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Intracellular delivery of materials has become a critical component of genome editing approaches, ex 

vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current 

technologies motivate development of next-generation systems that can deliver a broad variety of 

cargo to diverse cell types. Herein we review in vitro and ex vivo intracellular delivery approaches 

with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-

disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and 

laboratory-on-chip technology in advancing the field. 

Despite its essential role in biological research and therapeutic applications, the efficient intracellular 

delivery of exogenous compounds and macromolecular cargo remains a long-standing challenge. The 

limitations of established delivery technologies have hampered progress in multiple areas as the potential of 

exciting new materials, insights into disease mechanism, and approaches to cell therapy are not fully 

realized due to their delivery hurdles. This challenge can be viewed through the lens of two broad 

parameters: cell type and target material. Existing technologies are mainly focused on addressing a subset of 

combinations, specifically nucleic acid delivery (that is, transfection) to immortalized cell lines and certain 

primary cells. Some of the most exciting target cell types, such as stem cells and immune cells, are also the 

most difficult to address. Thus, methods of delivering almost any cargo molecule to any cell type are much 

needed. 

Although carrier-mediated delivery systems offer promise for nucleic acid transfection in vivo1,2, 

membrane-disruption-based modalities are attractive candidates for universal delivery systems in vitro and 

ex vivo. In this review, we begin with motivations driving next-generation intracellular delivery strategies 

and suggest relevant requirements for future systems. Next, a broad overview of current delivery concepts 

covering salient strengths, challenges and opportunities is presented. Following that, our focus shifts to 

prevalent mechanisms of membrane disruption and recovery in the context of intracellular delivery. Finally, 
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we highlight the potentially transformative role of nanotechnology, microfluidics and laboratory-on-chip 

approaches in shaping the field. 

Next-generation intracellular delivery 

Next-generation intracellular delivery solutions are required in diverse scenarios ranging from cell-based 

therapy and gene editing to regenerative medicine and fundamental biology (Fig. 1). Ex vivo cell-based gene 

therapies have demonstrated promise in clinical trials against human disease, with exciting examples 

including self-renewing haematopoietic stem cells and T cells for immunotherapy3–6. In haematopoietic stem 

cells, gene therapy to correct mutations in monogenic diseases such as severe combined immunodeficiency 

(SCID)-X1, Wiskott–Aldrich Syndrome, and -thalassemia has been achieved4. For T cells, novel function 

against tumour targets can be instructed by induced expression of specific T cell receptors and chimaeric 

antigen receptors followed by adoptive cell transfer5. Non-essential proteins used by pathogenic processes 

can be deleted by delivery of genome-editing nucleases, such as was recently demonstrated with ablation of 

the HIV-dependent CCR5 receptor necessary for infection in T cells7 or the haematopoietic lineage8. 

Moreover, induced secretion of cytokines, or programmed drug resistance and safety switches, can be 

engineered into these cell types by ex vivo manipulation4,6. Recent breakthroughs in gene editing with 

programmable nucleases offer an unparalleled opportunity to reach many of these goals9,10. Further afield, in 

regenerative medicine the importance of not relying on potentially mutagenic viral vectors for induced 

pluripotent stem cell production has spawned reprogramming efforts by direct delivery of proteins11, 

messenger (m)RNA transfection12, and micro (mi)RNA delivery13, among other possibilities. A common 

theme in these clinically relevant examples is the need to perform efficient and safe intracellular delivery. 

In basic research, nucleic acids, proteins, peptides, metabolites, membrane impermeable drugs, 

cryoprotectants, exogenous organelles, molecular probes, nanodevices and nanoparticles are all potential 

target materials for intracellular delivery. Current limited delivery capabilities, largely centred around 

nucleic acid delivery to cell lines, have already yielded dramatic progress with plasmid (p)DNA and mRNA 

for gene expression and small interfering (si)RNA and miRNA for gene silencing. Meanwhile, systematic 

delivery of protein biologics into living cells, such as active inhibitory antibodies and stimulatory 

transcription factors, represent a powerful yet largely untapped tool for decoding and engineering cell 

function14. Measurement of intracellular chemical and physical properties with innovative devices, sensors 

and probes is another frontier15. Probes engineered from functional nanomaterials—including 

nanoplasmonic optical switches16, carbon nanotubes17 and quantum dots18—have generated excitement in 

research communities for decades but ineffective intracellular delivery, a poor understanding of their 

interaction with biological environments, and toxicity issues have retarded their deployment in the cellular 

context. These delivery challenges are particularly acute in the case of important patient-derived cell types 

such as immune cells, stem cells and neurons19,20. 
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Taken together, the preceding examples (Fig. 1) lay down compelling motivations and requirements 

for next-generation intracellular delivery systems. In Table 1 we propose a set of guidelines to be considered 

by inventors. Regarding cell-based therapies, for example, decades of clinical trials indicate that the risks of 

ex vivo culture include karyotype abnormalities, genotoxicity, and exhaustion of proliferative potential3. 

Hence rapid and safe delivery protocols that maximize efficiency and cell viability while minimizing time in 

culture are crucial. For gene editing, a key issue is that transient ‘hit and run’ exposure of nucleases is often 

more favourable than indirect expression from DNA or mRNA, because it yields more control over dosage 

concentration and efficacy, and reduces off-target effects21. For induced pluripotent stem cells, delivery 

challenges may impede the use of the ideal combination of proteins, nucleic acids, and small molecules to 

provide the optimal reprogramming outcome. Furthermore, low cost transfection remains a barrier in many 

sensitive cell types at the level of basic research, and is even more problematic when considering scale-up 

for clinical protocols or industrial processes. Thus, next-generation intracellular delivery strategies must 

strive for original solution to address the decades-old challenge of delivering diverse cargoes to the 

intracellular space of a wide range of cell types. 

Many roads to one destination 

Intracellular delivery can be achieved by a range of carrier-based or membrane-disruption-based techniques 

(Fig. 2). Membrane disruption modalities are primarily physical, involving the introduction of transient 

discontinuities in the plasma membrane via mechanical, electrical, thermal, optical or chemical means. 

These approaches can be thought of as permeabilization or direct penetration modalities. A cell becomes 

permeable to a substance when disruptions in the membrane are of sufficient size to allow passage through 

the membrane. Alternatively, direct penetration employs a solid conduit or vehicle to concurrently penetrate 

the membrane and introduce cargo. Carrier-based approaches comprise various biochemical assemblies, 

mostly of molecular to nanoscale dimensions. The purpose of carriers is threefold: (1) to package the cargo 

and protect it from degradation, (2) to gain access to the intended intracellular compartment, and (3) to 

release the payload with the appropriate spatiotemporal dynamics. Carriers can be bio-inspired, such as 

reconstituted viruses, vesicles, cell ghosts, and functional ligands and peptides. They may be based upon 

synthesis techniques from chemistry, materials science and nanotechnology, involving assembly of 

nanoparticles and macromolecular complexes from organic and inorganic origins. Most carriers enter 

through endocytosis but some may exhibit fusogenic potential, endowing them with the ability to merge 

directly with the target membrane. 

In the case of nucleic acid delivery (that is, transfection), vectors are defined as constructs that 

contain foreign DNA for the purpose of expression or replication. Major vector types are plasmids, cosmids, 

episomes/artificial chromosomes, and viral vectors, of which only viral vectors are capable of unassisted 

entry. Viral vectors exploit the viral infection pathway to enter cells but avoid the subsequent expression of 

viral genes that leads to replication and pathogenicity22. This is done by deleting coding regions of the viral 
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genome and replacing them with the DNA to be delivered, which either integrates into host chromosomal 

DNA or exists as an episomal vector. At present, viral vectors are the most clinically advanced nucleic acid 

delivery agents owing to their high efficiency and specificity. They have been implemented in clinical trials 

for decades, being viewed as a promising approach for gene therapy22,23. In 2015, more than half of the gene 

therapy submissions to the Federal Drug Agency (FDA) relied on viral vector platforms based on lentivirus, 

retrovirus, adenovirus, or adeno-associated virus. For ex vivo applications, lentiviral transduction of the 

haematopoietic lineage is a prominent example3,4. However, challenges such as immune response, safety, 

and complexity of preparation are concerns for viral vectors22,23 and thus viral systems have struggled to 

gain FDA approval. To address these issues, researchers are developing new vectors and serotypes4. Table 2 

presents a comparison of strengths, challenges and opportunities for viral vectors, non-viral carriers, and 

membrane disruption-based delivery. 

Motivated by the limitations of their viral counterparts, hundreds of non-viral vectors and synthetic 

carriers have been designed, using vast combinations of lipid, polymer, and inorganic nanomaterials, 

sometimes featuring functionalization with ligands, cell-penetrating peptides and other targeting or 

stabilizing agents (see reviews1,24–26). Most carriers are designed for nucleic acid transfection, but recent 

efforts seek to expand their ability to co-deliver proteins or other biomolecules27. Nearly all carriers are 

taken up via specific endocytic pathways based on their cell surface interactions and physicochemical 

properties28–30. To reach the intended intracellular target, the cargo must escape endosomal progression, 

which otherwise leads to degradation in lysosomes or regurgitation back to the cell surface31. For lipid 

nanocarriers, which are considered the most advanced non-viral vectors for nucleic acid delivery, 

quantitative studies reveal approximately 1% of the nanocarriers escape from endosomes32. The exact 

mechanisms of escape remain elusive, however. Proposed explanations include endosome disruption, either 

by formation of transient lesions or vesicle lysis; active transport of dissociated products; or fusion of 

carriers or multi-vesicular bodies with the outer limiting membrane30–32. Apart from endosomal escape, 

another consideration is the kinetics of cargo release from the carrier, where delayed unpacking has been 

reported as a bottleneck to transfection efficiency33. Moreover, toxicity of carrier material and perturbation 

to membrane trafficking processes have been noted32,34. Manipulation of the host cell biology, using small 

molecules for example, represents an opportunity for boosting endosomal escape and delivery efficiency35. 

The design of stimuli-sensitive nanocarriers that respond to selective endosomal or intracellular conditions 

could also lead to improvements26. 

Carriers with fusion capabilities circumvent endocytosis by releasing their cargo directly into the 

cytoplasm. These systems were first inspired by viruses that deploy specialized surface proteins to induce 

fusion with target membranes36,37. Fusogenic carriers are bound by a phospholipid bilayer that hosts the 

fusion machinery. Examples include cell ghosts, dead cells that have their cytoplasm replaced with 

cargo36,37, and virosomes, loaded vesicles reconstituted to present functional viral proteins38. More recently, 
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cell-derived vesicles known as exosomes have been discovered to fuse with target cell membranes for the 

exchange of RNA and proteins between immune cells39. Although the exact fusion mechanisms are yet to be 

elucidated, such bio-inspired systems may represent a new generation of vehicles with which to overcome 

the poor efficiency and toxicity of synthetic carriers40. 

An inherent limitation of carrier systems is the restricted combination of feasible cargo materials and 

cell types. Target cells may not exhibit the appropriate receptors, surface interactions, endocytic activity, or 

endosomal escape pathways. Furthermore, potential cargo materials often display enormous variability in 

their properties, such as charge, hydrophobicity, size, mechanical properties, composition, and functional 

groups. They may not efficiently complex with the carrier, tolerate packaging, unpack properly, or be 

amenable to delivery in sufficient quantities for a given application. For example, cationic lipids readily 

form complexes with anionic nucleic acids to transfect most immortalized cell lines, but many blood and 

immune cells remain recalcitrant20,41. On the other hand, cell-type-specific uptake can be a characteristic 

deliberately employed to achieve controlled targeting of a cell population42. Furthermore, owing to their 

mechanisms of passive dispersion, carrier-based delivery is scalable and amenable to high throughput, with 

the ability to concentrate and protect limited amounts of cargo material for potent delivery. Related to these 

strengths, lipid nanoparticles and more minimalistic, compact conjugates are now in human clinical trials for 

in vivo delivery of therapeutic siRNAs1,2. 

Unlike carriers, membrane-disruption-based approaches are less dependent on cargo properties, 

being able to deliver almost any submicrometer material dispersed in solution. The ability to rapidly switch 

membrane-perturbing effects on and off enables temporal control and rapid, almost instantaneous delivery. 

A further strength of membrane-disruption techniques in vitro and ex vivo is the broad range of cell types 

and materials that can be addressed. Electroporation, for example, has a reputation for transfecting primary 

cell types that are otherwise recalcitrant to lipid nanoparticles and other non-viral transfection agents43. 

Membrane-disruption approaches may furthermore be combined with carriers to synergize the strengths of 

both, such as by delivering a nuclear-targeted DNA lipoplex to the cytoplasm44. They have also enabled 

several protein-delivery applications, including with antibodies, transcription factors and genome editing 

nucleases14,21,45,46. In primary human haematopoietic stem cells and T cells, for example, it was found that 

expression of Cas9 nuclease and guide RNA from plasmids was poorly tolerated, while direct delivery of 

Cas9–sgRNA complexes via electroporation improved efficiency, reduced off-target effects and normalized 

dosage control21,46. Such results highlight a trend towards direct delivery of macromolecules rather than their 

indirect expression from vectors. 

Traditionally, key weaknesses of membrane-disruption strategies have been (1) the inconsistent level 

of cell-to-cell plasma membrane injury, with too little rendering insufficient delivery and too much causing 

excessive cell damage; (2) poor throughput and scalability (for example, microinjection); and (3) inadequate 



Publisher: NPG; Journal: Nature: Nature; Article Type: Review 

 DOI: 10.1038/nature19764 

Page 6 of 22 

understanding of cell recovery, resulting in inefficient protocols47,48. Methods that employ severe thermal 

shock or electric fields may denature proteins or damage cell components49. Moreover, because of how 

membrane perturbation is administered in these techniques, they are often restricted to adherent or 

suspension cells. To overcome such challenges, new technologies are reinvigorating old approaches and 

concepts, suggesting that this may be a critical time in the development of in vitro and ex vivo intracellular 

delivery approaches (Box 1). Membrane disruption has seen promising advancement in recent years through 

nanotechnology, microfluidics, and laboratory-on-chip devices. Next, we cover the fundamentals of 

membrane disruption and repair before highlighting examples of technological progress in the field. 

The make and break of a cell membrane 

The plasma membrane can be perturbed by physical means, with mechanical force, thermal deviations, 

electromagnetic radiation and electric fields, or by appropriate biochemical agents, such as membrane-active 

peptides, detergents and pore-forming toxins50 (Fig. 3a). A relatively straightforward mode is mechanical 

disruption, where in-plane tensile strains of 2%–3% rupture a lipid bilayer51. Such mechanical disruption can 

be administered through solid contact52–54, fluid shear55–57, or hydrostatic/osmotic pressure58. Depending on 

the contact area and strain rate the applied force may either disrupt the membrane immediately, or first 

deplete membrane reservoirs59. For example, sharp objects like microneedles concentrate the force to a small 

region and presumably penetrate rapidly, while the ‘blunt’ and relatively slower onset of an osmotic shock 

tends to deplete global reservoirs before producing disruptions59. Thermal deviations may promote 

membrane defects through several mechanisms. First, the higher kinetic energy associated with 

supraphysiological temperatures gives rise to more intense molecular fluctuations and subsequent 

dissociation of lipids60. In live cells it has been shown that leakage begins at 42° C while temperatures above 

55° C promote rapid exchange of low-molecular-weight (<1 kDa) molecules60. Second, at the opposite end 

of the spectrum (<0 C), formation of ice crystals can trigger mechanical expansion and cracking of the cell 

membrane, which may be reparable upon thawing61. Third, within the physiological range (0°–40° C), 

passing the membrane rapidly through thermal phase transitions may lead to the generation of holes, 

especially at phase domain boundaries60,61. In electroporation, the electric charging of non-conducting lipid 

bilayers and ever-present thermal fluctuations conspire to create and expand a heterogeneous population of 

pores62. As membrane potential rises beyond 0.2 V, hydrophobic defects of thermal origin readily transition 

over their energy barrier and expand into hydrophilic pores of  >1 nm. Because small pores are poor 

conductors, their growth is energetically favourable while the field is maintained but slows down when they 

grow to a certain size62. Depending on the orientation of the electric field, these small pores may be 

unevenly distributed across the cell surface63. Alternatively, optoporation with lasers64 produces a hole on a 

discrete point on the cell surface, and may involve a combination of mechanical, thermal and chemical 

effects, depending on pulse parameters65. Possibilities include thermal dissociation, thermoelastic stresses, 

effects beyond the focal region (such as shock-wave emission and shear stresses from induced cavitation 
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bubbles) and generation of low-density free-electron plasma and reactive oxygen species. The latter leads to 

chemical degradation via peroxidation or reactive fragmentation of biomolecules65,66. Membrane defects 

from continuous-wave lasers are thought to arise from local heating, while nanosecond lasers produce a 

combination of heating, bubble formation and thermoelastic stresses. Femtosecond laser mechanisms are 

tunable on the basis of irradiance strength and repetition frequency, ranging from almost purely chemical 

effects to combinations of chemical and thermal degradation66. 

Various biochemical agents have been used to permeabilize cells, the most eminent of which are 

detergents and pore-forming toxins. Pore-forming toxins approach the cell membrane as soluble agents, bind 

to the cell surface, oligomerize, and insert as an assembled pore complexes67. The most often reported is 

Streptolysin O, owing to its ability to generate >30 nanometer large pores for the passage of proteins and 

large molecules68. Alternatively, detergents act by solubilizing membrane components. The amphiphilic 

plant glycosides digitonin and saponins are the most popular detergents for reversible permeabilization of 

cells47,48. Although the exact mechanisms are still a matter of study69, it is known that digitonin and saponin 

interact with membrane cholesterol, making them specific for the cholesterol-rich plasma membrane. 

However, the reported pore sizes are inconsistent, varying from a few nanometres up to the micrometre 

scale47,48,69. 

Upon plasma membrane injury, the cell must either reseal or die. Along with the intended influx of 

cargo, there is the entry of Ca2+, and the efflux of K+, proteins, amino acids, metabolites, ATP, and other 

cytoplasmic contents to contend with70. Inundation with reactive oxygen species and other toxic molecules 

may cause further damage to endogenous proteins and biomolecules49. Thus, cells urgently deploy repair 

pathways to reseal membrane disruptions and recover from the damage imposed (see recent reviews70–74). 

This repair is an active process, primarily triggered by the influx of Ca2+ down its 10,000-fold concentration 

gradient75. There is a marked consistency in the properties of the repair pathways, regardless of whether the 

source of damage is electrical, mechanical, optical, or even chemical70,74. Instead, membrane recovery is 

thought to depend on disruption size, collateral damage, temperature, composition of the extracellular 

medium, and cell type. Up to six membrane repair pathways have been proposed, primarily involving 

membrane-trafficking processes around the defect71. As the exact mechanisms remain controversial70,71,73,74, 

we illustrate three broad concepts here (Fig. 3b). First, Ca2+-dependent exocytosis and fusion of membrane-

proximal vesicles leads to resealing by patch formation75, but may also serve to reduce tension around the 

wound, or release lysosomal signals for membrane remodelling74. Second and third, for smaller disruptions 

of several hundred nanometres or less, endocytosis or exocytosis, respectively, may extract the lesion into a 

disposable vesicle. The timescales of these repair processes are anywhere from a few seconds to several 

minutes. 
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Taken together, to achieve effective membrane disruption-based delivery, the disruption must be 

sufficient to introduce the intended cargo, yet the cell must be capable of repairing itself without permanent 

damage. The membrane-disruption step usually occurs on a sub-second timescale; molecules then diffuse, or 

are driven, into the cell while repair and the associated contraction of holes takes place over seconds to 

minutes (Fig. 3c). This is followed by a longer phase involving restoration of cytoplasmic composition, 

stress response and possible alterations in transcription70. The influx and retention of molecules will depend 

on the size, lifetime and distribution of disruptions, as well as the properties of cargo molecules and their 

interaction with the cell50. Electroporation, for example, provides an electrophoretic force that may boost the 

influx of certain charged molecules63,76. 

Towards precision membrane disruption 

For decades, a leading delivery technique has been electroporation, with its ability to introduce diverse 

biomolecules to millions of cells per run. In a conventional setup, a solution with suspended cells is 

dispersed between parallel plates that apply a series of electrical pulses of determinable voltage, duration, 

waveform and frequency62,63,76,77. Compared to bulk electroporation setups, microfluidic designs offer the 

ability to localize the electric field to the scale of the cell (Fig. 4a). They can reduce the required voltage 

(often by 100-fold), provide superior heat dissipation, and incorporate flexible design features, such as 

hydrodynamic focusing to distance cells from potentially damaging electrodes78. An elegant and 

uncomplicated design was reported by ref. 79, who combined constant voltage with cells flowing through 

constrictions. The pulse strength was dictated by the cross-sectional ratio between the main channel and the 

constrictions, while the pulse duration was determined by speed of passage, thus avoiding the need for a 

pulse generator. Electroporation with a constant direct-current voltage has also been demonstrated for cells 

in aqueous droplets80. Owing to the non-conductivity of oil, cells only experience a transient electric pulse 

when the conductive droplets pass the electrodes. At the nanoscale, ref. 81 described a nanochannel 

electroporation system that uses a ~90-nanometre aperture to localize the permeabilization to a single point 

on the cell surface. This innovation enables the generation of a single large hole rather than the numerous 

small pores characteristic of conventional electroporation, which is less amenable to free passage of large 

materials. For example, conventional electroporation appears to exploit the charge of nucleic acids, such as 

plasmids and mRNA, in order to partially embed them in pores, resulting in subsequent internalization 

through active membrane-trafficking pathways rather than direct delivery81. In contrast, nanochannel 

electroporation achieves improved dose control, enhanced electrophoretic delivery deeper into the cell, and 

the ability to deliver materials that bulk electroporation often struggles to deliver, such as quantum dots. 

Classic options for membrane disruption via mechanical perturbation include scrape and bead 

loading of adherent cells54 or syringe loading of cells in suspension by repeated aspiration and expulsion 

through small gauge needles55. These methods provide coarse, inconsistent damage over a target cell 

population while being high throughput and low cost. On the other hand, modern microfabrication 
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technology is now enabling mechanical approaches with improved precision (Fig. 4b, c). Prominent 

examples include cell squeezing, nanoneedles, and exploding cavitation bubbles. Cell squeezing involves 

the rapid deformation of cells as they passage through microfluidic constrictions of around half to one-third 

of the cell’s diameter45. Diffusive delivery of a variety of cargoes including proteins, nucleic acids, quantum 

dots, carbon nanotubes and other nanomaterials has been demonstrated45. A major strength of squeezing is 

simplicity of the device, with no moving parts or need for an external power supply. The energy for 

membrane disruption comes from the flow through a static structure. Although the technology has shown 

applicability across dozens of cell types at throughputs up to a million cells per second, a current limitation 

is the correlation between cell size and delivery efficiency. For an asynchronous population, cells that are 

too large may be lysed, such as multinuclear cells. Alternatively, cells that are too small do not experience 

sufficient deformation to disrupt the membrane properly. This has prompted the design of various 

constriction geometries to address different sizes of cell45. 

Nanoneedles are another key development over the last decade, involving the generation of 

nanometre-scaled features capable of penetrating the cell membrane and providing access to the cytosol82. In 

the reported modalities thus far, the target material is delivered through one of three modes: (1) dissociation 

from the penetrating structure upon cytosolic entry82,83; (2) direct injection through a hollow nanoneedle or 

“nanostraw”84,85 or (3) the diffusion from the extracellular medium through holes after withdrawal of the 

needles44. For the first mode, the delivery of siRNA, peptides, DNA, proteins, and impermeable inhibitors to 

challenging cell types such as neurons and immune cells has been demonstrated83,86. Studies of the 

mechanism suggest that puncture does not occur upon initial cell contact, but requires active forces 

generated by cell spreading and formation of tension-promoting focal adhesions87. In the second mode, 

molecules have been successfully pumped into cells through nanostraws. A key benefit of this configuration 

is temporal control over delivery dynamics, volume, and dosage concentration, as well as possible gating 

with electric fields84,85. In the third mode, ref. 44 used a standard laboratory centrifuge to spin down a grid of 

diamond nanoneedles onto adherent cultured cells, followed by withdrawal and diffusive entry of cargo 

from solution. With this strategy it was possible to deliver a wide variety of cargo to primary neurons while 

maintaining >80% viability. For nanoneedles of diameter about 300 nm and height of about 4 m, the 

required force for penetration was estimated to be 2 nN per needle. These mechanistic studies emphasize the 

need for active force to generate efficient membrane disruption. Thus far, the challenges of these systems 

have included the difficulty of fabricating high-precision structures and implementing the concept at scale. 

Moving from solid to fluid (Fig. 4c)55, cone-plate viscometers, devices for generating a determinable 

shear force over a surface, have also been shown to transiently permeabilize apical membranes in cell 

monolayers56. Such observations inspired the design of microfluidic devices to expose cells to shear forces 

proportional to flow velocity through 50-300 micron tapered microchannels57. Although an interesting 

concept, reproducibly controlling fluid shear forces at this scale has generally proven difficult. One way 
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around this is to employ micrometre-sized cavitation bubbles88. Ultrasound phenomena, also known as 

sonoporation in the context of delivery, can produce cavitation bubbles in solution89and has been an 

intriguing permeabilization approach since its introduction in the 1980s90. However, a recent analysis across 

multiple published data sets indicates that ultrasound consistently struggles to deliver molecules with greater 

than 50% efficiency or 50% viability in vitro89. This was attributed to the operational mechanism of random 

and violent cavitation being heterogeneous, with some cells undergoing excessive damage while others 

remain unaffected. Targeted cavitation is a more promising idea, whereby a precisely positioned cavitation 

bubble is used to generate a local shear force at a given stand-off distance from a target cell91,92. Spatial 

control can be achieved by laser excitation of an absorbent particle or substrate. Recently, this concept was 

scaled up for deployment with cell monolayers93. Substrates arrayed with pores lined by metallic absorbers 

were irradiated underneath adherent cells. Exploding bubbles were synchronized with active pumping to 

successfully introduce large cargo, such as living bacteria greater than one micrometre, into the cytoplasm of 

several cell types. 

Bulk thermal insults are capable of perturbing the membrane for delivery of small molecules but 

detrimental effects on cell function preclude their implementation60,61. Thermal disruption may be more 

feasible if confined to a localized area (Fig. 4d). Indeed, gene transfection has been demonstrated with cell 

solutions processed through thermal inkjet printers94, although it is unclear whether membrane perturbation 

of passing cells arises from fluid shear effects at the nozzle, temperature spikes, or both. A more precise 

approach is the use of absorbent nanoparticles as nucleation sites for intense local heating65. Upon laser 

irradiation local perturbation effects may be due to thermal, chemical, or cavitation-mediated fluid shear 

phenomena. Recent efforts indicate that tuning the laser pulse parameters and properties of the absorbing 

particles can bias the mechanism towards a particular mode95,96. Although parameters are still being 

explored, a proof-of-concept study demonstrated conditions under which irradiation of gold nanoparticles 

was proposed to trigger localized thermal damage that permitted more than half of the treated cells to take 

up labelled antibodies97. 

As illustrated above, advances in micro- and nanotechnology are breathing new life into delivery 

modes that were once deemed impractical (Fig. 4). By concentrating precise membrane-perturbing effects to 

the cellular and subcellular scale, the potential exists to address applications that are underserved by current 

techniques. Early progress suggests that such techniques may be among the first real challengers to 

electroporation’s long-held dominance on membrane-disruption-based intracellular delivery. Nanoneedles 

and microfluidics, for example, have shown promising compatibility in stem cell reprogramming45, 

functional interrogation of primary immune cells86, and transfection of cultured neurons44. To achieve 

further advances, delivery efficacy and safety must be combined with scalability, tunable throughput, low 

cost and user-friendliness. 
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Outlook 

Every day in the research institutes and clinical centres around the world, scientists use kits and protocols 

based on viral vectors, lipid transfection agents, and electroporation, among other options. The complex 

mechanisms of established methods and their often unpredictable impact on cell behaviour have 

dramatically limited the scope of biological experiments and reduced efficacy of potentially promising cell 

therapy concepts. The biomedical research community would benefit greatly from a more mechanistic and 

transparent understanding of intracellular delivery, both to further the development of more robust 

techniques and to realize key medical and industrial applications. 

Effective and safe intracellular delivery systems facilitate progress across multiple fields from cell-

based therapies, gene editing and cutting-edge genomics to reprogramming cellular states and probing the 

intracellular environment (Fig. 1). Demand for effective solutions currently outstrips supply by a large 

margin, however. Nowhere is this aberration more greatly felt that in the treatment of primary and patient-

derived cells, including various types of immune cells, neurons and stem cells. Deep interdisciplinary 

coordination will be required to transform imaginative engineering solutions into technological platforms 

with biological compatibility and relevance. Mechanistic studies must seek to gauge delivery performance 

quantitatively, and to assess influx mechanisms, cell damage, and off-target perturbations associated with 

treatment. More rigorous analysis of these factors will benefit the field, and counterbalance the temptation to 

hype up technologies that are yet to prove their usefulness in the clinic or laboratory98,99. Issues related to 

scale-up, cost and compatibility with current goods and manufacturing protocols must be considered at an 

earlier stage of development. To this end, we anticipate that our guidelines in Tables 1 and 2 will assist 

researchers in selecting appropriate methods and help aspiring inventors to understand key requirements and 

areas of opportunity. 

As emerging intracellular delivery technologies take us beyond routine nucleic acid transfection and 

enable robust manipulation of previously recalcitrant cell types, we will be entering exciting new territory. 

The ability to deliver proteins, peptides, nanomaterials, molecular tags, and a variety of other compounds 

will enable unprecedented flexibility in our capacity to manipulate cell function and probe the intracellular 

environment. The systematic deployment of transcription factors to alter gene expression, or antibodies to 

label or block intracellular processes, could be revolutionary. With next-generation intracellular delivery, the 

development of molecular probes and nanomaterial sensors with which to analyse intracellular properties 

could facilitate both discovery and diagnostics with unprecedented accuracy. Future approaches could focus 

on targeting specific subcellular compartments—developing combinatorial strategies to direct materials to 

the endoplasmic reticulum, nucleus or mitochondria, for example100. 

Advances in nanotechnology and microfluidics will continue to expand the frontiers of membrane-

disruption-based delivery. Already, platforms harnessing the power of exploding bubbles, microfluidic 

squeezing, and nanoneedles have been transformed into commercial ventures. On the other hand, carrier-
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based technologies continue to develop, with new generations of viral vectors, endosome disruption 

strategies, stimuli-sensitive functional materials, and biomimetic inspiration from pathogenic mechanisms 

and membrane-trafficking processes. Progress in these fields will lead to new challenges, such as off-target 

effects and innate cellular responses against carrier and cargo alike. Solving this next generation of problems 

may hinge on our ability to understand current delivery mechanisms and to implement the analytical 

approaches necessary to characterize cellular responses. Despite the barriers that remain, we anticipate that 

next-generation technologies will translate beyond academic endeavours into portable, personalized, cell-

based diagnostics and the use of clinical intracellular delivery to engineer cell fate for therapeutic benefit. 
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Figure 1 | Intracellular delivery is a key step in investigating and engineering cells. Examples of 

application areas and molecular tools that require intracellular delivery for their realization. The subsets are 

not mutually exclusive. For example, gene editing may be employed in cell-based therapies, regenerative 

medicine, and genetic perturbation. TCR/CAR, T cell receptor/chimaeric antigen receptor; iPSC, induced 

pluripotent stem cell 
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Figure 2 | Map of the relationship between intracellular delivery approaches, basic mechanism and 

conventional physical and biochemical categorizations. Physical techniques produce membrane 

disruption either via permeabilization or direct penetration, while biochemical assemblies and viral vectors 

act as carriers to shuttle cargo through endocytosis. If a carrier has fusogenic potential, it may also enter 

through membrane fusion. Some biochemical approaches, such as detergents and pore-forming proteins, 

work via membrane permeabilization. For mechanical methods red arrows give an indication of active 

forces. Schematics in the centre show the four subcategories with molecular cargo (green), membrane 

(brown), and carrier material (purple). 

Figure 3 | Membrane disruption and recovery in the context of intracellular delivery. a, Schematic of 

plasma membrane disruption by mechanical forces (solid contact and fluid shear), thermal effects, focused 

lasers, electric fields, lodging of pore-forming agents that assemble into complexes, and the action of 

detergents that solubilize membrane lipids. b, Selected mechanisms of plasma membrane repair in the 

literature. Small disruptions (<100 nm) can be removed via endocytosis (i) and exocytosis or shedding of 

blebs (ii). Repair of large disruptions involves patching with endomembrane from intracellular vesicles 

(contents in light blue) (iii). See recent reviews for further details70–74 . c, Timescales of intracellular 

delivery via membrane disruption. Initially, membrane disruption permits the exchange of intracellular and 

extracellular contents, including cargo (green). Upon repair of membrane barrier function, delivered 

materials are retained while cellular recovery processes work to restore cytoplasmic homeostasis. 

Figure 4 | Selected modes of bulk, microscale and nanoscale approaches for membrane-disruption-

based intracellular delivery. Molecular cargo is shown in red. 

Table 1 | Ideal features of next-generation intracellular delivery systems 

Feature Justification 

Minimal cell 
perturbation 

• The exogenous vectors, materials or physical forces required to facilitate delivery can lead to 
off-target effects and toxicity 

• Prolonged culture duration associated with delivery and verification can lead to unintended 
fate or phenotypic changes, loss of proliferative or homing potential, genotoxicity, and 
karyotyping abnormalities and accumulated mutations 

• By minimizing the physical or biochemical manipulation necessary to achieve delivery, one 
can reduce undesirable side effects and maximize efficacy of the delivery process 

Scalability 

• Effective delivery systems must be amenable to implementation at different scales of 
throughput 

• Studying a rare cell subset may require only 100 cells per sample whereas an adoptive 
transfer T cell therapy can involve transfer of over 108 cells per patient 

• Considering cGMP-compliant processes at an earlier stage may accelerate clinical translation 

Universal 
across cell 

types 

• An ideal delivery system should be able to accommodate the diversity of physical and 
biological properties of potential target cells to ensure efficacy in the applications of interest 
This could be accomplished through exploiting relatively universal mechanisms to facilitate 
delivery 

Material 
independent 

• Delivery materials of interest may have diverse chemical and physical properties 
• To facilitate robust delivery an ideal delivery system should rely on a delivery mechanism that 

is independent of material properties(for example, if a delivery technology relies on 
electrophoresis to facilitate delivery it may not be compatible with uncharged materials) 
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Compatible with 
intracellular 

targeting 

• Distinct materials have different target sites within the cell (for example, siRNA and mRNA 
should facilitate the desired gene knockdown or expression effects in the cytosol, whereas 
DNA transcription requires nuclear localization) 

• A preferred delivery system must be compatible with various intracellular targeting strategies; 
specifically, it should provide robust delivery of material to the cytosol and not interfere with 
targeting motifs (for example, a nuclear localization peptide sequence) on the material 

Dosage control 

• The ability to control the maximum and minimum intracellular concentration may be key in 
some applications 

• Strategies that rely on indirect delivery by expression from nucleic acids are subject to cell-to-
cell variation and inherent signal amplification associated with transcription 

Cost 

• Cost and complexity of production/operation can limit the utility of a delivery technology 
• Effective delivery systems should use scalable, cost-effective designs that are amenable to 

clinical translation, compliance with cGMP standards, and large-scale manufacturing 

Table 2 | Strengths, challenges and opportunities for intracellular delivery approaches 

 Carriers Membrane disruption 

 Viral vectors Non-viral 

Strengths  Amenable to both in 
vivo and in vitro 
translation 

 Experience gained 
from advanced 
status in clinical 
trials 

 High efficiency of 
intracellular delivery 
due to viral 
exploitation of 
infection pathway 

 Amenable to both in 
vivo and in vitro 
translation 

 Packaging of delivery 
material can protect 
payload from premature 
degradation and 
potentially enable more 
efficient use of valuable 
materials 

 Capable of cell-specific 
and intracellular 
targeting 

 Passive, potentially high 
throughput 

 Delivery of diverse 
materials 

 Capable of addressing 
many cell types 

 Optionally vector-free (that 
is, non-immunogenic) 

 Transient, defined 
exposure to membrane 
disruption 

 Rapid, almost 
instantaneous delivery 

Challenges  Can trigger adverse 
host immune 
response 

 Limited to nucleic 
acid delivery 
(transduction) 

 Limited genome size 

 Many are cell-cycle 
dependent 

 Preparation may be 
expensive, time 
consuming, require 
extensive 
experience, and 
demand special 
safety measures (for 
example, BL2) 

 For integrating 
viruses, risk of 
genotoxicity 

 Limited tropism may 
restrict target cell 
types 

 Manufacturing 
challenges for 
scaling up, for 
example, quality 
control for vector 
potency 

 Inefficient and slow 
delivery, especially for 
carriers that enter via 
endocytosis (about 1% 
endosomal escape) 

 Carrier materials may 
perturb cell function or 
cause toxicity in 
unpredictable ways 

 In vivo targeting outside 
the liver has been 
difficult 

 Often restricted to 
delivering particular 
types of cargo (such as 
nucleic acids) 

 Unpacking kinetics may 
be unfavourable 

 Complex, laborious and 
expensive biochemistry 
or materials synthesis 
may be required for 
carrier preparation and 
manufacturing 

 Loss of cytoplasmic 
content 

 Some modalities (such as 
thermal and electric) can 
lead to excessive damage 
to organic molecules, 
protein denaturation, and 
internal membrane 
breakdown 

 Some approaches (such as 
microinjection) currently 
not amenable to high 
throughput 

 Some methods can be 
restricted to adherent-only 
or suspension-only cells 

 Less amenable to in vivo 
translation 
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Opportunities  Less-immunogenic 
vectors or evasion of 
immune response 

 Programmable 
tropism and 
specificity 

 Further development 
of hybrid viral 
serotypes 

 Potential of 
alternative viral 
species for new 
vector development 

 Improved production 
methods 

 

 Novel carriers that can 
efficiently co-deliver 
diverse cargos (for 
example, proteins + 
nucleic acids) 

 Manipulation of target 
cell biology to regulate 
membrane trafficking 
and increase delivery 
efficiency 

 Stimuli-sensitive 
nanocarriers 

 Leveraging direct fusion 
to bypass endocytosis 
(for example, 
exosomes) 

 Implementation of 
biomimetic functionality 
inspired by viruses, 
bacterial machinery, and 
exosomes 

 Microfabrication and 
nanotechnology enables 
fine control of physical 
phenomena and makes 
modalities that were 
previously intractable more 
feasible 

 A better understanding of 
cell recovery processes 
may allow mitigation of 
toxicity and functionality 
issues 

 Can be combined with 
carriers designed for 
subcellular targeting and 
controlled release 

 Engineered switchable 
valves in plasma 
membrane to dynamically 
control permeability 

 Versatile potential for in 
vitro and ex vivo 
applications 

See text for further details and references. 

Box 1 Snapshot of historical trends in intracellular delivery 

The field of intracellular delivery arguably began with the advent of microinjection52 in 1911. Since then a broad range of options 

have evolved, which can be categorized into carrier-mediated or membrane-disruption-mediated (Fig. 2). The above timeline 

highlights trends in the field. 

For carrier-mediated approaches, early research noted that several cationic compounds readily complex with the 

negatively charged nucleic acids to facilitate uptake of DNA and RNA. Examples include precipitates formed with 

diethylaminoethyl(DEAE)-dextran and calcium phosphate. Inspired by these initial findings, chemical complexes and modified 

viruses were subsequently deployed as tools for DNA transfection. Since then hundreds of viral, lipid, polymer, and inorganic 

carriers have been developed, mostly for nucleic acid transfection1,24,30. Recent efforts have focused on multifunctional 

capabilities conferred through nanotechnology26,29 and biomimetic strategies25 such as exosomes40, direct conjugates2, and new 

generations of viral vectors22,23. 

Membrane-disruption-based approaches have evolved in parallel. Initially, available options included low-throughput 

microinjection52 or membrane perturbation with hypotonic shock58. The demonstration of DNA transfection by electroporation in 

198277 sparked an era of widespread experimentation with other membrane disruption modalities, including laser optoporation64, 

scrape/bead loading54, syringe loading55, acoustic sonoporation90, ballistic particles53, and permeabilization with detergents and 

pore-forming agents47,48. Electroporation rapidly gained a foothold as commercial products were launched from the mid-1980s. 

Most other membrane disruption techniques were not broadly adopted, presumably owing to poor cell recoveries, limited 

throughput, need for specialized equipment, high cost, or skill-dependent operation47,48. In the past decade, nanotechnology, 

microfluidics, and laboratory-on-chip platforms are emerging as new possibilities to reinvigorate membrane-disruption-mediated 

approaches. 


