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In vitro and in vivo efficacy, toxicity, 
bio-distribution and resistance 
selection of a novel antibacterial 
drug candidate
Jlenia Brunetti1, Chiara Falciani2, Giulia Roscia1, Simona Pollini1, Stefano Bindi1,3, Silvia Scali1, 
Unai Cossio Arrieta4, Vanessa Gómez-Vallejo4, Leila Quercini1, Elisa Ibba1, Marco Prato5, 
Gian Maria Rossolini1,5,6,7, Jordi Llop4, Luisa Bracci1,3 & Alessandro Pini1,3

A synthetic antimicrobial peptide was identified as a possible candidate for the development of a new 
antibacterial drug. The peptide, SET-M33L, showed a MIC90 below 1.5 µM and 3 µM for Pseudomonas 

aeruginosa and Klebsiella pneumoniae, respectively. In in vivo models of P. aeruginosa infections, the 
peptide and its pegylated form (SET-M33L-PEG) enabled a survival percentage of 60–80% in sepsis 
and lung infections when injected twice i.v. at 5 mg/Kg, and completely healed skin infections when 
administered topically. Plasma clearance showed different kinetics for SET-M33L and SET-M33L-PEG, 
the latter having greater persistence two hours after injection. Bio-distribution in organs did not show 
significant differences in uptake of the two peptides. Unlike colistin, SET-M33L did not select resistant 
mutants in bacterial cultures and also proved non genotoxic and to have much lower in vivo toxicity 
than antimicrobial peptides already used in clinical practice. The characterizations reported here are 
part of a preclinical development plan that should bring the molecule to clinical trial in the next few 
years.

�e emergence and dissemination of multidrug resistant (MDR) Gram-negative bacterial pathogens observed in 
recent years is a major challenge for antimicrobial chemotherapy, and because of its implications is now consid-
ered a major public health issue1. �is “antibiotic resistance crisis” has been aggravated by the gap between the 
burden of infections due to MDR bacteria and the development of new antibiotics to tackle the problem2. �e 
need for new antibiotics is urgent3.

Antimicrobial peptides (AMPs) are considered an interesting class of antibacterial molecules4. �ey have a 
positive net charge that allows them to interact selectively with anionic bacterial membranes and with other neg-
atively charged structures, such as lipopolysaccharide (LPS), lipoteichoic acid (LTA) and DNA. �eir mechanism 
of action is generally through speci�c binding to bacterial surfaces, by which they provoke cell permeation and in 
some cases inhibition of metabolic pathways. Unfortunately, two main problems have hindered the development 
of AMP-based drugs. �e �rst is that the selectivity of natural antimicrobial peptides for bacteria is o�en low, so 
that they show a certain degree of toxicity for eukaryotic cells in vitro. �e second is linked to the generally short 
half-life of peptides in vivo. �ese reasons make the way to market rather di�cult for antimicrobial peptides5. 
Colistin and polymyxin B, two cyclic cationic lipodecapeptides binding bacterial LPS, discovered in the 1950s, 
are currently the only AMPs with antimicrobial activity available clinically for treatment of infections caused by 
MDR Gram-negative bacteria.

We previously identi�ed a non-natural peptide sequence (KKIRVRLSA), particularly active against P. aerug-
inosa, with strong antimicrobial activity against a panel of Gram-negative bacteria. �e peptide, called M336; 
(hence SET-M33L), was obtained by optimization of previously reported peptides7. Its branched form8 made 
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it more stable in biological �uids9–14. It acts by a two-step mechanism: 1) high a�nity binding to LPS15; 2) dis-
ruption of bacterial membranes. SET-M33L was characterized for its biological activity against a number of 
Gram-negative MDR clinical isolates, including many cystic �brosis isolates, as well as for its interaction with 
membranes, LPS and DNA, for its in vitro toxicity against several eukaryotic cell lines16, and for its hemolytic 
activity, lack of immunogenicity15 and ability to eradicate bio�lms17. SET-M33L production includes a procedure 
to eliminate bio-products and is suitable for industrial development of a peptide-based drug16.

SET-M33L is currently undergoing preclinical development. Here we studied: i) antimicrobial activity against 
a large panel of MDR Gram-negative clinical isolates of P. aeruginosa and K. pneumoniae; ii) SET-M33L propen-
sity to select for bacterial resistance, in comparison with colistin; iii) in vivo antibacterial activity of SET-M33L 
and its pegylated version SET-M33L-PEG18 in models of sepsis, pneumonia and skin infections caused by P. 
aeruginosa; iv) in vivo acute toxicity compared to the clinically available drug colistin; v) plasma clearance 
and biodistribution of radioiodinated SET-M33L and SET-M33L-PEG; vi) in vivo dose-response curve; vii) 
genotoxicity.

Results
Antimicrobial activity of SET-M33L against a large panel of P. aeruginosa and K. pneumoniae of 
clinical origin. Minimum inhibitory concentrations (MICs) of SET-M33L were determined against 76 clini-
cal isolates of Pseudomonas aeruginosa and 73 clinical isolates of Klebsiella pneumoniae. �e isolates were selected 
on the basis of their resistance phenotypes and major antibiotic resistance determinants, including resistance to 
colistin and carriage of carbapenemase-encoding genes (Table 1 and supplemental Tables S1 and S2).

Most of the P. aeruginosa strains (95%) showed a MIC in the range 0.7–1.4 µ M (4–8 µ g/mL) and a MIC90 of 
1.4 µ M (8 µ g/mL). �is value matched the modal MIC, which was independent of the di�erent resistance pheno-
types and resistance mechanisms (Table 1, supplemental Tables S1 and S2). K. pneumoniae strains on the whole 
showed similar MIC values, with most strains (90%) showing MIC values in the range 0.7–2.8 µ M (4–16 µ g/mL)  
and a MIC90 of 2.8 µ M (16 µ g/mL); no signi�cant association between MIC values and resistance phenotypes/
genotypes was observed except for colistin-resistant isolates, which on the whole had higher MIC values (range 
2.8–> 11.2 µ M, 16–> 64 µ g/mL) (Table 1), as already observed for di�erent cationic peptides with other major 
pathogens19,20. �ese �ndings sustain the hypothesis of an overlapping mechanism that confers resistance to 
both molecules in these strains, presumably also involving the same molecular target (i.e. LPS), as previously 
demonstrated6.

Resistance selection. SET-M33L- and colistin-resistant mutant selection was attempted in vitro using the 
SET-M33L-susceptible (MIC 0.35 µ M) and colistin-susceptible (MIC 0.15 µ M) K. pneumoniae strain KKBO-
121. Tests were performed by plating cells on SET-M33L- or colistin-containing MHB. With this approach, 
colistin-resistant mutants were selected at a frequency of approximately 1 ×  10−7 CFU, in line with previous 
results21, while no mutant strains was selected for SET-M33L using an inoculum up to 5 ×  109 CFU. Results of 

Species and resistance phenotypes (no. 
isolates)a,b

MIC

[µM] 0.18 0.35 0.7 1.4 2.8 5.6 11.2 >11.2

[µg/mL] 1 2 4 8 16 32 64 >64

Pseudomonas aeruginosa (76) 0 1 8 64 2 0 1 0

MDR (32) 0 0 2 29 1 0 0 0

  MDR, MBL (11) 0 0 0 11 0 0 0 0

non-MDR (44) 0 1 6 35 1 0 1 0

Klebsiella pneumoniae (73) 0 0 22 33 11 3 3 1

MDR (31) 0 0 12 10 5 1 2 1

  MDR, CP, CR (6) 0 0 0 0 2 1 2 1

  MDR, CP (10) 0 0 6 2 2 0 0 0

  MDR, ESBL, CR (1) 0 0 0 0 1 0 0 0

  MDR, ESBL (12) 0 0 4 8 0 0 0 0

non-MDR (42) 0 0 10 23 6 2 1 0

  Non-MDR, ESBL (2) 0 0 0 2 0 0 0 0

MIC50 [µM] [µg/mL] MIC90 [µM] [µg/mL]

Pseudomonas aeruginosa (no. 76) 1.4 8 1.4 8

Klebsiella pneumoniae (no. 73) 1.4 8 2.8 16

Table 1.  Distribution of MIC values of SET-M33L in the collection of clinical bacterial isolates, including 
distribution with respect to resistance phenotypes. aStrains were identi�ed according to the presence of 
relevant resistance phenotypes and genotypes as follows: MDR, multidrug resistant (according to the de�nition 
of Magiorakos et al.39); CP, carbapenemase-producing; CR, colistin-resistant; ESBL, extended spectrum β 
-lactamase-producing; MBL, metallo-β -lactamase-producing. bBacterial strains belonging to the successful 
epidemic P. aeruginosa Sequence Type 621, producing the IMP-13 MBL, and K. pneumoniae Sequence Type 
512, producing a KPC-type carbapenemase, were included.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:26077 | DOI: 10.1038/srep26077

these experiments suggested a signi�cantly lower SET-M33L propensity for resistance selection with respect to 
colistin (lower by a factor of at least 500).

Therapeutic activity. Sepsis model. Neutropenic mice were injected i.p. with a lethal amount of P. aeruginosa 
PAO1 (1.5 ×  103 CFU/mouse). �en mice were treated twice i.v. with SET-M33L or SET-M33L-PEG (5 mg/Kg),  
24 and 72 hours post-infection. �en animals were monitored for survival for 12 days. Survivals of 60% and 80% 
were obtained with SET-M33L or SET-M33L-PEG, respectively (Fig. 1). Note that this is a model of acute and 
rapidly progressive infection, since animals start to show signs of disease within 24 hours and controls died a�er 
40–65 hours. Treatment with the peptides begun 24 h a�er onset of the infection. �e relatively long interval 
between i.p. inoculation of bacteria and the start of i.v. treatment in animals with suppressed immune systems is 
a valid indication of the potency of the peptides in vivo.

Lung infection. Neutropenic mice were injected intra-tracheally (i.t.) with a lethal amount of P. aeruginosa 
PAO1 (1.5 ×  103 CFU/mouse). �ey were then treated twice i.v. 1 and 16 hours post-infection with SET-M33L 
or SET-M33L-PEG 5 mg/Kg and monitored for survival for 10 days. We obtained 40% and 60% survival with 
SET-M33L and SET-M33L-PEG, respectively (Fig. 2A).

In a di�erent model, non-neutropenic mice were �rst infected i.t. with P. aeruginosa PAO1 (1 ×  106 CFU/
mouse) and then treated once i.t. with SET-M33L 5 mg/Kg. Animals were sacri�ced 12 hours a�er treatment 
and the lungs collected for CFU count. We observed an 80% reduction in CFU in lungs of animals treated with 
SET-M33L (Fig. 2B), con�rming the strong activity of the peptide also when administered locally in the lungs, 
thus mimicking the aerosol administration.

Skin infection. Neutropenic mice were infected on abraded skin with P. aeruginosa P1242 (5 ×  103 CFU/mouse), 
a modi�ed strain expressing the luciferase gene and its substrate. 50 µ l of a M33- based lotion (10 mg/ml) was 
spread on the infection site every day. One day post-infection the treatment produced a signi�cant reduction in P. 
aeruginosa load as indicated by a signi�cant decrease in the total photon �ux emitted by bacteria. �is protective 
e�ect was especially evident 2 days a�er the challenge (Fig. 3). �e infection healed spontaneously and completely 
7 days a�er infection (not shown).

Acute toxicity. As preliminary toxicity evaluation we �rst compared the acute toxicity of SET-M33L and 
SET-M33L-PEG with that of colistin. Animals (10 BALB/c mice/group) were injected i.v. with di�erent amounts 
of SET-M33L, SET-M33L-PEG or colistin, in single dose, in the range 5–40 mg/kg (Fig. 4), and were monitored 
for 4 days a�er inoculation of the peptide. SET-M33L and SET-M33L-PEG were not lethal and no signs of toxicity 
were observed up to 20 mg/kg. At 40 mg/Kg SET-M33L and SET-M33L-PEG produced similar toxicity pro�les 
with strong signs of toxicity and 90–100% mortality a�er 96 hours. Colistin produced strong signs of toxicity 
already at 10 mg/Kg: 50% mortality immediately a�er inoculation and 70% mortality a�er 24 hours. Colistin 
induced sudden death in 100% of mice at 20 and 40 mg/Kg.

Animal weight was monitored every day. All animals treated with 40 and 20 mg/Kg showed less than 5% 
weight loss a�er 24 h. 48 h a�er the challenge they regained initial weight. No weight variation was recorded in 
animals treated with 10 mg/Kg of the compounds (not shown).

Biodistribution and plasma clearance. For biodistribution and clearance, SET-M33L and 
SET-M33L-PEG were synthesized with a single additional tyrosine at the peptide C-terminal. Since SET-M33L is 
a branched peptide with the branching core at the C-terminus, the additional tyrosine was distant from the active 
peptide sequence, i.e. pharmacophore.

Figure 1. In vivo antibacterial activity of SET-M33L and SET-M33L-PEG peptides in sepsis animal model. 
10 BALB/c neutropenic mice/group were injected i.p. with a lethal amount of P. aeruginosa PAO1 and then 
treated twice i.v. with SET-M33L or SET-M33-PEG (5 mg/Kg), 24 and 72 hours post-infection. Percentage 
survival (y-axis) is plotted as a function of time (x-axis); p <  0.02.
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Peptides were labeled with 125I for ex vivo radioactivity measurement and gamma count a�er organ dissection 
(Fig. 5), and with 124I for in vivo positron emission tomography (PET) analysis (Figures S1 and S2).

With ex vivo 125I measurement, high early accumulation of SET-M33L-PEG was observed in the lungs 
(109.9 ±  43% ID/g at 1 min), followed by elimination in one hour (14.1 ±  2.8% at 1 hour). Accumulation of 
peptide SET-M33L in the lungs was lower, with values of %ID/g below 25% throughout the study (Fig. 5A). 
Time-activity-curves in the liver followed a similar pro�le for both peptides, with a progressive increase up to 
30 minutes a�er administration (20.1 ±  6% and 22.5 ±  2% for SET-M33L-PEG and SET-M33L at 30 min, respec-
tively) and a progressive decrease a�erwards. Residual activity in the liver was negligible by 24 hours (Fig. 5B). 
Radioactivity in the kidneys (Fig. 5C) from both peptides suggested elimination mainly via urine, and this was 
con�rmed by the increase in radioactivity in urine at t >  30 min and by the simultaneous reduction in radioac-
tivity in kidneys (Fig. 5D). Kidney accumulation was, however, faster for SET-M33L, in line with plasma clear-
ance described below. Signi�cant amounts of radioactivity from both peptides were also detected in the spleen, 
with greater persistence of SET-M33L a�er 6 hours (Fig. 5E). Accumulation of radioactivity was recorded in the 
small intestine. �e pro�les were di�erent for the two peptides. For SET-M33L-PEG, accumulation peaked at 
1 hour (5.7 ±  2.6% ID/g) and slowly decreased a�erwards. For SET-M33L, steady accumulation was observed up 
to 6 hours, with values of %ID/g in the range 1.5–2.5% (Fig. 5F). �e longer increase in radioactivity in the thyroid 
gland suggested metabolization of the labeled peptides and subsequent release of 125I. %ID/g was 16.8 ±  3.6% and 
13.8 ±  11.7% for SET-M33L-PEG and SET-M33L, respectively, at 24 hours (Fig. 5G).

Accumulation of radioactivity in testicles and brain was not signi�cant throughout the study with %ID/g <  1% 
at all time points (not shown).

Time activity curves in plasma showed di�erent behavior for the two peptides (Fig. 5H). For SET-M33L-PEG, 
there was a rapid initial distribution phase followed by a slower log-linear decrease in concentration. Mean 

Figure 2. In vivo antibacterial activity of SET-M33L and SET-M33L-PEG peptides in lung infection.  
(A) Survival of neutropenic BALB/c mice a�er peptide treatment. All animals were injected i.t. with a lethal 
amount of P. aeruginosa PAO1. One group of animals was treated i.v. with 5 mg/Kg SET-M33L and one group 
with 5 mg/Kg SET-M33L-PEG, 1 and 16 hours post-infection. �e control group (CTR) only received vehicle. 
�e groups are indicated as described in the internal legend. Percentage survival (y-axis) is plotted as a function 
of time (x-axis); p <  0.05. (B) Scatter plots representing the CFUs/lung (y-axis) in treated and untreated non-
neutropenic mice (each circle corresponds to one mice). All animals were injected i.t. with P. aeruginosa PAO1. 
One group was treated i.t. with a single 5 mg/Kg dose of SET-M33L (white circles). �e control group only 
received vehicle (black circles). �e horizontal lines represent the median and the di�erence between medians is 
indicated as a percentage. p =  0.05. �ere were 10 mice/group.
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plasma clearance was calculated as 79.45 min. For SET-M33L, the initial distribution phase could not be identi�ed 
and the plot �tted a single exponential curve; mean plasma clearance was 8.6 min.

PET data obtained with 124I-labeled peptides (Figure S1) gave similar results to those obtained with 125I peptides, 
with the expected discrepancies. For example, lower radioactivity was recorded in the lungs. �ese di�erences can 
be explained by the fact that in vivo (124I), the results were expressed as %ID/cm3, whereas ex vivo (125I) they were 
expressed as %ID/g. �is data can be compared when tissue density is close to 1 g/cm3, which is not the case for a 
functional (breathing) lung. Illustrative PET images are included in the supplementary material (Figure S2).

Dose-response curve. Dose-response activity was evaluated for SET-M33L in a mouse model infected with 
P. aeruginosa PAO1. Animals were infected i.p. with bacteria (1 ×  107 CFU/mouse), and treated i.p. with scalar 
amounts of SET-M33L 15 min post-infection. A�er 5 hours, blood and peritoneal �uid were analyzed for bacteria. 
Only peritoneal �uid gave reliable results (Fig. 6). ED50 for SET-M33L was 0.078 mg/Kg.

Gene toxicity. Gene toxicity was assessed by testing the potential of SET-M33L to induce micronuclei in 
human lymphocytes. Human lymphocytes in whole blood culture, stimulated to divide by addition of PHA 
48 hours prior to treatment, were exposed to SET-M33L for 3 hours with and without exogenous metabolic acti-
vation (S9 mix), and for 20 hours without S9 mix. In preliminary experiments (not shown), the maximum �nal 
concentration to which the cells were exposed was 500 µ g/ml; the purpose was to test to the maximum concentra-
tion as recommended in the guidelines for this assay.

SET-M33L did not cause any statistically signi�cant increase in the number of binucleate cells containing 
micronuclei with respect to the vehicle controls in the 3-hour or the 20-hour test (Table 2). �e positive control 
compounds caused statistically signi�cant increases in the number of binucleate cells containing micronuclei 
under appropriate conditions, demonstrating the e�cacy of the S9 mix and the sensitivity of the test system.

Figure 3. In vivo antibacterial activity of SET-M33L peptide in skin infection. 15 neutropenic mice per group 
(BALB/c) were infected on abraded skin with P. aeruginosa P1242 and then treated every day with 10 mg/ml 
SET-M33L-lotion (SET-M33L) or with SET-M33L free-lotion (CTR). (A) Example of images of �ve animals at 
day 2. (B) Scatter plots representing the photon �ux per second (p/s) emitted by bacteria at day 2 from all mice 
(each circle corresponds to one animal). �e horizontal lines indicate the median value. p <  0.03.
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Discussion
�e standard regulatory procedures indicated by the European Medicines Agency, Committee for Medicinal 
Products for Human Use, specify that before a new therapeutic entity, also called investigational medicinal prod-
uct (IMP), can be given to humans, researchers and developers must �rst test it thoroughly in animals. �e main 
aims of these pre-clinical studies are: i) IMP e�cacy and toxicity; ii) IMP pharmacokinetics; iii) IMP formulation, 
for example a capsule or injection, suitable for early studies in humans.

�e synthetic antimicrobial peptide SET-M33L is currently undergoing preclinical development and con-
tinued experimentation was planned to meet international requirements. Here we report its activity in vivo, 
using models of infections to reproduce common human infections due to P. aeruginosa, such as those provoked 
by abdominal trauma22,23, or highly di�used in cystic �brosis patients24, or a�ecting skin wounds and burns25. 
Antimicrobials against P. aeruginosa are urgently needed26 because the bacterium is a major cause of infections 
in humans, and its clinical interest is dramatically increasing due to its growing multi-resistance to traditional 
antibiotics27.

In a preliminary study6 we tested SET-M33L in sepsis models where SET-M33L and bacteria were adminis-
tered i.p. to animals with active immune systems. In order to reduce the contribution of individual native and 
adaptive immune response to infection we decided to use neutropenic animals. In the models reported here, the 
immune system of mice was impaired with cyclophosphamide in the �rst 3–4 days post-infection. Recovery from 
infection obtained in our models was therefore almost completely due to the antibacterial peptides administered. 
�ese models are much more indicative of peptide activity in vivo and strong therapeutic activity was evident in 
all models. �e peptide SET-M33L and its pegylated form were tested by administering the molecule in doses 
compatible with clinical use and by routes (i.v., i.t. or topical) already used for antimicrobial peptides in humans.

�e preliminary toxicity in vivo was particularly encouraging since SET-M33L proved to be much less toxic 
than colistin. Colistin is a peptide antibiotic, like SET-M33L. It is extensively used in clinical practice28–30 at the 
doses we tested here for SET-M33L31,32. �e results of peptide acute toxicity testing, along with in vivo experi-
ments of therapeutic and dose-response activity, suggest that the selectivity of SET-M33L for bacteria will provide 
an acceptable therapeutic index.

The pharmacokinetic and biodistribution analyses showed that both peptides were eliminated mainly 
via urine, although metabolization by the liver cannot be excluded. The latter statement is mainly true for 
SET-M33L-PEG, which shows higher accumulation in the small intestine a�er 1–2 hours, in line with its longer 
plasma clearance.

Figure 4. Acute in vivo toxicity of SET-M33L, SET-M33L-PEG and colistin at 40 mg/Kg, 20 mg/Kg and 
10 mg/Kg, given in a single dose. Ten mice/group (each circle represents one mouse) were inoculated i.v. 
with SET-M33L, SET-M33L-PEG or colistin and were monitored for 96 hours. Di�erent scales of grey indicate 
severity of signs as described in the legend. Toxicity scores were rated as described in Material and Methods.
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Unlike SET-M33L, SET-M33L-PEG accumulated in lungs in the �rst minutes a�er administration; subse-
quently the two peptides showed similar pro�les in lungs. �is di�erent behavior between the two peptides was 
perfectly reproduced ex vivo and in vivo (PET). Importantly, the peptides did not accumulate signi�cantly in the 
brain or testicles.

Plasma clearance showed longer persistence in circulation of SET-M33-PEG than SET-M33L (79.45 min and 
8.6 min, respectively), and this may partially explain the better performance of the pegylated molecule in eradi-
cating infections in vivo.

A crucial aspect emerging from this study is the very low propensity of SET-M33L to select resistant strains, 
compared to colistin, which proved at least 500 times more prone to select resistant mutants in the same exper-
imental conditions. At present, the available information on mutant selection frequencies with colistin is over-
all scarce and data regarding mutants selection for AMPs are lacking. �e mutant selection frequency towards 
colistin, here reported for the KKBO-1 strain, was overall similar to that previously observed for the same 
strain21. Nevertheless, remarkably variable mutation frequencies for colistin were observed among di�erent K. 

Figure 5. Accumulation of [125I]SET-M33L and [125I]SET-M33L-PEG, expressed as % of injected dose per 
gram of tissue (%ID/g) into the di�erent organs and plasma a�er intravenous administration and organ 
dissection or plasma collection. (A–G) Peptide bio-distribution in organs indicated above each panel. �e Y 
axis scale is di�erent in every graph. (H) Plasma clearance. Fitted curves are exponential for SET-M33L and bi-
exponential for SET-M33L-PEG. �e graph was obtained using GraphPad Prism so�ware.
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pneumoniae strains33 and variability among mutation frequencies for SET-M33L with di�erent strains could not 
be excluded.

Finally, SET-M33L proved not to be genotoxic for eukaryotic cells. �is issue is not trivial, considering the 
propensity of this molecule to strongly bind DNA15, evidently due to an excess of positive charges.

All the characterizations described in this study make the antimicrobial peptide SET-M33L a good candidate 
to become a new antibacterial agent for the treatment of severe infections due to MDR pathogens, and especially 
indicated against P. aeruginosa and K. pneumoniae. �e preclinical development plan, including safety pharma-
cology in higher animals, bio-analytical manufacturing methods and formulation, is expected to conclude within 
two years, so that clinical trials can begin in two or three years.

Materials and Methods
Peptide synthesis. General settings. All peptides were produced in tetra-branched form with an auto-
mated synthesizer (Syro, MultiSynTech, Witten, Germany) on a solid support using standard Fmoc chemistry. 
Resins and protected amino acids were purchased from Iris Biotech. Side chain protecting groups of amino acids 
were 2,2,4,6,7-pentamethyldihydro benzofuran-5-sulfonyl for R, t-butoxycarbonyl for K and t-butyl for S. �e 
�nal peptides were cleaved from the solid support and deprotected in one step by treatment with TFA containing 
triisopropylsilane and water (95/2.5/2.5), and precipitated with diethyl ether. Crude peptides were puri�ed by 
reversed-phase chromatography on an XBridge Peptide BEH C18 300 Å 10 µ m 250 ×  19 mm column (Waters), 

Figure 6. In vivo dose-response activity of SET-M33L. 5 BALB/c mice per group were injected i.p. with 
1 ×  107 CFU/mouse of P. aeruginosa PAO1 and a�er 15 minutes the antimicrobial peptide SET-M33L was 
inoculated i.p. at di�erent doses (0.03–1.2 mg/Kg). Five hours a�er bacterial challenge, peritoneal �uid was 
analyzed for bacteria and CFU count (y-axis). �e scales of the axes are logarithmic.

Compound/concentration 
(µg/ml)

Mean of binucleate cells containing 
micronuclei per 1000 cells

3h − S9 3h + S9 20h − S9

vehicle (control) 6.3 6.3 9.5

SET-M33L/7.5 6.0 4.0 8.5

SET-M33L/150 6.0 NA NA

SET-M33L/300 NA 5.5 8.5

SET-M33L/350 7.0 NA NA

SET-M33L/400 NA 6.0 9.5

MMC/0.2 28.0 NA NA

MMC/0.05 NA NA 22.5

COL/0.06 20.5 NA NA

COL/0.01 NA NA 19.0

CPA/10 NA 17.0 NA

Table 2.  Micronucleus tests with SET-M33L peptide in human lymphocytes. �e table reports the mean 
of binucleated cells containing micronuclei a�er incubation with SET-M33L or positive controls at di�erent 
concentrations. Lymphocytes, stimulated to divide by addition of PHA 48 hours prior to treatment, were 
exposed to SET-M33L for 3 hours (h) with and without exogenous metabolic activation (S9 mix), and for 20 
hours (h) without S9 mix. MMC: Mitomycin C; COL: Colchicine; CPA: Cyclophosphamide; NA: culture not 
analysed for micronucleus frequency.
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using 0.1% TFA/water as eluent A and acetonitrile as eluent B, and a linear gradient from 83% to 70% A. Puri�ed 
peptides were obtained as tri�uoroacetate salts (TFacetate). �e exchange from TFacetate to acetate form was 
carried out using a quaternary ammonium resin in acetate form (AG1-X8, 100–200 mesh, 1.2 meq/ml capacity, 
Biorad). �e resin to peptide ratio was 2000:1. Resin and peptide were stirred for 1 h, the resin �ltered o�, washed 
extensively and the peptide recovered and freeze-dried16. Final peptide purity (always > 95%) and identity was 
con�rmed by reversed phase chromatography on a Phenomenex Jupiter C18 analytical column (300 Å, 5 µ m, 
250 ×  4.6 mm) and by mass spectrometry MALDI ToF/ToF (Ultra�ex III, Brucker Daltonics, Bremen Germany).

SET-M33L, SET-M33L-PEG, SET-M33L-Tyr and SET-M33L-PEG-Tyr. SET-M33L was produced on a 
Fmoc4-Lys2-Lys-b-Ala Wang resin. SET-M33L-PEG, SET-M33L-Tyr and SET-M33L-PEG-Tyr were synthe-
sized on TentaGel S RAM resin. For SET-M33L-PEG, Fmoc-NH-PEG(4)-COOH was used as �rst coupling 
step. For SET-M33L-Tyr and SET-M33L-PEG-Tyr, Fmoc-Tyr(tBu)-OH was used in the �rst coupling step and 
Fmoc-β Ala-OH and Fmoc-NH-PEG(4)-OH were used for the second coupling step of SET-M33L-Tyr and 
SET-M33L-PEG-Tyr, respectively. Two consecutive couplings of Fmoc-Lys(Fmoc)-OH were used for all peptides 
to build the branched core.

MIC 90 and 50. MIC values were determined against a large collection of clinical isolates. Most isolates were 
collected during routine susceptibility testing procedures at the Clinical Microbiology Unit of Careggi University 
Hospital in Florence, while speci�c isolates were selected according to their phenotype or genotype (e.g. carriage 
of carbapenemase-encoding genes, inclusion in epidemic bacterial clones, resistance to colistin) from a collection 
of isolates already available at Department of Medical Biotechnologies, University of Siena. Detailed features of 
each strain, including relevant resistance phenotypes and genotypes were reported in supplemental Tables S1 
and S2. MICs were determined in triplicate using a standard microdilution assay according to the guidelines 
of the Clinical and Laboratory Standards Institute34. SET-M33L was assayed using concentrations in the range 
0.09–11.2 µ M (0.5–64 µ g/mL); testing was performed using a bacterial inoculum of 5 ×  104 CFU/well prepared 
in cation-supplemented Mueller-Hinton broth (MHB) (Becton Dickinson, Franklin Lakes, NJ, USA) in a �nal 
volume of 100 µ l. Results were recorded a�er 18–20 h of incubation at 35 °C.

Bacterial resistance. Selection was performed on an MHB-based selection medium containing 1% low 
electro-osmosis agarose as solidifying agent and 11.2 µ M SET-M33L (64 µ g/mL). Agarose was preferred to agar as 
solidifying agent due to the observed loss of antimicrobial activity of SET-M33L in selection media solidi�ed with 
the latter, possibly due to the charged nature of agar. Klebsiella pneumoniae KKBO-1 strain was grown in MHB at 
37 °C to OD600 0.35 and up to 5 ×  109 colony forming units (CFU) were spread on Petri dishes containing 20 ml 
of the selection medium. Plates were incubated for 16–18 h at 37 °C. Colistin-containing selection medium (equi-
molar concentration with respect to SET-M33L) was used as control for the selection of colistin-resistant mutants. 
Experiments were performed in triplicate.

Animal models: sepsis, lung infection, skin infection. Animal procedures were approved by the Ethics 
Committees of the Azienda Ospedaliera Universitaria Senese on November 18, 2010, and of the Italian Ministry 
of Health on September 21, 2012. Eight-week-old (20 g) BALB/c female mice (Charles River) were used in all 
experiments. �e animals were maintained and handled in accordance with the Guidelines for Accommodation 
and Care of Animals (European Convention for the Protection of Vertebrate Animals Used for Experimental and 
Other Scienti�c Purposes) and internal guidelines. For each experiment the animals were housed in groups of 
�ve mice per cage upon arrival and maintained with food and water ad libitum for 5 days before the beginning of 
treatment. All p values were calculated using GraphPad Prism 5.0 so�ware.

Sepsis model. In the Pseudomonas model of sepsis35 animals were rendered neutropenic by i.p. administration of 
cyclophosphamide (Sigma-Aldrich C7397) at 150 mg/kg (300 µ l of a 10 mg/ml solution) 4 days and 1 day before 
infection. Sepsis was produced infecting animals i.p. with a lethal amount of P. aeruginosa PAO1 (1.5 ×  103 CFU/
mouse) mixed in 500 µ l PBS. A�er 24 and 72 h, the peptide was inoculated i.v. in the caudal vein as 0.2 ml PBS 
solution containing 5 mg/kg of SET-M33L or SET-M33L-PEG. Control animals only received PBS. Surviving 
mice were monitored for 12 days. Moribund animals were killed humanely to avoid unnecessary distress. Groups 
consisted of 10 animals.

Lung Infection models. We set up two lung infection models, one for i.v. and the other for intra-tracheal (i.t.) 
treatment. In the i.v. model, animals were made neutropenic as described in the sepsis model. For both mod-
els, on the day of infection, animals were �rst anesthetized with Avertin (Sigma-Aldrich 2,2,2-tribromoethanol 
T48402) (600 µ l i.p. of 10 mg/ml solution). Ten minutes later, bacteria (P. aeruginosa PAO1, 1–3 ×  103 CFU/mouse 
for i.v. treatment, and 1 ×  106 CFU/mouse for i.t. treatment) were instilled i.t. through a small incision in the 
trachea where a 22-G catheter connected to a syringe was inserted (volume injected 50 µ l)35. In the i.v. treatment 
model the wound was closed with a small clip. One hour and 16 h a�er bacterial administration the peptide was 
inoculated in the caudal vein with 0.2 ml PBS solution containing 5 mg/kg of SET-M33L or SET-M33L-PEG. 
Control animals received only PBS. Surviving mice were monitored for 10 days. Moribund animals were killed 
humanely to avoid unnecessary distress. Groups consisted of 10 animals.

Immunocompetent mice were used in the i.t. treatment model. A few minutes a�er inoculation of bacteria, 
30 µ l of PBS solution containing SET-M33L (5 mg/kg) was delivered to the lungs through the same tracheal cath-
eter with a di�erent syringe. �e wound was then closed with a small clip. A�er 12 hours the animals were sac-
ri�ced and the lungs collected and homogenized in 500 µ l of sterile solution (PBS-Triton X 0.1%) using a sterile 
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glass Potter homogenizer. Samples were diluted serially and 100 µ l of each dilution was spread in duplicate on 
appropriate agar plates for colony count.

Skin infection. Mice were immunosuppressed by i.p. injection of cyclophosphamide (150 mg/kg) 3 days before 
infection. On the day of infection, mice were anesthetized i.p. with ketamine (80 mg/kg) and xilazine (5 mg/kg),  
then an area of 4 cm2 on their backs was shaved of all fur and the skin was abraded with sandpaper until it 
glistened. 20 µ l suspension containing P. aeruginosa P1242 (5 ×  103 CFU/mouse) was deposited on the abraded 
area. �is bacterium expressed the luciferase gene and luciferin substrate under control of a constitutive P1 inte-
gron promoter36. SET-M33L peptide was mixed with a commercial cream (Essex, Schering-Plough) obtaining 
a 10 mg/ml concentrated lotion of SET-M33L, that was applied topically to the infected area of 15 mice once a 
day a�er infection in an approximate volume of 50 µ l. �e course of the infection was monitored every day for 7 
days post-infection by imaging the animal dorsal side up in an IVIS-200 imaging system (Xenogen Corporation, 
Alameda, CA) a�er anesthetization with 2.5% iso�urane. Total photon emission from de�ned areas of the images 
of each mouse was quanti�ed with the Living Image so�ware package.

Acute toxicity. Mice were treated by a single i.v. administration of di�erent amounts (40, 20, 10, 5 mg/Kg) 
of SET-M33L, SET-M33L-PEG or colistin sulfate (Sigma-Aldrich, C4461). Signs of toxicity were checked four 
times a day by visual inspection. A toxicity score was assigned for the following signs: wiry coat and poor motil-
ity =  mild signs; very wiry coat, abundant lachrymation and poor motility even under stimulation =  manifest 
signs. Animals were monitored for 4 days a�er inoculation of the peptide. Mice were weighed every day from 
arrival to the last day of the experiment. Moribund animals were killed humanely to avoid unnecessary distress.

Radioiodination and biodistribution studies. Animals. Biodistribution studies with radioiodinated 
peptides were performed at CIC biomaGUNE using male BALB/cJRj mice (9 weeks, Janvier). �e animals were 
maintained and handled in accordance with the Guidelines for Accommodation and Care of Animals (European 
Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scienti�c Purposes) and 
internal guidelines. All experimental procedures were approved by the Ethical Committee of CIC biomaGUNE 
and by the Departamento de Promoción Económica, Medio Rural y Equilibrio Territorial de la Diputación Foral 
de Guipúzcoa.

Radiolabeling of the peptides. �e radioiodination of the peptides was carried out by electrophilic aromatic 
substitution on the tyrosine residues. To do so, a solution of the peptide (50 µ g/50 µ L) was incubated with Na[125I]
I (Perkin Elmer, 37 MBq) or Na[124I]I (Perkin Elmer, 74 MBq) in phosphate bu�ered saline (100 µ l, pH 7.4) for 
30 min at 25 °C in the presence of Iodobeads® . �e reaction crude was puri�ed by retention in a C-18 cartridge 
(Sep-Pak®  Light, Waters) and subsequent elution using 0.1% aqueous TFA solution/ethanol 20/80 (1 ml). �e sol-
vent was evaporated and the residue reconstituted with ethanol/water (10%, 100 µ l). Chemical and radiochemical 
purity were determined by radio-HPLC, using a Mediterranean Sea 18 column (4.6 ×  150 mm, 5 µ m) as the sta-
tionary phase and 0.1% solution of TFA in water (A) and 0.1% solution of TFA in methanol (B) as mobile phase. 
�e following gradient was used; initial: A-60% B-40%; 4 min: A-60% B-40%; 14 min: A-20% B-80%; 18 min: 
A-60% B-40%; 20 min: A-60% B-40%. Injected volume was 20 µ l. Retention time for the two peptides was 8.3 min 
in both cases.

Radiochemical stability of the radiolabelled peptides was determined in vitro in di�erent media: (i) Phosphate 
bu�ered solution, and (ii) 0.1% solution of TFA in water/0.1% solution of TFA in methanol (20/80). To do so, the 
peptides were incubated at 37 °C in the corresponding media; samples were withdrawn at di�erent times (1, 2, 4, 
6, 48 hours) and analyzed by radio-HPLC using the conditions described for quality control.

PET studies. PET experiments (n =  3 per peptide) were performed using an eXploreVista-CT small animal 
PET-CT system (GE Healthcare). Anesthesia was induced with 3% iso�urane and maintained with 1.5–2% of iso-
�urane in 100% O2. �e corresponding 124I-labeled peptide (2.7 ±  0.7 MBq, 150 µ l) was injected into a lateral tail 
vein concomitantly with the start of a PET dynamic acquisition (energy window: 400–700 KeV). Two beds were 
de�ned to acquire whole body images (frames: 4 ×  20 s, 4 ×  60 s, 4 ×  2 min, 4 ×  4 min, 5 ×  10 min, 5 ×  20 min total 
acquisition time =  179 min). A�er acquisition, a CT scan (X-Ray energy: 40 kV, intensity: 140 µ A) was performed 
for subsequent attenuation correction of the reconstructed image. Random and scatter corrections were also 
applied to the reconstructed image (2DOSEM iterative algorithm, 4 iterations).

PET-CT images of the same animal were co-recorded and analyzed using the PMOD image processing tool. 
Volumes of interest (VOIs) were centered on major organs and time-activity curves, expressed as percentage of 
injected dose per cm3 of tissue, were plotted.

Ex-vivo biodistribution: dissection and gamma counting. Animals (3 mice per compound and time point) were 
anesthetized with iso�urane and a saline solution of 125I-labelled peptide (1.8 ±  0.5 MBq/150 µ l) was injected 
through a lateral tail vein. At pre-determined times, animals were sacri�ced by perfusion using saline solution. 
Major organs were quickly removed, rinsed twice with deionized water and measured in an automatic gamma 
counter (2470 Wizard, PerkinElmer). Blood and urine samples (0.3 ml) were also obtained just before perfu-
sion and blood was processed to separate the plasma. Plasma, blood and urine were also counted in the gamma 
counter.

To determine the half-life of both peptides in blood, time-activity curves were modeled with mono- 
(SET-M33L) or bi-exponential (SET-M33L-PEG) functions using GraphPad Prism 6 (GraphPad So�ware, Inc.).
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Dose-response curve. BALB/c mice (20 g ±  1) were injected i.p. with 1 ×  107 CFU/mouse of P. aeruginosa 
PAO1 in 500 µ l PBS. Fi�een minutes a�er bacterial administration, the antimicrobial peptide SET-M33L was 
inoculated i.p. at di�erent concentrations: 0.03 mg/Kg, 0.07 mg/Kg, 0.15 mg/Kg, 0.3 mg/Kg, 0.6 mg/Kg, 1.2 mg/Kg.  
Control animals only received PBS. Each group consisted of 5 animals (only 3 were used to plot the graph, see 
below). Five hours a�er bacterial infection, the animals were sacri�ced and peritoneal �uid was obtained by 
washing with 5 ml PBS. Samples were diluted serially and 100 µ l of each dilution was spread on appropriate agar 
plates for colony count.

�e results were processed using GraphPad Prism 5.0 so�ware. �e graph was plotted with only three mice 
per group because the plates with the highest and lowest number of CFUs in each group were excluded.

In vitro micronucleus test in human lymphocytes. Analysis of micronucleated cells was based on the 
criteria described by Fenech and Morley37 and Fenech38. �e study described below was conducted in compliance 
with the following Good Laboratory Practice standards: �e UK Good Laboratory Practice Regulations (Statutory 
Instrument 1999 No. 3106, as amended by Statutory Instrument 2004 No. 994); OECD Principles of Good 
Laboratory Practice (as revised in 1997), ENV/MC/CHEM (98) 17; EC Commission Directive 2004/10/EC of 11 
February 2004 (O�cial Journal No. L 50/44). Human lymphocytes from informed donors were pooled and diluted 
with HML media (RPMI 1640, supplemented with 10% fetal calf serum, 0.2 IU/ml sodium heparin, 20 IU/ml  
penicillin, 20 µ g/ml streptomycin and 2.0 mM L-glutamine). As lymphocytes do not normally undergo cell divi-
sion, they were stimulated to do so by addition of phytohaemagglutinin (PHA), a naturally occurring mitogen. 
Cultures were established from the prepared (pooled) sample and dispensed as 5 ml aliquots (in sterile universal 
containers) so that each culture contained blood (0.4 ml), HML media (4.5 ml) and PHA solution (0.1 ml). �e 
cultures were then incubated at 37 °C, and the cells were resuspended (twice daily) by gentle inversion.

Lymphocyte cultures were incubated for approximately 48 hours a�er stimulation with PHA, before addition 
of SET-M33L; controls were appropriately diluted with vehicle. S9 homogenate was present in appropriate cul-
tures at a �nal concentration of 2% v/v. Before treatment, all cultures were centrifuged and resuspended in the 
required volume of fresh medium, taking treatment volume and S9 mix volume into account. SET-M33L prepa-
rations were added to cultures at 10% v/v. Cultures were incubated at 37 °C for 3 or 20 hours.

�e cells were centrifuged and the medium replaced with fresh medium. Cytochalasin B, at a �nal concen-
tration of 6 µ g/ml, was then added to all cultures. �e cultures were incubated for a further 17 hours until the 
scheduled harvest time.

�e cells were harvested by centrifugation at 500 g for 5 minutes. �e supernatant was removed and the cell 
pellet re-suspended and treated with 4 ml of hypotonic solution (0.075 M KCl) at 37 °C. �e cultures were incu-
bated for 3 minutes at 37 °C to cause swelling. �ey were then shaken and a�er slowly pouring 4 ml of ice-cold 
�xative (3:1 v/v methanol:acetic acid) onto the culture surface, they were slowly inverted to mix. �e cultures were 
centrifuged at 500 g for �ve minutes. �e supernatant was removed and the cell pellet re-suspended. A further 
4 ml fresh �xative was then added and the cells were stored at about 4 °C until slide preparation. �e cultures were 
centrifuged at 500 g for 5 minutes and the supernatant removed. Pre-cleaned microscope slides were prepared for 
each culture by aliquoting resuspended cells onto the slides, and allowing the slides to air-dry. Two slides were 
prepared from each culture. �e prepared slides were examined by �uorescence microscopy. �e incidences of 
mononucleate, binucleate and polynucleate cells were assessed per culture per 1000 binucleate cells. �e occur-
rence of unusual numbers of cells undergoing mitosis, polyploid cells, necrotic cells or debris, for example, was 
also noted.

SET-M33L concentrations were selected for evaluation in a preliminary test. �e highest concentration was 
taken to be the one that depressed the cytokinesis-block proliferative index (CBPI) equivalent to 55 ±  5% cytotox-
icity with respect to the concurrent vehicle control or, where no cytotoxicity was observed. Prior to micronucleus 
analysis, all slides were randomly coded.

Positive controls were: cyclophosphamide: 10 µ g/mL (3 h, + S9 mix); mitomycin C: 0.2 µ g/mL (3 h, − S9 mix); 
0.05 µ g/mL (20 h, − S9 mix); colchicine: 0.06 µ g/mL (3 h, − S9 mix); 0.01 µ g/mL (20 h, − S9 mix).
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