement
-Fast response

-Limited coverage
-Unable to work if a passenger forgets
to fasten the belt

[168] Temperature sensor
inside the car

Compare the measured
temperature with a
threshold

-Easy to deploy
-Low cost

-Performance varies in different
weather conditions
-Ad-hoc temperature thresholds

[10]–[12] Capacitance sensor
embedded in the seat

Measure and analyze the
variation trend/pattern of
capacitance

-Easy to design
-Fast response
-Low cost

-Performance varies from person to
person due to body differences

[9]
Radio frequency
identification (RFID)
tag

Detect the electrical
continuity within the
passenger seat

-Easy to manufacture
-Fast response

-Limited coverage within the passenger
seat
-Lack of universal criteria

[169]–[171]

Passive infrared
(PIR) sensor inside
the car

Measure the interior
motion information such
as intensity and direction

-Easy to deploy
-Low cost

-Covering line of sight (LOS) with
respect to the PIR sensor
-Vulnerable to surrounding temperature

A. Sensor-based Occupancy Detection

As shown in Table II, sensor-based occupancy detection
methods [7]–[13], usually leverage different kinds of physical
sensors such as weight, heat, force, capacitance, Radio fre-
quency identification (RFID) to capture the weight, pressure,
temperature, electrical continuity, capacitance, etc. elicited by
the presence of passengers and then perform further occu-
pancy analysis. This kind of methods is usually very easy to
design, manufacture and deploy with affordable cost to most
of Original Equipment Manufacturer (OEM) and customers.
However, there are three main drawbacks of this kind of
methods. First, as the equipment/sensor positions are usually
pre-designed and thus fixed, they tend to suffer from very
limited coverage within/next to the seats in the car. Second,
it is very challenging to find a universal threshold suitable
for different cars and human beings. For example, it takes
different thresholds to detect the presence of people with
different weights. Otherwise, it causes high false positive rate
(FPR) if the threshold is too small while high false negative
rate (FNR) if the threshold is too large. Third, most of them
lack the ability to distinguish human from inanimate objects.
For example, weight-based approaches cannot tell apart a box
from a human as long as they are of the same weight.

B. WiFi-based Occupancy Detection

As more vehicles are being equipped with WiFi transceivers
[172]–[174], WiFi-based occupancy detection approaches
[16]–[18] are becoming popular due to their superiority in
cost and coverage as shown in Table III. The principle behind
WiFi-based occupancy detection is that the presence or activity
of a human being inside a car can affect the WiFi signal
propagation between a transmitter and a receiver, which is
embedded in the channel state information (CSI) measure-
ments and can be extracted by a dedicated algorithm. For
example, Zeng et al. [17] proposed an approach based on
statistical electromagnetic (EM) modeling, which can achieve

over 96.4% detection rate with less than 3.96% false alarm
and a responsive time ≤ 20s based on the tests over 5 real
babies. [18] presented a portable CPD solution that can work
on both 2.4 and 5 GHz commercial off-the-shelf (COTS) WiFi
equipment by detecting biological movements at 1 − 6mm
level. While WiFi-based solutions enjoy low-cost and good
coverage, they may suffer from distortions due to the activities
outside a car such as cars passing by, since WiFi signals can
penetrate the car exterior under certain conditions. Besides,
other factors [175] such as channel frequency offset (CFO),
sampling frequency offset (SFO), symbol timing offset (STO),
and jitters of the phase-locked loops (PLLs) [176] may reduce
the CSI quality and thus degrade the robustness of WiFi-based
solutions.

C. Image-based Occupancy Detection

To accurately estimate how many seats are occupied and
further localize and recognize the objects1, image-based ap-
proaches are extensively studied [19]–[21], [164], [177], [178]
because an image can provide more visible information such as
the contour/edge of an object than WiFi signals. By leveraging
techniques such as edge detection [19]–[21], and learning
including convolutional neural network (CNN), multi-task
learning [164], which can automatically identify object-related
features for recognition, great performance can be achieved.
However, as shown in Table IV, capturing high-quality images
requires dedicated cameras and it takes efforts to construct a
good dataset to train the network, especially for manual data
labeling and annotation. For better privacy protection, thermal
images [178] are captured and then fed into a CCN network
based on multi-task learning technique. The work in [164]
designed a CNN network which is pre-trained from the exist-
ing CNN models including ResNet152V2 [180], DenseNet121

1Few of the WiFi-based approaches can localize and identify an object
occupying a seat as the time and space resolution of COTS WiFi is limited by
the bandwidth (20MHz-80MHz) and the number of antennas (≤ 3 usually).



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJVT.2022.3174546, IEEE Open
Journal of Vehicular Technology

5

TABLE III: WiFi-based Occupancy Detection

Reference Devices & Input Methodology Results & Advantages Limitations

[17]
Commercial WiFi
transceiver embedded
in a closed car

Detect motion and
breathing of human using
smart AI algorithms

-Easy to deploy
-Response quickly
-Low cost

-Moderate FPR for out-car motions
-May miss breathing estimations thus
causing miss detection

[18] Commercial WiFi
transceiver

Detect biological
movement such as chest
movement

-Protect user privacy
-No blind-spot
-Hot spot integration

-Requires about 1 minute delay
-Public test results are not available
due to commercial privacy

TABLE IV: Image-based Occupancy Detection

Reference Devices & Input Methodology Results & Advantages Limitations

[19]–[21],
[177]

Two video cameras
installed in the first
and second row

-Video recording
-Laplacian formula for
edge detection
-OpenCV for motion

Easy to perform

-Call for dedicated camera
-Susceptible to illumination changes
-May have privacy issue
-Not accurate enough

[178]
FLIR1 One Pro
thermal camera under
the rear-view mirror

-Image capture
-Data augmentation
-Multiple-task CNN

-Protect the anonymity
of passenger identities
-Low power consumption

-Call for dedicated camera
-May need training for different cars
-Lack of generalization ability

[164]
Synthetic Dataset for
Identification2 of
Occupancy

-Image split for training
-Pre-train the network3

-Multiple-task learning

-Decision process is
clear to end-user by
using statistical metrics

-Only tested on 10 vehicles
-Not accurate enough with overall
79.87% accuracy

1 Forward-looking infrared (FLIR) 2 Public dataset in [179] 3 Including ResNet152V2 [180], DenseNet121 [181] and EfficientNetB0-B5-B7 [182]
architectures for feature extraction

TABLE V: Radar-based Occupancy Detection

Reference Devices & Input Methodology Results & Advantages Limitations

[22] Radar-on-chip
60GHz and 79GHz

-MIMO1 radar
-4D mmImage
-Occupant classification

-High resolution
-Accurate
-Single-chip

-Extra hardware needed
-Work in LOS condition
-Complexity is hard to tell

[23] MIMO Radar 60
GHz, FMCW

Breathing movements
detection

-Seat position
-Object recognition

-Extra cost
-Results for awake/in-motion child
are not mentioned yet

[24] Radar EVB2 60GHz
-Remind the driver when
the door is closed
-2D camera

-Occupant classification
and positioning
-Chipset solution

-May need multiple radar sets
-Multiple-sensor fusion may require
high computational costs

[26] Radar on 60-64 GHz Radar techniques -Approved by FCC
-First sensor supplier

-To be evaluated by the market
-Method not available yet

[27] FMCW radar 77GHz Range-angle heatmap -Accurate within FOV3

-Location of the object
-Only works for FOV in ±60◦

-Practical validation is not presented

[28] UWB4 radar
-Spatial/time features
-2D convolutions
-MaskMIMO

-94.6% accuracy
-Lightweight
-Smooth realtime run

-8 nodes distributed in the car
-Need more testing scenarios5

-Tests on practical human needed
1 Multiple-input and multiple-output (MIMO) 2 Evaluation board (EVB) 3 Field of view (FOV) 4 Ultra-wideband (UWB)
5 Only testing results in the garage and outdoor parking lots are provided. More tests such as street parking are needed since passing-by cars may cause
interference on the received signal and thus degrade the performance.

[181], and the most recent EfficientNetB0-B5-B7 [182]. The
system yields about 79.87% accuracy on the public synthetic
dataset for vehicle interior rear seat occupancy (SVIRO) [179]
to classify people and inanimate objects over 10 different
vehicle interiors and 25,000 scenarios. As seen, the accuracy
is limited because different vehicles have different background
information which challenges the classifier greatly.

D. Radar-based Occupancy Detection

Recently, the unprecedented development of radar tech-
niques [183]–[188], especially millimeter-wave (mmWave)

radar has offered new opportunities for occupancy detection,
classification and localization since mmWave can provide
better directionality, angular, angular, and range resolution due
to its high frequency and large bandwidth. As shown in Table
V, recent years have witnessed the blossom of mmWave-
based occupancy detection systems [22]–[28]. For example,
Vayyar [22] presents occupancy detection and classification
by estimating the 4D image of the object. Texas Instrument
[27] demonstrates the feasibility of occupancy detection using
77GHz frequency modulated continuous wave (FMCW) radar
to construct the range-angle heatmap of the object.
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(a) Distribition of different categories. (b) Overall contribution. (c) Comparison of different methods.

(d) Overview of the existing work.

Fig. 2: Related works of in-vehicle fatigue detection. (The data is obtained by searching on Google Scholar with the
combinations of key words: driver fatigue, driver drowsiness, vehicle fatigue, vehicle drowsiness, automotive fatigue, and
automotive drowsiness. We review the top 600 related papers and patents, from which we find a total of 189 ones that
directly study the topic of in-vehicle fatigue detection. Accessed Mar. 11, 2022.)

Another major superiority of the mmWave system is that
it is easy to be integrated on a single chip [23], [24] or
a small unit [26], offering flexibility in device locations
and better portability. At present, Federal Communications
Commission (FCC) has been trying to enable State-of-the-
Art Radar Sensors in 60 GHz Band to increase the prac-
ticality of using mobile radar devices in the 60 GHz band
to perform innovative and life-saving functions, including
gesture control, detection of unattended children in vehicles
[189], which provides legislative support and incentives for
mmWave-based occupancy detection approaches. Companies
such as Innosent [23], Infineon [24] and NOVELIC [25] have
announced their system-on-chip (SOC) solution of presence
detection. In February 2021, IEE VitaSens [26] launched
VitaSense [190], an interior radar sensing solution for CPD
in vehicles, with grant from North America and Science and
Innovation, Science and Economic Development (ISED) of
Canada [191], [192]. While mmWave is very encouraging, it
is yet to be integrated with the current in-car system (most on
2.4GHz and 5GHz) without additional hardware cost.

III. DRIVER FATIGUE DETECTION

Fatigue, which degrades perception, delays reaction, and
impacts judgment of a driver on his/her surroundings, has
been shown as a prime culprit for over 20% of car accidents
[4]. What is worse is that drivers are more prone to feeling

fatigue or drowsy nowadays since the roads are becoming
more crowded due to the rapid increase of motor vehicles
[29] and thus the drivers have to be more focused. It is
imperative to seek effective solutions for fatigue detection and
prediction so that smart cars can sense the status of the driver
and respond accordingly, such as sounding a warning/alarm
message with an audio assistant system. To meet the demand,
various research and commercial solutions have been proposed
as summarized in Fig. 2.

A. Fatigue Detection Using Biological Signals

By directly measuring the variation of biological response
related to the human neural system, biological signal-based
(e.g., EEG [49]–[66], ECG [32]–[48], and EMG [67]–[76])
fatigue detection has been viewed as the golden standard,
and the related works are summarized in Table VI and Table
VII. In most of these approaches, users are asked to wear
a number of electrode pads for data collection. Then, pre-
processing techniques such as Finite Impulse Response (FIR)
filter, Infinite Impulse Response (IIR) filter [34], Principal
component analysis (PCA) [59], empirical mode decomposi-
tion (EMD) [193] and fast independent component analysis
(FastICA) [34] are adopted, which aim at removing the noise
and artifacts while retaining the signal components within a
certain range of frequency. Afterwards, the cleaned signal is
fed into some feature extraction module to get the fatigue-
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TABLE VI: Biological Signal-based Fatigue Detection-Part I

Reference Devices & Input Methodology Results & Advantages Limitations

[52]
Smartwatch with
bluetooth for EEG
signal acquisition

Support vector machine-based
posterior probabilistic model
(SVMPPM)

-91.92% detection accuracy
-83.78% early detection
-Evaluate by headband as
the ground truth

-Wearable devices are needed
-Only evaluated on simulated
driving experiments

[53] EEG sensor
-α and β information
extraction
-Normalized Haar WPT1

Only single-channel EEG
signal is needed

-User has to have physical
contact with EEG sensor
-Tested on public database

[54] EEG sensor
-Hierarchical clustering to
assess the subject variability
-Subject-transfer framework

-Greatly reduced the
calibration for about 90%
-Robust over different users

Only the data from a
simulated driving task is used
for validation

[55]

Neuroscan EEG
system with 40
electrodes covering
the head area

-Temporal dependencies
extraction
-Spatial features fusion
-Spatial–temporal CNN

-97.37% detection accuracy
-High computational
efficiency and low delay

Only laboratory and simulated
driving data are captured for
validation

[56] EEG sensor attached
on the head area

Enrich the EEG data with the
intensity of head-movements

-Low-power consumption
-On-chip feature extraction

6 subjects in one hour
monotonous simulated driving
experiment

[57] EEG sensor attached
on the head area

-Feature weighting to learn
the importance of different
features
-Episodic training for domain
generalization

Subject adaptive with no
need for calibration

Details of experiment setup is
not available

[58] EEG sensor attached
on the head area

-Fused multiple entropies
-Autoregressive (AR) model
-Channel selection

-Leave-one-out
cross-validation
-98.3% detection accuracy

Data is captured from 12
healthy subjects on simulated
driving experiments

[59] EEG sensor attached
on the head area

Principal component analysis
(PCA)+DNN2 95% detection accuracy 6 healthy volunteers in a

simulated driving experiment.

[32] ECG sensor
-Genetic algorithm and
support vector machine (SVM)
-Mercer kernel

-97.01% detection accuracy
-Average delay of 0.55ms

Details of experiment and data
acquisition are not available

[33]
Collecting ECG
signal using DIY3

device

-HRV4 characteristics
-Power spectrum ratio
β/(θ + α)
-Sample entropy

-No need for patch
electrodes
-Realtime implementation
-High integration

Experiment was performed in
simulated driving conditions

[34]

-ECG electrode
placed on wrist
-Camera for ground
truth
-Manually labeling

-FIR and IIR5 filters to remove
the effect of noise and artifact
-FastICA6 to estimate the
independent components
-SVM and KNN7

-Two-class detection
provides better accuracy
than 5 states8

-≥ 93.1% classification
accuracy

-Simulated driving data is
collected only
-Intrusive data collection
which may distract the driver

[35]

-Wearable ECG and
PPG9 sensors
-Polar H7 strap and a
PPG sensor

-Recurrence plots (RPs)
generated from the R–R
intervals (RRIs) of heartbeats
as features of CNN

Overcome interference
from the slight movement
of subjects on data
acquisition

Only data collection from a
virtual driving environment

[36]

-Infrared (IR) camera
-LAB DAQ10device
-ECG sensor with
Ag–AgCl electrodes

-Higher order spectral feature
-Linear discriminant analysis
-Quadratic discriminant
analysis

Overall maximum accuracy
of 96.75%

Driving monotonously on a
driving simulator at a limited
speed for long hours to
simulate fatigue

[67]
EMG, GSR11and
bluetooth for data
acquisition

Variations of EMGs in
frequency-domain

-92% detection accuracy
-KSS12for ground truth
labeling

No practical measurement is
available

[68]
Surface EMG signal
from upper arm and
shoulder

-Five features including range,
variance, spectral power and
kurtosis, and shape factor are
fed to a KNN classifier

90% detection accuracy
over 13 testers

Driving simulator on a
monotonous route

1 Wavelet packet transform (WPT) 2 Deep neural network (DNN) 3 Do it yourself (DIY)
4 Heart rate variability (HRV) 5 Finite Impulse Response (FIR), Infnite Impulse Response (IIR) 6 Fast independent component analysis (FastICA)
7 K-nearest neighborhood (KNN) 8 Normal, drowsy, fatigue, visual and cognitive inattention 9 Photoplethysmograph (PPG)
10 Data acquisition (DAQ) 11 Galvanic skin response (GSR) 12 Karolinska sleepiness scale (KSS)
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TABLE VII: Biological Signal-based Fatigue Detection-Part II

Reference Devices Methodology Results & Advantages Limitations

[69]

DIY EMG data
collection system
with electrode on the
surface of cloth with
thickness ≤2mm

-Special design of amplifier
-FastICA and digital filter
-Kolmogorov Smirnov Z analysis
-Mahalanobis distance

Noncontact data
acquisition from biceps
femoris

Driving simulator on a
monotonous route

[70]
EMG sensor
collecting data during
driving a truck

Mean frequency (MNF), median
frequency (MDF), and the signal
RMS1 amplitude

10 healthy volunteers Physical contact with users

[193]

Non-contact EMG
sensors located in a
cushion on the
driver’s seat

-FastICA, denoise by EMD2

-PCA and multiple linear
regression study linear relation
among features

-12 healthy males
-Model based
-91% detection accuracy
from 13 testers

Simulated driving
experiments

[194]
-Wearable chest-strip
with sensor
-HRV estimation

The weighted mean (WM) and
the weighted standard deviation
(WSD) of the high frequency
(HF) band in the power spectrum

Results of SVM, random
forest and KNN are
demonstrated

-Virtual driving environment
-Physical contact with user
for data collection which may
distract the driver

[195]

ECG, EEG and PSG3

sensor are used for
HRV and ground
truth data collection

-Eight HRV features are
monitored
-Multivariate statistical process
control

-92.3% detection
accuracy over 34 testers
-1.7 times false alarm
per hour

-Data collected in a virtual
vehicle simulator
-Physical contact needed for
data collection

[196] -Cheststrap
-Wrist watch

Multi-layer artificial neural
network and SVM

91.3% detection
accuracy Wearable sensors

1 Root mean square (RMS) 2 Empirical mode decomposition (EMD) 3 Polysomnography (PSG)

related features such as α and β information, inter-beat-
interval (IBI), spatial spectrum, temporal dependency, varia-
tion, kurtosis of the power spectrum etc. To get the fatigue
information, most of the existing works tend to formulate
the problem as a discrete classification problem, such as
support vector machine (SVM), deep neural network (DNN),
K-nearest neighbor (KNN). It is worth to note that the discrete
classification model is very straightforward by feeding the
data into the well-studied classification models, which can
usually achieve reasonably good performance. However, the
manual labeling process of fatigue can be error-prone, since
the evaluation is subjective and even the most experienced
biological experts may get confused in distinguishing fatigue
and normal status. For this reason, decision making-based on
Fuzzy Inference System (FIS) [197]–[199] have been studied
in assisting driver’s fatigue detection since it is hard to quantify
human’s neuron response even for the same activity. Another
main drawback of fatigue detection using biological signals is
the requirement of many wearable sensors, which may distract
the driver. Less intrusive sensors are being considered before
such methods can be widely accepted by the market.

B. Fatigue Detection Using Independent Facial Features

Without requiring wearable sensors, image/video-based fa-
tigue detection using facial features has become popular, such
as those based on face recognition [77]–[96], eye detection
[97]–[110], and the combination of the features extracted
from face, eye, mouth, etc. In most of these approaches, a
face/eye/mouth region detection module is firstly designed
to refine the input image to remove redundant information
outside the region of interest. As shown in Table VIII, region

recognition methods include you only look once (YOLOv-
CNN) [200], multi-task cascaded CNN, DLIB keypoint detec-
tion [201], etc. The next step following the region detection
is to extract the fatigue-related visible features such as eye
open/close/gaze, mouth open/close, face being twisted or not.
Afterwards, the joint analysis of the extracted features is per-
formed. For example, the percentage of eyelid closure over the
pupil over time (PERCLOS) of a driver larger than 80% [202]
is a strong indication that he/she is drowsy, even though the
specific threshold/percentage may vary from person to person
and at different time over a day. In this case, by continuous
monitoring, if the system further detects that the driver yawns
more frequently than usual, there is a high probability that
he/she is sleepy and thus an alert can be triggered. In the
last, different strategies can be adopted such as Two-stream
neural network, Adaboost classifier, Fuzzy inference fusion,
and long-short-term-memory (LSTM) network to output the
final decision.

While many related works have been proposed with their
own advantages and drawbacks, as shown in Table VIII, they
share several common limitations: 1) Putting a camera in front
of the driver during driving may not only induce privacy
concern but also distract the driver and thus increase the risk
of accidents; 2) Many of the related works are studied on
public datasets such as WIDER FACE [77], National Tsing
Hua University Driver Drowsiness Detection (NTHUDDD)
dataset [78], [112], [203], YawDD dataset [88], [204], CEW
Database [97], ZJU Database [97], BUAA Eye Database [97],
most of which are collected in a laboratory environment
when the driver is driving on a simulator. As a result, it is
really hard to conclude about the practical performance since
human beings tend to have very different biological reactions
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TABLE VIII: Fatigue Detection Using Independent Facial Features

Reference Devices & Input Methodology Results & Advantages Limitations

[77]

-Camera for
self-built data set
-Public data set
WIDER FACE

-Improved YOLOV3-CNN for
facial region detection
-Eye feature vector(EFV) and
mouth feature vector(MFV)

-Detect the fatigue state
at a speed of over 20fps
with 95.10% accuracy
-50 test drivers

Simulated driving experiments

[78]

-National Tsing Hua
University Driver
Drowsiness Detection
(NTHUDDD) dataset
-Video clips for
labeling

-Multiple-task cascaded CNN
-Static features extraction from
a partial facial image
-Dynamic features extraction
from a partial facial optical flow
-Two-stream neural network

An accuracy of 97.06%
over 36 subjects of
different ethnicities on a
public dataset

-Practical validation is not
provided yet
-Privacy concern, which is
common for all image based
methods

[79]

-57 normal videos,
94 slightly fatigued
videos and 49
severely fatigued
videos.

-Face key point detection
-Multi block local binary
patterns (MB-LBP)
-Adaboost classifier
-Fuzzy inference system

-≥ 94.7% accuracy
-Detection speed is 53
frames/s

When the driver wears glasses
or the face rotates at a large
angle, the accuracy of the
algorithm decreases

[80]
YawDD dataset [88]
and self-built dataset
with 10 volunteers

-Multiple-task CNN for face
detection
-DLIB1 to localize the key
points of face
-LSTM2 for classification

-≥ 93% accuracy
-Reduce half of the
running time than DLIB

-The detection performance
under insufficient light still
degrades
-System vulnerable to light
conditions

[81]

-Extended
Cohn-Kanade dataset
-Psychological image
at stirling dataset

-Facial landmarks
-OpenCV for image processing
-DLIB for feature extraction

82.79% detection
accuracy

No practical validation is
provided

[97]

-CEW Database
-ZJU Database
-BUAA Eye
Database

-Dual-stream bidirectional CNN
-Eye gaze pattern analysis
-Eye screening mechanism
(ESM) to eliminate the detected
errors

Improves about 2.9% in
the average accuracy
compared with using
CNN alone

No practical validation is
provided

[98]
-Infrared videos for
self-built data base
-ZJU Database

-CNN for eye state detection
-PERCLOS and blink frequency

Robust for wearing
glasses

Need active infrared light
(850nm) to fill light
illumination

[99] Raspberry Pi 4 Eye aspect ratio (EAR)
technique

-90% detection accuracy
-Under initial, wearing
spectacles, dim light and
microsleep condition

Not tested over enough
number of subjects

[100] Head-mounted
eye-tracking camera Fuzzy KNN Reach to about 89%

accuracy in average
Highway-driving simulator
experiment

[101]

-Dome camera
installed on the bus
-23 testers under
different lighting
conditions

-Eye openness detection using
spectral regression
-Adaptive integration to
estimate eye state

Explore the case when a
camera is in an oblique
view w.r.t. the driver’s
face

Validation is on simulated bus
driving videos

1 DLIB:an open-source software library 2 Long-short-term-memory (LSTM)

in practical driving. To expedite the real-world application,
efforts are still needed on developing highly efficient data
collection tools on practical driving for further validation; 3)
Most of the existing studies are based on the dataset when
users face right towards the camera, while few of them
have discussed the case if a user faces towards the camera with
an oblique angle, since driving can involve frequent activities
requiring head turns, such as checking the rear-mirror, looking
at the side mirrors before lane changes, etc.

C. Fatigue Detection Using Hybrid Analysis

As aforementioned, to capture high-quality images/videos
so that minute facial/eye/mouth changes can be extracted,

dedicated cameras are needed. In addition, under some cir-
cumstances, a strict installation angle/position is required to
make sure that the camera and user’s face are facing towards
each other. However, a driver has to keep checking the
surrounding environment during practical driving, the relative
position/angle between the camera and the driver’s face is
time variant, and it is impractical to assume that frontal
images are always available. To tackle this issue, some of the
existing works have explored solutions by studying how the
big motion of a driver, such as head movement due to nod,
arm/hand motion when moving their hands away from the
steering wheel unintentionally, can assist the fatigue detection,
because sensing big motions is always feasible during driving.
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TABLE IX: Fatigue Detection Using Hybrid Analysis

Reference Devices & Input Methodology Results & Advantages Limitations

[4]

-YawDD video
dataset [204]
-NTHUDDD video
dataset [203]

-Eye and mouth
characteristics
-Multiple-task learning
-PERCLOS and FOM1

98.81% fatigue detection
accuracy

-Privacy issue
-More practical validation
needed

[111] NTHUDDD video
dataset [203]

-Face and head gesture
based on FlowImageNet
-Facial feature
representation based on
VGG-FaceNet

-Performance comparison
with CNNs and LRCN2

-Evaluations on NTHUDDD
dataset with 36 subjects

No validation on real driving
conditions

[113]

-IEEE1394 camera to
capture the
gray-scale video
-Vicon optical
motion capture to
track the head pose

-AdaBoost, LGO3

histogram
-Support vector regressors
(SVRs)
-Particle filter to track the
3-D head motion

–Head pose, lip corner, eye
-14 subjects driver the
LISA-P4 for experiments
-Different round-trip routes
at different times

-Near-IR illuminator to ensure
the light conditions
-Performance degrade when the
yaw of head approaches 90◦

[114],
[115],
[205]

Distributed camera
framework

-Head pose and dynamics
-Facial features +
geometric relationships to
estimate the head pose
using a 3-D model

-Practical on-road driving in
urban streets and freeways
-Emphasis on events
inducing spatially large head
movements (e.g., merge and
lane change)

-Call for multiple cameras inside
the car
-Fusion among multiple cameras
may increase the complexity in
practical applications

[116]
Eye tracking and
accelerometer to
capture head motion

-Blink rate, yawn motion,
head motion
-AdaBoost and
multi-nomial ridge
regression

-Computer game driving
-96% and 90% accuracy for
within and across subjects
-Revealing a counterintuitive
observation that drivers
yawn less before fall asleep

No practical driving validations

[117] Kinect active sensor

-Eye behavior + arm
position + head
orientation + facial
expressions
-AdaBoost classifier and
Hidden Markov model

-Driving simulator over 8
drivers
-90% distraction detection
accuracy

-Manually labeling is time
consuming and error-prone
-Practical tests needed

1 Frequency of mouth (FOM) 2 Long-term recurrent convolutional network (LRCN) 3 Localized gradient orientation (LGO)
4 Laboratory for intelligent and safe automobile (LISA)

Although relying on sensing the big motion itself may not
be accurate enough for reliable fatigue detection as such big
motions can also happen when the driver is sober, they can
provide good auxiliary information.

Towards this end, many research works [111]–[128] have
been proposed by jointly analyzing the big motions and the
imperceptible changes corresponding to the subtle motion of
face/eye/mouth as shown in Table IX. For example, Part et
al. [111] presented a joint analysis on local facial expression
and head gesture using VGG-FaceNet and FlowImageNet
architecture, respectively. The results show that joint fea-
tures including both face and head can contribute about the
5% improvement in drowsiness detection accuracy over the
public NTHUDDD video dataset [112], which are collected
over 36 subjects including different genders and ethnicities.
While [111] is evaluated on a public dataset collected under
simulated driving conditions, Mittal et al. [113] develops a
fatigue detection system that combines the information from
head pose (with a particle-filter based 3D model to track
head motion), lip and eyes, which is then comprehensively
evaluated with 14 subjects driving a car on different round-
trip routes through the University of California campus at

different times, including morning, afternoon, dusk, and night.
Further studies also involve the head pose dynamics [114],
[115], [205], head orientation and arm position [116], [117],
which improve the fatigue detection accuracy by 2% - 10%,
compared to the benchmark methods using only facial features.
To further handle the time-variant relative position between
the camera and a driver’s face, multiple cameras can be
distributed around the car for data acquisition [114], [115],
[205]. Although the fatigue detection accuracy is improved,
many new practical problems arise as well, such as the cost
of hardware, deployment, computational complexity, and more
importantly how to fuse the information from multiple cameras
while satisfying the real-time detection requirement.

IV. DRIVER DISTRACTION DETECTION

Driver distraction, which can increase the risk of accidents,
may be caused by many factors. As introduced in Section
I, there exists no universal definition for distraction during
driving [208]–[210], and a widely accepted concept is that,
any activity that takes a driver’s attention from driving belongs
to the cause of distraction [129] such as talking to passen-
gers, using mobile phones, under different kinds of negative
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(a) Distribition of different categories. (b) Overall contribution. (c) Comparison of different methods.

(d) Distribition of different categories in different years.

Fig. 3: Related works of in-vehicle distraction detection. (The data is obtained by searching on Google Scholar with the
combinations of key words: driver distraction, driver inattention, driver behavior, vehicle distraction, vehicle inattention,
automotive distraction, and automotive inattention. We review the top 700 related papers and patents, from which we find a
total of 168 ones that directly study the topic of in-vehicle distraction detection. Accessed Mar. 15, 2022.)

TABLE X: Distraction Detection by Joint Sensing of Vehicle and Human

Reference Devices & Input Methodology Results & Advantages Limitations

[130]
-Prototype vehicle
CAN1 bus
-Dynamic vehicle data

-Non-intrusive and
real-time detection
-Driving with secondary
tasks

Up to 95% detection
accuracy

Data is collected by using a
static driving simulator

[131] -Vehicle CAN data
-Motion sensor

Focus on perceivable
distractions with leg and
head movements

-Over 90% detection
accuracy
-Real-time testing

Testing route is limited

[132] FaceLAB eye tracker
[133]

-Eye and head movements
-Laplacian SVM and
semi-supervised extreme
learning machine

Semi-supervised learning
improves about 2.45% using
unlabeled data

-Constrained experiment settings
with limited driving behaviors
-Performance on unsupervised
learning needs to further evaluate

[129]

-CAN-Bus data
-Head tracking images
-150 minutes
distracted and 50
minutes attentive data
[206]

-Joint use of head and the
information of a car itself
-Long-range temporal
context of driving and
head tracking data
-LSTM

-Accuracy of up to 96.6%
-30 participants (12 female
and 18 male, aging from 23
to 59)

-Constrained distracted activities
during driving
-Performance degrades under
complicated driving behaviors
-Straight route with moderate
traffic density

[134]
-Stereo vision system
-Lane position sensor
-CAN vehicle sensor

-SVM
-Attention mapping
algorithm

-12 professional drivers
driving Volvo FH 12 truck
-Accuracy varies from
10% to 99%

Performance varies a lot due to
different relative angles between
the camera and driver

1 Controller area network (CAN) [207]

emotions including anger [211], anxiety [212], sadness [213],
etc. As shown in Fig. 3, the community has been exploring

how to detect/prohibit distraction in many different directions
to improve driving safety. One example is that playing with
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mobile devices when driving is legislatively prohibited in
most countries. Besides, car manufacturers are adding more
convenient designs such as integrating switches of phone-call,
music-playing, cruise-setting on the steering wheel area so
that a driver does not need to move his/her hand off the
steering wheel when they have to utilize related functions.
Also, some of the amusement features are disabled during
driving such as that Tesla [214] stops allowing drivers to play
video games during driving. However, there exists a conflict
between simplifying the design/functions and satisfying the
users. In other words, to make the car more intelligent and
improve the driving experience, manufacturers have to develop
and integrate more functions (e.g., entertaining, relaxing),
which again will increase the chance of distraction. Therefore,
an automatic distraction detection system is needed, which
can alert a driver, or more intelligently, provide real-time
corrections whenever distraction is detected.

A. Distraction Detection Based on Joint Sensing of Human
and Vehicle

Among the many distraction detection studies [129]–[135],
joint sensing of the vehicle and human status is firstly pro-
posed, as shown in Fig. 3 and Table X. Tang et al. first
[130] presented a driver’s distraction system by leveraging the
vehicle data (usually including speed, steering angle, position
of the accelerator pedal, the brake pedal, etc.) gathered from
the vehicle controller area network (CAN) [207] system, which
is then fed into an SVM classifier for distraction detection.
Later, motion information which mainly corresponds to the big
motion of the human body such as body/leg/arm movements
were further involved in [131] and yielded about 90% detec-
tion accuracy. To further improve the accuracy, the relationship
between the head motion and distraction was studied in [132]
and then fused with the vehicle data [134], which also explores
the time-domain information by utilizing LSTM-recurrent neu-
ral network. The correlation between eye glance and steering
movements was analyzed in [215], which verified the feasibil-
ity of distinguishing different types of distraction. To test the
performance, a real-time system was implemented in [129] and
30 participants were recruited to drive on a straight country
road while performing eight pre-defined secondary task (e.g.,
playing radio, setting the navigation to a destination) on the
multimedia interface to evoke distractions. In total, the authors
got about 150 minutes distraction data and 50 minutes attentive
data, which demonstrates about 96.6% accuracy.

While these works have shown promising results, most
of them are evaluated on the data collected from a driving
simulator or practical driving but following a simple route.
Although many efforts have been made to make the driving
simulator more realistic such as involving challenging routes,
playing sound around as distractions, experiences from a
driving simulator are still different from practical driving
[147], and the validations/findings from the aforementioned
works may not hold in practice. as shown by the degraded
performance during practical driving [129], [134], and it is
worthwhile to conduct more real-world data based studies.

B. Distraction Detection on Human Sensing

Instead of joint vehicle and human sensing, distraction can
also be detected based on human sensing only. The main rea-
sons are as follows. First, vehicle data is not always available.
Second, it is difficult to build a universal vehicle data-based
driving profile since driving behavior can be affected by many
external factors and a driver may respond differently to the
same stimulus. For example, braking frequency on a highway
and urban roads is different, while driving in snowy weather is
different from driving on a sunny day as well. In addition, the
measurement error of the CAN system is vehicle-dependent,
which again induces new noise in the vehicle-specific dataset.

Distraction detection based on human sensing only can be
mainly divided into two categories. Existing works in the first
category mainly leverage the visualized big motion (e.g., head
pose/orientation [136]–[139]) of the human body or the minor
motion involved in the eye movement/glance [140]–[142],
facial expression [143]–[145], and etc. For example, Zhao
et al. [136]–[138] introduced a distraction detection method
by utilizing the head pose estimator (HPE Resnet50) network
structure to extract the head pose/orientation (described in
Euler angle) of a driver [136], based on the 300W-LP [224]
and Annotated facial landmarks in the wild (AFLW) datasets
[225]. A similar idea was proposed in [137], [138], which
extracted the head pose using a coordinate-pair-angle-method
(CPAM) and then DNN for further classification. Praveen et
al. [226] demonstrated the feasibility of distraction detection
by tracking the face pose using a clustered approach based
on Gabor features. The full-scale information of a human
body was leveraged by an ensemble of ResNets in [227]
to distinguish distraction from images of normal driving,
yielding an accuracy of 94.28% on the American University
in Cairo (AUC) dataset. On the other hand, Rezaei et al.
[142] created a cascaded network using Haar-like Masks to
detect the subtle eye movement such as opening/closing for
distraction recognition, which could detect distraction from
both the frontal direction and an oblique angle of a tilted head
pose, making a big step towards practical applications. [141],
[219], [228] explored metrics such as eye gaze direction [228],
blink pattern [141], and on-road/off-road gaze duration [219].
[229]–[231] demonstrated the feasibility of using activities of
eyes and mouth, and a review of driver distraction detection
using facial expressions was presented in [144], [145]. Note
that the different features extracted from subtle eye/face/mouth
movements are usually fused [143] and then fed into various
classifiers such as AdaBoost, Random Forest, SVM, CNN,
DNN for distraction analysis.

Instead of using either the big motion [136]–[139] or minor
motion [140]–[145], [229]–[231], the second category [140],
[146], [146], [206], [216]–[223], [232]–[234] fuses features
from the big motion and minor motion together as shown in
Fig. 3 and Table XI. Although different features are extracted,
the main steps of this kind of methods can be summarized as
follows:

• Step 1: Image capturing using dedicated RGB/thermal
cameras, which are usually mounted on the wind-
shield/dashboard and pointed towards a driver’s face as
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TABLE XI: Distraction Detection by Sensing of Human Only

Reference Devices & Input Methodology Results & Advantages Limitations

[216]
-Full scale image
-AUC1 Distracted Driver
dataset

Bidirectional-LSTM
(BiLSTM) Networks

Classification accuracy of
92.7%

Practical data validation is
not provided

[217]–
[219]

Track and record the
duration of looking on or
away from the road

Context dependency and
the possibility to
self-pace from MiRA2

A real-time implementation
is demonstrated

Driving simulator experiment
with 16 bus drivers

[220]
Public database [221]
with full scale image
inside the car

-Supervised learning
-Combination of CNN
and random forest

Detection accuracy of 95% Public database under
controlled experiment

[222]
Driving simulator with
data acquisition using
Matlab simulink platform

-Euclidean distance
-Fuzzy logic and fuzzy
neural networks

-Driver-in-the-loop
experiments
-Within 20% estimation error

Practical driving test is not
provided

[223] Self-built dataset based
on AUC dataset model

-Encode and decoder
-Capsule network
-Face and hand detection

90% accuracy with 92%
precision score

The routine condition during
the experiment is not
presented

1 American University in Cairo (AUC) Distracted Driver Dataset 2 Minimum Required Attention (MiRA)

much as possible while not blocking his/her view.
• Step 2: Image pre-processing, such as resizing, noise re-

moval, enhancement, and region detection corresponding
to the driver’s arms, legs, hands, head, torso, face, mouth,
eyes, etc. Note that different region detection methods
may be designed for a specific purpose. For example, eye
detection takes a smaller window to capture more details
while body contour extraction requires full-scale images.

• Step 3: Feature extraction, construction, and classifica-
tion, which are closely related to the cascaded network
and the loss/objective function adopted. The two most
common feature extraction methods are shape-based (e.g.,
calculating the distance such as Euclid distance using
several key points in the image) and appearance-based
by leveraging the color, context, or correlations between
different images.

C. Cognitive Distraction Detection

Another type of distraction is cognitive distraction, which
is mainly caused by negative emotions of a driver such as
anger [211], sadness [213], and anxiety [212]. Since emotion
is mainly related to the activity of one’s brain and neural
system, cognitive distraction is hard to be detected using
the aforementioned detection approaches. It is possible that
one may have different behaviors under different moods.
However, different people have different ways of expressing
their emotions, and thus it may not be accurate to judge
one’s emotion purely based on his/her behavior. In this sense,
cognitive distraction is probably the most difficult type of
distraction to be detected [146].

Recent work [147] presented a review of the existing
research on in-vehicle emotion sensing, which, according to
the information adopted to sense emotion, can be divided
into biological signal based (e.g., ECG, Heart rate and blood
pressure, etc.) [235]–[242], speech signal based [243], [244],
facial expression based [245]–[251], behavior based [252],
and those using the combination of different features [148].
Biological signals-based methods can achieve good accuracy

because those signals are directly related to the physiological
response of a human being under different emotions. However,
capturing biological signals is usually intrusive and requires
physical contact between electrodes and human body, and is
not convenient for a practical driving scenario. In addition, bi-
ological signals are often very weak and thus highly vulnerable
to external distortions such as noise and unavoidable human
body motions. Note that Du et al. [148] have shown that the
joint use of biological features (e.g., heart rate extracted from
RGB images) and facial expressions from images can improve
the emotion detection accuracy by about 5%, which may shed
light on a new direction of cognitive distraction detection.

V. MORE APPLICATIONS OF IN-VEHICLE SENSING

In this section, we introduce two more other in-vehicle
sensing applications, especially those wireless sensing-based
techniques due to its superiority in cost and coverage.

A. Driver Authentication

As remote keyless system [253] has become standard equip-
ment for modern vehicles, most of them are still relying on a
token matching and rolling scheme, which has been reported
for several security concerns [150], [254]–[256]. Therefore,
enabling a smart driver authentication system can help to
protect a car from improper use without the permission of the
driver/owner [150]. Moreover, automatic driver authentication
can enable intelligent driver-specific adjustments, such as the
seat and mirror positions [149].

Towards this end, the works [150], [151] built a driver
identification system by sensing the driving behavior using the
data from the in-vehicle CAN system, with SVM and CNN
+ SVDD (Support Vector Domain Description) classifiers, re-
spectively. Face recognition techniques are leveraged in [152]
while [257] utilizes the On-Board Diagnostic (OBD) port
for collecting data about speed, pedal movement, fuel flow,
etc., which are then fed into a machine learning module for
classification. Biometric-based driver authentication methods
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have also been proposed using different biometric information
including palm prints and veins [258], brain waves [259],
and combinations of hand swipes, voice, and faces [260].
The authors in [149] presented a driver identification system
by recognizing the unique radio biometric information [261]
embedded in the CSI of commercial WiFi. A long-term driver
radio biometric database was built to train a generalized DNN
that is robust to the environment changes, and experiments
demonstrate up to 99.13% accuracy.

B. Driver Vital Sign Monitoring

In-vehicle health/vital sign monitoring has also become
attractive recently, because vital sign signals such as heart rates
can help to improve other in-vehicle sensing functions such as
emotion sensing [148]. Also, continuous health monitoring can
reduce the risk of accidents in unpredictable and imperceivable
health deterioration (such as a sudden pathological attack or
heart stroke, which is difficult to be detected based on emotion
or behavior sensing) of a driver when he/she is driving.

Existing works on driver vital sign monitoring include
the sensor-based methods [153]–[158], vision-based methods
[262]–[265] and radio frequency (RF)-based methods [266]–
[278]. The sensor-based methods require wearable sensors
such as photoplethysmography (PPG) [156], ECG [154],
[155], EEG [153], [279], voltage-controlled oscillators [157],
and electromagnetic coupled sensor [158] to capture phys-
iological signals for vital sign analysis. They are accurate
due to the direct contact with a human body but tend to
be cumbersome, uncomfortable, and distracting for a driver
when driving, thus hindering practical applications. Vision-
based methods [262]–[265] which usually leverage a camera
mounted inside a car to capture images/videos for vital sign
analysis, are less intrusive by reducing physical contact than
sensor-based methods, but raise privacy concerns and are
susceptible to illumination conditions, which again inhabits
the wide deployment. More recently, RF based vital sign
sensing systems have been gaining more interests since they
do not require any wearable sensor while preserving user
privacy and robustness over different illumination conditions.
Intuitively, RF signals reflected off human subjects will be
modulated [280]–[285] by body movements including chest
and heart movement due to respiration and heartbeat. As a
result, one can decipher the vital sign information embedded
in the received RF signals without any intrusion to a driver.

Currently, WiFi- [159], [160] and mmWave-based [286],
[287] systems are the two mostly adopted RF-based ap-
proaches for in-vehicle vital sign monitoring. For example,
Wang et al. [160] presented a WiFi-based multi-person (up to
4, a typical number of total passengers in a car) respiration
rate estimation system with subcarrier selection and trace con-
catenation, which yields up to 98.9% detection accuracy with
the respiration rate estimation error less than 1 respiration-per-
minute (RPM). Moreover, it [160] also explored the feasibility
of people recognition using the distribution of the respiration
estimations for a certain period. Although WiFi-based vital
sign sensing methods [160], [283], [284] have shown great
advantages in coverage, low-cost, and excellent portability by

reusing the existing on-car WiFi, they lack good spatial resolu-
tion for reliable heart rate sensing. As an alternative, mmWave
[163], [267]–[271], [273]–[278] has shown superior spatial
resolution because it operates in a much higher frequency,
with larger bandwidth and higher integration capability to
equip more antennas on a single chip, and many mmWave-
based vital sign monitoring systems have been proposed. For
example, the works [163], [267]–[269] (although not for in-
vehicle sensing) have demonstrated the feasibility of using
mmWave to extract breathing and heart rates simultaneously
[163], [268] and further estimation of heartbeat variability is
presented in [270], [271], [286].

Note that the aforementioned mmWave-based vital sign
sensing may not be directly applied to a driver’s vital sign
monitoring when he/she is driving because the vital signs are
very weak and thus easy to be overwhelmed by motions in-
volved in driving. Recently, by exploring the 2D-correlation of
the range-angle heat map of the received RF signal, Wang et.
al [274] proposed a motion compensation method to mitigate
the impact of interfering motions on driver vital sign moni-
toring when driving by aligning and then concatenating the
vital signals in different time intervals dynamically. Extensive
experiments show an estimation accuracy of 99.17%, 98.94%
and 94.11% for respiration rate, heart rate, and inter-beat-
interval estimations, respectively.

VI. DISCUSSION

Despite the significant achievements for in-vehicle sensing
applications, a number of issues still remain open for future
studies. In this section, we share several possible research
opportunities for interested readers.

A. Evaluation of the System

According to the surveyed approaches, there are two com-
mon limitations in evaluation. First, most of the published
works are evaluated on the data collected either under sim-
ulated driving environments or practical experiments along
with simple routines. Although many efforts have been made
to make the simulated experiments as natural as possible,
knowing a mistake does not really hurt, human beings under
simulated driving experiments will have much different physi-
ological responses from that of real-world driving [147], [288].
As a result, it is questionable whether the existing research can
be generalized to practical driving. Second, different methods
are usually evaluated on different datasets, and it is difficult
to judge which one is better by just comparing the related
approaches side-by-side because even a small difference in
data may affect the performance especially for data-driven
approaches. Therefore, it is worthwhile to develop highly-
efficient in-vehicle sensing data collection platform and build
more standard public datasets for comparison across different
methods.

B. Fusion of Different Features

Many of the existing studies [129], [131], [134], [135] have
shown that joint sensing over different features together can
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improve performance. However, few of them have studied
how much extra cost it takes during the fusion process.
For example, to train a network that can leverage sensing
features from both big motions (e.g., head/leg/arm) and small
motions (e.g., eye open/close) may take twice or even higher
computation and memory than that of utilizing just one of the
features. This is because that the network may suffer from
the Curse of Dimensionality [289] with the increment of the
number of features. Hence, the efforts needed to construct the
dataset and then train the network may grow exponentially.
Therefore, optimization of feature fusion is important for in-
vehicle sensing.

C. Personalized In-vehicle Sensing

Most of the current in-vehicle sensing studies aim at im-
proving the safety. However, with the development of auto-
motive techniques, drivers may expect to be able to adjust
the sensing functionality freely. For example, an elderly driver
may want the sensing system to pay more attention to his/her
own health status during driving, while another driver who
has a young baby on board cares more about his/her baby on
the back seat. Thus, personalized in-vehicle sensing which can
meet the various requirements on different functions may be
of interests.

VII. CONCLUSION

This paper presents a survey on the state-of-the-art in-
vehicle sensing technology. We classify the existing re-
search works into five topics, i.e., occupancy detection, fa-
tigue/drowsiness detection, distraction detection, driver au-
thentication, and vital sign monitoring. We discuss the mo-
tivation and main techniques adopted in each topic, explain
how these techniques are leveraged, and analyze the limitations
and possible future solutions. A high-level discussion about
the evaluation and feature fusion is provided to narrow the
gap between theoretical research and practical applications.
Personalizing in-vehicle sensing is also covered which may
inspire more research to improve driving safety while making
driving experience more customized.
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