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Opiates are still the most effective and widely used treatments for acute and chronic 

pain. However, the problems associated with morphine and other standard opioid anal-

gesics severely limit their effectiveness in the clinic. PPL-101 and PPL-103 derived from 

morphine and morphinan ring systems contain a chiral N-substituent, which confers it 

with a unique combination of high-binding af�nities and partial agonist activities at mu, 

delta, and kappa opioid receptors, leading to unique in vivo pharmacology compared 

to other conventional opioids. Acute antinociceptive and reward acquisition of PPL-101 

and PPL-103 were assessed in mice using the tail �ick assay and conditioned place pref-

erence (CPP) paradigm, respectively. The reinforcing effects of these compounds were 

assessed in rats using the self-administration paradigm. In mice, PPL-101 and PPL-103 

produced antinociception reaching maximal effects that were equivalent to morphine 

at approximately 1/3 and 1/10 of morphine’s dose, respectively. PPL-101-induced 

antinociception was attenuated following pretreatment with the kappa antagonist JDTic, 

but not the mu opioid antagonist beta-FNA. In mice, PPL-101 and PPL-103 produced 

dose-dependent decreases in activity, similar to other kappa agonists; however, they did 

not produce conditioned place aversion, and in fact elicited a trend toward CPP. In rats, 

neither PPL-101 nor PPL-103 were self-administered when substituted for morphine 

and PPL-101 attenuated morphine self-administration, when administered systemically 

prior to the self-administration session. Collectively, these results indicate that mixed 

opioid receptor partial agonists can produce potent antinociceptive activity with a lack 

of aversion in mice and without being self-administered in rats. Compounds with this 

pro�le could be superior analgesics with greatly reduced addiction liability and fewer 

side-effects compared to traditional opiates.

Keywords: analgesic, non-addicting, kappa opiate, self-administration, conditioned place preference

Abbreviations: % MPE, % maximum potential e�ect; JDTic, (3R)-7-hydroxy-N-[(1S)-1-[[(3R,4R)-4-(3-hydroxyphenyl)-

3,4-dimethyl-1-piperidinyl]methyl]-2-methylpropyl]-1,2,3,4-tetrahydro-3-isoquinoline-carboxamide; PPL-101, α-methyl-

cyclopropylmethyl-morphinan; PPL103, α-methyl-cyclopropylmethyl-morphine; beta-FNA, beta-funaltrexamine HCl; CPA, 

conditioned place aversion; CPP, conditioned place preference; DMEM, Dulbecco’s modi�ed Eagle medium; FR, �xed ratio; i.p., 

intraperitoneal; i.v., intravenous; PR, progressive ratio; s.c., subcutaneous; SMART, spontaneous motor recording and tracking 

so�ware system; TO, time out.
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INTRODUCTION

It is well known that activation of the di�erent opioid receptors  
induces di�erent pharmacological actions. Mu receptor activation 
induces antinociception, along with a decrease in respiration and 
gut motility, and signi�cant abuse liability (1, 2). Kappa receptor 
activation also induces antinociception but with reduced res-
piratory depression and reduced inhibition of gut motility (2–4). 
With respect to potential for abuse, kappa receptor agonists o�en 
induce dysphoria and accordingly are generally considered not 
to have abuse liability (5, 6). �e rami�cations of delta receptor 
activation are less clear. Although activation of delta receptors 
produces antinociception, the maximal e�ects are much less 
than that produced by mu receptor activation, and it appears to 
be primarily spinally mediated. However, it has been shown that 
delta antagonists may prevent mu-mediated tolerance develop-
ment (7–9). In regard to reward/reinforcement, the �ndings 
with delta agonists are mixed, with some evidence pointing to 
delta-mediated reward, while other evidence suggests that even 
selective delta agonists require mu receptors to generate reinforc-
ing properties (10–12).

�e modi�cation of opioid ligands leading to changes in 
e�cacy, and receptor selectivity is fairly well established (13). 
Numerous studies have identi�ed alternate ring structures. 
Morphinan and benzomorphan structures tend to mimic the phar-
macological properties of morphine analogs with roughly similar 
potencies and consistent changes with respect to N-substituent 
modi�cations. Modi�cation of the N-substituent on morphine, 
morphinans, and benzomorphans leads to changes in the binding 
a�nity, receptor selectivity, and e�cacy of the derivatives (14, 15).  
Substituting N-methyl with N-allyl or N-cyclopropylmethyl 
increases a�nity for kappa and delta receptors without decreas-
ing a�nity at mu receptors (16), but it decreases the e�cacy at 
mu receptors, leading to the development of opiate antagonists 
or partial agonists, such as naloxone, naltrexone, or cyclazocine. 
�ebaine-based opioids, such as etorphine and buprenorphine, 
wherein various alkyl groups are attached to thebaine through a 
diels-alder reaction, now have an additional ring. �is modi�ca-
tion o�en produces compounds with high a�nity at each opioid 
receptor regardless of the N-substituent (16). Likewise, in �exible 
opiates without fused rings, such as fentanyls or phenylpiperi-
dines, the N-substituent does not appear to modulate receptor 
a�nity or e�cacy (17).

Some compounds, such as nalorphine (N-allyl-normorphine), 
have antagonist activity at mu receptors but agonist activity at 
kappa, resulting in an analgesic compound without reward, but 
with dysphoria (18–20). �e resulting dysphoria in humans 
makes nalorphine and similar compounds impossible to use as 
analgesics (21). A great deal of time and e�ort has been spent in 
trying to identify the opioid “Holy Grail” with the most bene�-
cial N-substituent, which can result in a compound with potent 
antinociceptive activity and reduced euphoric e�ects, but without 
kappa-mediated dysphoria. In theory, attenuation in rewarding 
properties can be attained with a compound that has reduced 
e�cacy at mu receptors, without activation of kappa receptors. 
An example of this type of compound would be buprenorphine, 
which is a mu partial agonist and kappa antagonist and has 
reduced addiction liability compared to a full agonist such as 

morphine (22, 23). Nevertheless, buprenorphine is increasingly 
being abused, which is why it is now being mixed with naloxone 
in the opioid addiction treatment medication Suboxone. Another 
pro�le that might meet these criteria could be a full/partial mu 
receptor agonist with kappa agonist activity, such as that found 
in pentazocine, nalbuphine, and butorphanol. �ese clinically 
used drugs have reduced abuse liability but with some problems 
with dysphoria in some patients and precipitation of withdrawal 
in opioid-addicted patients (20, 24, 25). An additional potential 
pro�le for a non-addicting analgesic without dysphoria could be a 
partial kappa agonist with some mu activity in order to moderate 
and titrate rewarding versus dysphoric aspects of the compound. 
Such compounds are exempli�ed by PPL-101 and PPL-103.

PPL-101 (α-methyl-cyclopropylmethyl-morphine) and PPL-
103 (α-methyl-cyclopropylmethyl-morphinan) are opiate deriva-
tives that bind with high a�nity to mu and kappa receptors, with 
slightly lower a�nity to delta receptors (Table 1). �e α-methyl 
constituent produces two diasteriomers and constrains the cyclo-
propylmethyl moiety into an R or S orientation. Previous studies 
have demonstrated that the R orientation has higher a�nity for 
the opiate receptors (26). Studies described here along with those 
conducted previously by the Committee for Problems on Drug 
Dependence (27, 28) demonstrate that PPL-101 and PPL-103 
have unusual pro�les and these, or similar compounds, could be 
ideal as analgesics with low abuse potential or potentially as drug 
abuse medications.

MATERIALS AND METHODS

Animals
For assessment of antinociception and conditioned place prefer-
ence (CPP), male ICR mice weighing 25–30 g at the start of the 
experiment were used. Mice were group-housed under standard 
laboratory conditions using nestlets as environmental enrich-
ment in their cages and were kept on a 12:12-h day/night cycle 
(lights on at 7:00 a.m.). For experiments examining antinocicep-
tion, animals were housed 10/cage and for the CPP experiments 
animals were housed 4/cage. Testing was conducted during the 
animals’ light cycle between 9 a.m. and 2  p.m. Animals were 
handled for 3–4 days before the experiments were conducted. On 
behavioral test days, animals were transported to the testing room 
and acclimated to the environment for 1 h.

For self-administration experiments, male Sprague-Dawley 
rats (200–225 g) were obtained from Charles River (Portage, MI, 
USA). Rats were housed in a room with a reverse 12-h light/12-h  
dark cycle (lights o� at 7:30 a.m.). All self-administration 
exper iments were conducted during the dark phase of the cycle. 
Animals were acclimated for 7 days with water and chow (Teklad 
Diets, Madison, WI, USA) and handled for 3  days before the 
experiments were conducted. �roughout all operant proce-
dures, rats were food restricted and received 16–20  g of chow 
daily, to maintain 80% of free-feeding weight. Water was freely 
accessible.

Drugs
PPL-101 (α-methyl-cyclopropylmethyl-morphine) and PPL-103 
(α-methyl-cyclopropylmethyl-morphinan) (Figure  1) were 
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FIGURE 1 | Structures of PPL-103 and PPL-101.
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synthesized as described previously and used as the hydrochloride 
salt (29, 30). Morphine sulfate, beta-FNA, and the kappa agonist 
U-69,593 were provided by the National Institute of Drug Abuse, 
whereas JDTic was obtained from Dr. Ivy Carroll.

For studies in mice, PPL-101 and PPL-103 were dissolved in 
3% DMSO and 0.5% aqueous hydroxypropylcellulose, whereas 
morphine hydrochloride, beta-FNA, and JDTic were dissolved 
in distilled water. All drugs except beta-FNA were injected in a 
volume of 0.1 ml/30 g subcutaneous (s.c.) Beta-FNA was made 
up as a 20 mg/kg solution and injected in a volume of 0.2 ml/30 g, 
s.c. to get the desired dose of 40  mg/kg. Controls received the 
appropriate volume of vehicle (i.e., 0.1 or 0.2 ml/30 g depend-
ing on the experiment). Doses of morphine, PPL-101, PPL-103, 
JDTic, and beta-FNA are reported as the salt.

For studies in rats, intravenous (i.v.) solutions of morphine, 
PPL-101, and PPL-103 were produced by dissolving drugs in 
0.9% saline and then adjusted to pH 7.0–7.4 with 3 M sodium 
hydroxide. Morphine, PPL-101, and PPL-103 self-administration 
doses are reported as free base concentrations. Systemic solutions 
of PPL-101 and naloxone were made by dissolving drugs in 0.9% 
saline and were administered in a volume of 1 ml/kg, intraperito-
neal (i.p.) JDTic was dissolved in distilled water and administered 
via the i.p. route. �e kappa agonist U-69,593 was suspended in 
10% DMSO, 10% TWEEN 80, and 80% distilled water and given 
s.c. 15 min prior to the plantar test.

In Vitro Characterization
Cell Culture
All receptors were individually expressed in CHO cells stably 
transfected with human receptor cDNA, The cells were grown 
in Dulbecco’s modified Eagle medium with 10% fetal bovine 
serum, in the presence of 0.4 mg/ml G418 and 0.1% penicil-
lin/streptomycin, in 100-mm polystyrene culture dishes. For 
binding assays, the cells were scraped off the plate at conflu-
ence. Receptor expression levels were 1.6, 1.8, and 3.7 pmol/
mg protein for the mu, kappa, and delta opioid receptors 
respectively.

Receptor Binding
Binding to cell membranes was conducted in a 96-well format, 
as described previously (16, 31). Brie�y, cells were removed 
from the plates, homogenized in 50  mM Tris pH 7.5, using a 
Polytron homogenizer, then centrifuged once, and washed by an 
additional centrifugation at 27,000 × g for 15 min. �e �nal pellet 
was resuspended in Tris, and the suspension incubated with [3H]
DAMGO (51 Ci/mmol, 1.6 nM), [3H]Cl-DPDPE (42 Ci/mmol, 
1.4 nM), or [3H]U-69,593 (41.7 Ci/mmol, 1.9 nM) for binding to 
mu, delta, and kappa receptors, respectively. Non-speci�c bind-
ing was determined with 1 µM of unlabeled DAMGO ([D-Ala2, 
N-MePhe4, Gly-ol]-enkephalin), DPDPE ([D-Pen2,D-Pen5]
Enkephalin), and ethylketocyclazocine (EKC), respectively. 
Samples were incubated for 60 min at 25°C in a total volume of 
1.0 ml, with 15 µg protein per well. �e reaction was terminated by 
�ltration using a Tomtec 96 harvester (Orange, CT, USA) through 
glass �ber �lters and radioactivity was counted on a Pharmacia 
Biotech beta-plate liquid scintillation counter (Piscataway, NJ, 
USA). IC50 values were calculated using Graphpad/Prism (ISI, 
San Diego, CA, USA), and Ki values were determined by the 
method of Cheng and Pruso� (32).

[35S]GTPγS Binding
[35S]GTPγS binding was conducted as described previously (33). 
Brie�y, cells were scraped from tissue culture dishes into 20 mM 
Hepes, 1  mM EDTA, then centrifuged at 500  ×  g for 10  min. 
Cells were re-suspended in this bu�er and homogenized using 
a Polytron Homogenizer. �e homogenate was centrifuged at 
27,000 × g for 15 min, and the pellet re-suspended in Bu�er A, 
containing: 20  mM Hepes, 10  mM MgCl2, 100  mM NaCl, pH 
7.4. �e suspension was re-centrifuged at 27,000  ×  g and sus-
pended once more in Bu�er A. For the binding assay, membranes 
(8–15 µg protein) were incubated with [35S]GTPγS (50 pM), GDP 
(10  µM), and the appropriate compound, in a total volume of 
1.0 ml for 60 min at 25°C. Samples were �ltered over glass �ber 
�lters and counted as described for the binding assays. Statistical 
analysis was conducted using the program Prism.
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In Vivo Studies
Assessment of Thermal Nociception of PPL-101 and 

PPL-103 in Mice Using the Tail Flick Assay
Acute nociception was assessed using the tail �ick assay with 
an analgesia instrument (Stoelting) that uses radiant heat. �is 
instrument is equipped with an automatic quanti�cation of tail 
�ick latency, and a 15 s cuto� to prevent damage to the animal’s 
tail. During testing, the focused beam of light was applied to the 
lower half of the animal’s tail, and tail �ick latency was recorded. 
Baseline values for tail �ick latency were determined before drug 
administration in each animal. �e mean basal tail �ick latency 
was 4.83 ± 0.07 SEM.

In initial experiments using both PPL101 and PPL103, fol-
lowing baseline measures, animals (n = 8 group) received a s.c. 
injection of their assigned dose of PPL-101 (0.3–10 mg/kg, s.c.) or 
PPL-103 (0.3–3.0 mg/kg, s.c.) and were tested for tail �ick laten-
cies 1-h post-injection. In follow-up experiments, time course of 
PPL-101-induced antinociception was examined looking at tail 
�ick latency at 0.5-, 1-, 2-, and 4-h post-injection. In all of these 
experiments, separate groups of animals served as vehicle con-
trols and received an injection of vehicle prior to testing, whereas 
positive controls received 15  mg/kg morphine prior to testing. 
�e experimenters were blinded to the treatment and condition 
of each animal.

To determine the relative contributions of mu and kappa 
activity to the observed antinociceptive e�ects of PPL-101, 
separate groups of animals (N  =  8/group) were pre-treated 
with mu opioid antagonist beta-FNA (40 mg/kg, s.c.) or kappa 
opioid antagonist JDTic (10 mg/kg, s.c.). In these experiments, 
PPL-101 was given 24-h following antagonist pretreatment and 
tail �ick latencies were measured at 0.5-, 1-, 2-, and 4-h post-
PPL-101 administration. Separate groups of animals (N  =  8/
group) received vehicle injections 24 h following pretreatment 
with beta-FNA or JDTic. In addition, there was a control group 
that received two vehicle injections 24 h apart (N = 9). Doses 
and pretreatment time of the antagonists were chosen based on 
previous research (34, 35).

Assessment of Reward Acquisition and Global 

Activity of PPL-101 and PPL-103 Using the CPP 

Paradigm in Mice

CPP Apparatus
�e apparatus consisted of rectangular Plexiglas chambers  
divided into two distinct equal-sized compartments (19  cm  ×   
22.8 cm × 18 cm high, Lafayette Instruments). One compartment 
had cedar-scented bedding underneath a bar grid �oor and all 
but the front walls were black. �e other compartment had pine-
scented bedding beneath a mesh �oor and all but the front wall 
were white. �e front walls were transparent so that the animal’s 
behavior could be monitored. A removable partition divided the 
two compartments. During conditioning, the compartments were 
divided by a solid partition. On the CPP test day, the solid parti-
tion was replaced with a partition that had an opening, allowing 
the animal free access to both compartments. A video camera that 
was linked to a computer was mounted above the chambers and 
tracked the animals’ movement. Previous experiments using this 
setup have indicated that the apparatus is unbiased, as untreated 

animals do not show a preference for one compartment over the 
other.

Conditioning Training
Each conditioning trial was composed of two sessions conducted 
over two consecutive days. During the drug session, animals 
received a s.c. injection of their respective dose of PPL-101 
(1.0–3.0  mg/kg, N  =  6–8/group) or PPL-103 (0.3–3.0  mg/kg, 
N = 8/group) and were con�ned to one of the compartments for 
30 min. On a separate day, the vehicle session, animals received 
an injection of vehicle and were con�ned to the alternate com-
partment for 30 min. Each 2-day conditioning trial was repeated 
over six consecutive days (three trials) such that animals received 
three drug sessions and three vehicle sessions. �e particular 
compartment paired with the drug and the order of placement 
into the drug-paired versus saline-paired compartment was 
counterbalanced across groups. A group of mice received vehicle 
in both compartments and served as controls (N = 8). �e posi-
tive control group received morphine (15 mg/kg; N = 8) during 
their drug session.

CPP Test Day
Twenty-four hours a�er the last conditioning session, the ani-
mals were given access to both compartments simultaneously 
for 15 min and the amount of time that animals spent in each 
compartment was recorded.

Acute and Repeated Measures of Global Activity
During conditioning, overall global activity of the animals a�er 
acute and repeated drug injection was also recorded. �ese data 
were captured by the spontaneous motor recording and tracking 
so�ware system (Panlab), a color image capturing system that 
works in real time and tracks all the movements of the animal, 
for a given amount of time via a video camera connected to 
the computer. Given that this system tracks all movement and 
records this gross measure we have termed this global activity 
since it encompasses �ne movement, movement due to rearing, 
grooming, sni�ng, and locomotor activity.

Assessment of Reinforcing Effects of PPL-101 and 

PPL-103 Using Self-administration in Rats

Apparatus
Self-administration experiment were conducted in operant 
chambers (Med Associates, Inc., St. Albans, VT, USA) enclosed 
in lit, sound attenuating, ventilated environmental cubicles. Each 
chamber was equipped with two retractable levers located in the 
front panel and a food pellet magazine was located between the 
two levers. A pellet dispenser was positioned behind the front 
panel of the boxes. Chambers were also equipped with auditory 
stimuli presented via a speaker and visual stimuli located above the 
levers (cue lights). Infusions occurred by means of syringe pumps 
(Med Associates, Inc., St. Albans, VT, USA) and liquid swivels 
(Instech Solomon, Plymouth Meeting, PA, USA), connected to 
plastic tubing protected by a �exible metal sheath for attachment 
to the external catheter terminus. During self-administration, an 
infusion pump was activated by responses on the right (active) 
lever, while responses on the le� (inactive) lever were recorded 
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but did not result in any programmed consequences. Activation 
of the pump resulted in a delivery of 0.1 ml of the �uid. A micro-
computer controlled the delivery of reinforcers, presentation of 
auditory and visual stimuli, and recording of the behavioral data.

Food Training
One week a�er arrival, all rats were trained for 3 days to lever-
press for 45 mg food pellets (Test Diet, 5-TUM, Richmond, IN, 
USA) under a �xed ratio 1 (FR-1) schedule of reinforcement 
during 30-min sessions.

i.v. Catheterization
Intravenous catheterization was performed a�er operant food 
training and under inhalation of iso�urane anesthesia as previ-
ously described (36, 37). To maintain patency for the duration 
of the experiment, catheters were �ushed daily with 0.2  ml of 
heparinized (1,000 UPS U/ml) saline solution containing enro-
�oxacin (0.7 mg/ml).

Morphine Self-administration Training
Following recovery from surgery, all animals were trained to self- 
administer morphine (100 µg/kg/infusion) in the same chambers 
as the food training sessions, using an FR-1 [20 s time out (TO)] 
schedule during daily 2-h sessions (38) conducted 5 days/week. 
�is initial training lasted 7 days. TO was concurrent with illumi-
nation of a cue light located above the active lever to signal deliv-
ery of the positive reinforcement. An intermittent tone (7 kHz 
and 70 dB) was sounded throughout the session. Responses to 
the inactive lever were recorded and served as a measure of non-
speci�c motor behavior.

Assessment of the Reinforcing E�ects of PPL-101
Following 1  week of morphine self-administration using 
FR1TO20, rats (N = 24) were divided in four groups of N = 6, so 
that the average morphine self-administration rate based on their 
lever pressing performance on the last 3 days of morphine train-
ing was the same across all groups. To examine whether PPL-101 
would substitute for morphine, two groups of rats were given 
access to PPL-101 (30 and 100 µg/kg/infusion, respectively), while 
the third group was given access to vehicle (0.9% saline), and the 
fourth group continued morphine (100  µg/kg/infusion) self-
administration. �is self-administration period was conducted 
under the FR1TO20 task and lasted for an additional seven ses-
sions (testing over 5 days/week). Results are reported as number 
of infusions earned in 120 min. A�er a week on this reinforcement 
schedule, the task was switched to progressive ratio (PR) schedule 
that better measures motivational properties rather than rate of 
drug intake (39). For the PR procedure, the response requirement 
for successive injections was 1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 40, 50, 
62, 77, 95, etc. (38), as derived from the formula “Response ratio 
(rounded to nearest integer) = [5e(0.20 × inj. number)] − 5” (40). �e PR 
schedule used a 20-s TO following each drug infusion. Testing on 
this day was conducted until the animals reached the break point, 
de�ned as the highest ratio completed prior to a 60-min period 
during which no injections were earned and lasted a maximum of 
4 h. Data are reported as number of infusions obtained during the 
PR session. On the following day, morphine self-administration 

(100 µg/kg/infusion) under FR1TO20 task was re-established in 
all rat groups. To carry out the subsequent experiments, the same 
cohort of rats was used except where otherwise speci�ed.

Assessment of PPL-103 Reinforcing E�ects
To examine whether PPL-103 would substitute for morphine, six 
2-h sessions of morphine self-administration were initially con-
ducted in a new cohort of (N = 8) rats using FR1TO20 schedule. 
�en, rats were given access to PPL-103 (0, 30, and 100 µg/kg/
infusion) according to a Latin square within-subject design, in 
which each dose was tested 4 days/week under the FR1TO20 task 
and under PR on the ��h day. During the following weeks, rats 
had access to a di�erent PPL-103 dose. Results of FR sessions 
are reported as number of infusions earned in 120  min. Total 
responses and break point were the dependent variable for PR.

E�ect of Systemically Administered PPL-101 on Morphine 

Self-administration
A�er restoring a new morphine self-administration baseline of 
responding, animals (N = 8) were used to assess the e�ectiveness 
of systemically administered PPL-101 in altering morphine lever 
pressing. PPL-101 (0, 0.3, 1.0, and 3.0 mg/kg, i.p.) was tested using 
a Latin-square counterbalanced within-subjects design. Following 
the establishment of a stable morphine self-administration, for 
the test session, animals were treated with the desired dose of 
PPL-101 (i.p.) 15  min prior to the self-administration session. 
Following each test session day, animals were allowed 1 day o�, 
and a new baseline of morphine self-administration was then 
established over the following 2 days, prior to the subsequent test 
session. Data are reported as number of infusions obtained in the 
120-min test session. Responses on the inactive lever were also 
recorded and served as an index of unspeci�c motor behavior.

E�ect of JDTic on Morphine and PPL-101 Self-administration
Two additional groups were trained to self-administer morphine 
(100  µg/kg/infusion; N  =  5) or PPL-101 (100  µg/kg/infusion; 
N = 7) for 1 week under the FR1TO20 task. �e kappa antagonist 
JDTic (10 mg/kg, ip) was administered to both groups of rats 2 h 
following the last training session (41). Starting 24-h following 
antagonist treatment, morphine and PPL-101 self-administration 
performance under the FR1TO20 schedule was monitored over 
seven daily 120-min sessions. Data are reported as number of 
infusions earned in daily 120-min sessions.

Assessment of Thermal Nociception  

of U-69,593 in Rats

Plantar Test
�ermal antinociceptive activity in rats was assessed by measur-
ing hind paw withdrawal latency in response to radiant heat 
using a plantar test apparatus (Ugo Basile, Comerio, Italy) 
according to the method used by Hargreaves et al. (42). Brie�y, 
each rat was placed into a compartment enclosure on a glass 
surface. A mobile heat source was then positioned under the 
plantar surface of the hind paw and activated with a light beam. 
A digital timer automatically recorded the response latency 
for paw withdrawal to the nearest 0.1 s. �e mean withdrawal 
latency (seconds) for the le� hind paw was determined from the 
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TABLE 1 | Binding af�nities Ki (nanomolars) of PPL-101 and PPL-103, 

compared with other prototypical agonists at the mu, kappa, and delta 

opioid receptors.

Receptor binding [Ki (nM) ± SEM]

Mu Kappa Delta

DAMGO 0.9 ± 0.1 305 ± 46 300 ± 59

DPDPE 503 ± 10 >10,000 1.6 ± 0.1

U-69,593 1,145 ± 335 0.3 ± 01 >10,000

Morphine 1.1 ± 0.1 47 ± 14.5 140 ± 1.5

Buprenorphine 1.5 ± 0.8 0.8 ± 0.1 4.5 ± 0.4

Cyclazocine 0.1 ± 0.01 0.1 ± 0.02 0.8 ± 0.05

PPL-101 0.35 ± 0.04 0.43 ± 0.1 4.0 ± 1.4

PPL-103 0.36 ± 0.11 2.47 ± 0.105 0.29 ± 0.03

Data shown represent mean ± SEM for at least two experiments conducted in 

triplicate.
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average of three trials separated by a 10-min interval to prevent 
thermal sensitization.

To con�rm that JDTic (10 mg/kg) was producing its e�ect on 
self-administration by blocking kappa receptors, we examined 
whether U-69,593-induced antinociception could be blocked 
using the rats that underwent self-administration testing. Paw 
withdrawal latency was measured in rats that were pretreated 
with JDTic or vehicle a�er completion of the self-administration 
experiments. One week a�er the JDTic administration, rats 
received an injection of U-69,593 (0.3 mg/kg, s.c.) or vehicle and 
were tested for paw withdrawal latency 15  min post-U-69,593 
administration.

Statistical Analyses
Antinociception in mice [% maximum potential e�ect (% MPE)] 
was quanti�ed by the following formula: % MPE = 100 × [(test 
latency − baseline latency)/(15 − baseline latency)]. If the animal 
did not respond prior to the 15-s cuto�, a score of 100% was 
assigned. In initial assessment of PPL-101 and PPL-103, post-tail 
�ick latency was analyzed using an ANOVA with drug treatment 
(PPL-101, PPL-103, and morphine) as a between-group variable 
and post-injection time as the dependent measure. PPL-101 time 
course data were analyzed using repeated measures ANOVAs 
with drug treatment (PPL-101, morphine, JDTic, or beta-FNA) 
as a between-group variable and post PPL-101-injection time  
(0.5, 1, 2, and 4 h) as the repeated measure followed by Bonferroni 
post  hoc tests where appropriate. Global activity was analyzed 
using repeated measures ANOVAs with drug treatment (PPL-101,  
PPL-103, and morphine) as a between-group variable and injec-
tion day (�rst versus third) as a repeated measure. Signi�cant 
interactions were further analyzed with one way ANOVAs and 
Bonferroni post hoc tests. To examine sensitization or tolerance 
to the development of global activity, following a signi�cant 
overall ANOVA, t-tests were used to compare data following the 
third injection relative to the �rst. For the CPP test day data, a 
di�erence score was calculated as time spent in the drug-paired 
compartment minus time spent in the vehicle-paired compart-
ment. Vehicle animals spent the same amount of time in both 
compartments such that the di�erence score is no di�erent 
than 0  s. Di�erence scores were analyzed using ANOVAs, and 
signi�cant e�ects were further analyzed with post hoc tests. CPP 
was evident if animals spent signi�cantly more time in their 
drug-paired compartment, resulting in a positive di�erence score 
relative to control animals.

In rats, self-administration data (number of infusions, FR-1 
schedule) were analyzed using repeated measures ANOVA with 
reinforcer (PPL-101, PPL-103, and morphine) as between-subject 
variables and “day” as a repeated measure. PR data, number of 
infusions, was analyzed using a one-way ANOVA with drug/dose 
(morphine, PPL-101) as the between-subject variable. Systemic 
e�ect of PPL-101 on morphine self-administration was analyzed 
by a one-way ANOVA that used treatment as a within-subject 
factor. Long-term e�ects of JDTic on morphine and PPL-101 self-
administration were analyzed by comparing lever pressing before 
and a�er treatment using a one-way ANOVA. Paw withdrawal 
data were examined using a two-way ANOVA with drug pretreat-
ment (vehicle or JDTic) and treatment (vehicle or U-69,593) as 

between-subject factors. Post hoc comparisons were conducted 
where appropriate.

For all experiments, the level of signi�cance was set at P < 0.05.

RESULTS

In Vitro Receptor and [35S]GTPγS Binding
Binding a�nity and in vitro functional activity were determined 
at mu, kappa, and delta receptors for PPL-101, PPL-103, and 
several selective and non-selective reference compounds. As 
seen in Table  1, PPL-101 and PPL-103 have Ki of less than 
5  nM at each receptor. �us, the α-methyl-cyclopropylmethyl 
(α-methyl-CPM) moiety found in PPL-101 and PPL-103, as well 
as CPM found in cyclazocine and buprenorphine, induces high 
a�nity for mu, kappa, and delta opioid receptors, unlike their 
N-CH3 counterparts, such as morphine, which have considerable 
selectivity for the mu receptors [Table 1; and see Ref. (16)]. �e 
in vitro functional activity, as determined by [35S]GTPγS bind-
ing, is also a�ected by the N-substitution, as the α-methyl-CPM 
moiety induces a change in e�cacy, so that PPL-101 and PPL-103 
have low e�cacy at mu and delta receptors and higher partial 
agonist activity at kappa receptors (Table 2). �is is similar to 
what is found with cyclazocine (cycloproplymethyl-benzomor-
phan), which also has reduced e�cacy at mu and higher e�cacy 
at kappa relative to its N-CH3 analog, metazocine (43, 44). �e 
ring structure also a�ects e�cacy at the opioid receptors, since 
the oripavine buprenorphine, which also contains a CPM moiety, 
has reduced e�cacy at mu receptors but no intrinsic activity at 
kappa.

Thermal Nociception of PPL-101  
and PPL-103 in Mice
In initial assessments of thermal nociception, PPL-101 and PPL-
103 exhibited signi�cant antinociceptive activity measured by 
tail �ick latency, as shown in Figure 2. �e e�ects of PPL101 on 
tail �ick latency 60-min post-injection are shown in Figure 2A. 
�e overall ANOVA indicated that there was a signi�cant e�ect 
of dose [F(6,48) = 44.4, P < 0.05]. �e positive control morphine 
produced the maximal e�ect in increase in tail �ick relative to 
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FIGURE 2 | Acute thermal antinociceptive effects of PPL-101 (A) and 

PPL-103 (B) alone using the tail �ick assay in mice. Data are mean % 

maximum potential effect (%MPE) (± SEM) 60-min post-injection. *, 

signi�cant difference from vehicle control group (P < 0.05).

TABLE 2 | In vitro functional activity of PPL-101 and PPL-103, compared with other prototypical agonists at the mu, kappa, and delta opioid receptors.

Mu Kappa Delta

EC50 (nM) % Stim. EC50 (nM) % Stim. EC50 (nM) % Stim.

DAMGO 14 ± 5.3 100 4,400 ± 1,600 62 ± 21.0 >10,000

DPDPE >10,000 >10,000 1.3 ± 0.5 100

U-69,593 >10,000 26.1 ± 10.7 100 >10,000

Morphine 16 ± 1.1 97 ± 1.05 575 ± 81 25 ± 2.0 412 ± 127 78 ± 0.9

Buprenorphine 2.3 ± 1.7 19 ± 05 >10,000 >10,000

Cyclazocine 1.2 ± 0.07 33 ± 18 0.80 ± 0.2 80 ± 9 2.9 ± 1.9 82 ± 9

PPL-101 0.3 ± 0.1 12 ± 2.9 15 ± 2.5 63 ± 0.3 40 ± 6.3 22 ± 5.8

PPL-103 4.30 ± 2.13 22.6 ± 0.05 9.01 ± 2.64 39.8 ± 3.9 2.99 ± 0.92 41.7 ± 5.0

Data shown represent mean ± SEM for at least two experiments conducted in triplicate.
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vehicle controls. �e doses of 0.3–10  mg/kg PPL101 produced 
dose-dependent antinociception where there was a signi�cant 
increase in %MPE relative to vehicle controls at all doses tested 
and maximal e�ects were observed with 3–10 mg/kg PPL-101.

PPL-103 also showed potent antinociception at all doses 
tested (0.3–3 mg/kg; Figure 2B). �e overall ANOVA indicated 
that there was a signi�cant e�ect of dose [F(4,35) = 31.1, P < 0.05]. 
Maximal e�ects were observed following administration of the 
1.0 and 3.0 mg/kg doses, whereas the 0.3 mg/kg dose produced 
a signi�cantly reduced level of antinociception relative to the 
higher two doses.

�e time course for PPL-101 antinociception is shown in 
Figure 3. �e overall ANOVA indicated that there was a signi�-
cant dose by time interaction e�ect [F(15,129) = 10.18; P < 0.0001]. 
�e positive control morphine produced the anticipated increase 
in %MPE at all the time points compared to vehicle controls. 
Across time, %MPE produced by morphine was highest at the 
0.5–2  h time points; however, there was a signi�cant decrease 
in %MPE at the 4-h time point compared to the �rst time-point 
(0.5 h; P < 0.0001). PPL-101, at 0.3–10 mg/kg, produced a dose-
dependent increase in %MPE that was signi�cantly di�erent from 
vehicle controls up to 4-h post-injection (Figure 3). Signi�cant 
increases in %MPE were evident in all dosage groups of PPL-
101 compared to vehicle controls at the �rst time-point (0.5 h; 
P  <  0.001), whereas at the 1- and 2-h test points 1–10  mg/kg 
produced a signi�cant increase in %MPE (P < 0.001). However, 
by the 4-h time point, only the highest dose of PPL-101 tested 
produced antinociceptive e�ects (P < 0.0001). �e highest dose 
of PPL-101 produced similar levels of antinociception as the 
maximally e�ective dose of morphine tested and %MPE pro-
duced by 10 mg/kg PPL-101 was not signi�cantly di�erent than 
that produced by morphine at all time-points tested.

Effect of JDTic and Beta-FNA on  
PPL-101-Induced Antinociception in Mice
To determine the relative involvement of mu and kappa agonist 
activity in eliciting PPL-101-induced antinociception, animals 
were pre-treated with mu antagonist beta-FNA (40  mg/kg) or 
kappa antagonist JDTic (10 mg/kg; Figure 4) 24 h prior to PPL-
101 injections and testing. �e overall mixed three-way ANOVA 
indicated a signi�cant interaction [F(24,318)  =  5.95; P  <  0.0001]. 
As evident in the �gure, JDTic (gray triangles) and beta-FNA 
(black square) when administered alone 24-h prior to a vehicle 
administration and testing have no e�ect on tail �ick latency in 
mice. Morphine antinociception was completely inhibited by the 
mu opioid antagonist beta-FNA but was not altered by the kappa 
antagonist JDTic. On the other hand, PPL-101-induced antino-
ciception was inhibited by JDTic and not beta-FNA. Although 
beta-FNA did not attenuate PPL-101-induced antinociception, it 
potentiated antinociception produced by 0.3 mg/kg PPL-101 at 
the 1- to 4-h post-PPL-101 injection, time-points during which 
the 0.3 mg/kg dose alone did not signi�cantly produce antino-
ciception (P  <  0.05). �us, it seems that in general, the kappa 
antagonist JDTic and not beta-FNA attenuated PPL-101-induced 
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FIGURE 3 | Time course for acute thermal antinociceptive effect of 

PPL-101 (0.3–10 mg/kg, subcutaneous) alone in the tail �ick assay in 

mice. Data are mean % maximum potential effect (%MPE) (± SEM). *, 

signi�cant difference from vehicle control group (P < 0.05). †, signi�cant 

difference from �rst test-point, 0.5 h (P < 0.05).
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antinociception, whereas beta-FNA potentiated PPL-101 antino-
ciception at the lowest dose.

Reward Acquisition of PPL-101  
and PPL-103 in Mice
�e e�ect of PPL-101 and PPL-103 on acquisition of CPP is 
shown in Figures  5A,B. As expected, the group of animals 
that received 15  mg/kg morphine exhibited a signi�cant 
CPP (P  <  0.05) compared to vehicle controls. Although in 
Figures  5A,B PPL-101 and PPL-103 showed trends for CPP 
(P = 0.08 and 0.12 for PPL-101 and PPL-103, respectively), the 
post hocs did not reveal any signi�cant di�erence between the 
groups that received PPL-101 or PPL-103 when compared to 
vehicle controls.

Global Activity of PPL-101 and PPL-103 
Following Acute and Repeated 
Administration in Mice
�e e�ect of PPL-101 and PPL-103 on global activity during 
conditioning training, a�er the �rst and third drug injections, is 
shown in Figures 5C,D. �e overall ANOVA indicated that there 
were signi�cant dose by injection day interactions with PPL-
101 [F(3,25) = 7.9; P < 0.05] and PPL-103 [F(4,34) = 7.8, P < 0.05]. 
As shown previously, morphine administration produced an 
increase in global activity a�er the �rst drug injection relative 
to vehicle controls (P  <  0.05). Furthermore, sensitization of 
morphine-induced global activity was also evident as an increase 
in activity following the third drug injection relative to the �rst 
drug injection (P < 0.05). On the other hand, the 3.0 mg/kg dose 
of PPL-101 and PPL-103 produced decreases in global activity 
relative to vehicle controls following the �rst and third drug 
injections (P < 0.05). Additionally, 3 mg/kg PPL-101 produced a 
further decrease in global activity following the third drug injec-
tion relative to the �rst drug injection (P < 0.05).

Reinforcing Properties of PPL-101  
and PPL-103 in Rats
Rats were initially trained to self-administer food pellets and then 
morphine sulfate at 100 µg/kg/infusion. Average responses on the 
morphine-associated lever over the last 3 days prior to PPL-101 
self-administration were 29.0 ± 5.8, 27.2 ± 6.1, and 32.2 ± 12.6 
(mean ± SEM). When PPL-101 (30 and 100 µg/kg/infusion) was 
substituted for morphine, rats exhibited a decrease in respond-
ing when compared to their counterparts that continued to 
self-administer morphine (Figure  6A). �e overall ANOVA 
showed a signi�cant main e�ect of “reinforcer” [F(3,20)  =  3.2, 
P < 0.05] that was not accompanied by a signi�cant interaction 
“session ×  reinforcer” [F(18,120) = 1.2, NS]. Post hoc analysis was 
therefore carried out on the collapsed factor of “reinforcer” (data 
for each PPL-101 dose group, morphine and vehicle groups aver-
aged across the 7 days). �is analysis indicated that both doses of 
PPL-101 were not self-administrated as compared to 100 µg/kg 
morphine (P < 0.05 for both doses, Figure 6A). Although by days 
3–7 the 0.9% saline and PPL groups were very similar, the 0.9% 
saline replacement group only showed a trend toward a di�erence 
compared to the morphine group (P = 0.07).

Similarly, in a separate experiment with a new cohort of 
animals, when PPL-103 (30 and 100 µg/kg/infusion) was substi-
tuted for morphine using a within-subject Latin square design, 
the operant response under the FR-1 schedule clearly varied 
{reinforce × session interaction [F(6,42) = 2.6, P < 0.05]}. Post hoc 
analysis showed that lever pressing for both doses of PPL-103 
was markedly decreased as compared to responses for morphine 
across all test sessions (P < 0.001, Figure 6B).

When responding under the PR schedule (Figure 6C), similar 
changes in lever pressing were observed between groups that 
received PPL-101. �ese changes substantially paralleled those 
seen under the FR-1 schedule. Indeed, ANOVA revealed di�erence 
in the number of infusions [F(3,20) = 3.0, P = 0.05]. Post hoc com-
parisons indicated that the number of infusions for vehicle and 
PPL-101 (30–100  µg/kg/infusion) were signi�cantly decreased 
compared to the morphine group (P < 0.05). As with PPL-101, 
when responding under the PR schedule (Figure 6D), PPL-103 
was self-administered to a lesser extent than morphine. ANOVA 
revealed di�erence in the number of infusions [F(2,14)  =  5.8, 
P < 0.05]. Post hoc comparisons indicated that the number of infu-
sions for vehicle and PPL-103 (30–100 µg/kg/infusion) were sig-
ni�cantly decreased compared to the morphine group (P < 0.05).

�ese data collectively suggest that at the doses tested, PPL-101 
and PPL-103 are not self-administered by rats to the same extent 
as morphine and in fact were similar to the vehicle. �is was 
further demonstrated by the evidence that all groups returned to 
high level of morphine-taking behavior when morphine replaced 
0.9% saline, PPL-101, or PPL-103.

Effect of PPL-101 on Morphine  
Self-administration in Rats
Experiments were carried out to determine whether systemic 
pretreatment with PPL-101 would reduce morphine self- 
administration. PPL-101 (0.3–3.0  mg/kg; Figure  7) showed 
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FIGURE 4 | The effect of kappa antagonist, JDTic [10 mg/kg, subcutaneous (s.c.)], and mu antagonist, beta-FNA (40 mg/kg, s.c.) on  

PPL-101-induced antinociception 0.5-h (A), 1-h (B), 2-h (C), and 4-h (D) post-PPL-101 injection in mice. Data are mean % maximum potential effect 

(%MPE) (± SEM). *, signi�cant difference from respective vehicle control groups (P < 0.05). †, signi�cant difference from PPL-101 alone (P < 0.05).
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a marked trend to reduce operant responding for morphine. 
�e overall ANOVA conducted on the morphine-paired lever 
revealed a main e�ect of PPL-101 treatment that was a very strong 
trend [F(3,21) = 2.8; P = 0.06]. �e same analysis conducted on the 
inactive lever led to an overall e�ect of treatment [F(3,21) = 4.0; 
P < 0.05]. Post hoc comparisons revealed a signi�cant increase in 
lever pressing in rats treated with PPL-101 0.3 mg/kg (P < 0.05), 
suggesting altered non-speci�c motor behavior only at this dose 
of PPL-101, while inactive lever responding did not change at 
higher doses.

Effect of JDTic on Morphine and  
PPL-101 Self-administration
Because PPL-101 was not self-administered, and partially acti-
vates both kappa and mu receptors, we examined whether this 
lack of drug-taking behavior was due to PPL-101 having very low 
mu-mediated activity or because kappa activity was high enough 
to diminish the mu-mediated reward. Rats were treated with the 
long-lasting kappa antagonist JDTic to block kappa activity during 

the self-administration sessions (Figure 8). Average lever press-
ing of JDTic-treated rats self-administering morphine (100 µg/
kg/infusion) across seven daily sessions was compared to baseline 
lever pressing of the same rats across the last 3 days of morphine 
self-administration prior to JDTic treatment. ANOVA revealed 
no signi�cant e�ect of JDTic on morphine self-administration 
[F(1,4)  =  1.5, n.s.]. Similarly, average lever pressing of JDTic-
treated rats self-administering PPL-101 (100  µg/kg/infusion) 
across 7 days was greatly reduced compared to morphine self-
administration and not di�erent from baseline lever pressing of 
the same rats across the last 3 days of PPL-101 self-administration 
prior to JDTic treatment [F(1,4) = 0.6, n.s.]. When morphine was 
substituted for PPL-101 in these JDTic-treated rats, the number 
of morphine infusions increased and was signi�cantly higher 
compared to the number of infusions for PPL-101 in the same 
animals [F(1,6) = 19.0, P < 0.01; Figure 8]. �ese data demonstrate 
that even in the presence of JDTic (and therefore the absence of 
kappa agonist activity) PPL-101 is still not self-administered 
suggesting that it is its low mu e�cacy rather than kappa agonist 
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FIGURE 5 | The effect of PPL-101 [1–3 mg/kg, subcutaneous (s.c.)] and PPL-103 (0.3–3 mg/kg, s.c.) on conditioned place preference (CPP) (A,B) and 

on global activity (C,D) following the �rst (open bars) and third (black bars) drug injections in mice. CPP data are mean (± SEM) difference score 

calculated as time spent in the drug-paired compartment minus time spent in the vehicle-paired compartment, whereas global activity data are activity (centimeters) 

following �rst and last drug injection. *, signi�cant difference from vehicle control group (P < 0.05). †, signi�cant difference from �rst drug injection (P < 0.05).
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activity that in�uences the reduced drug-reinforcing pro�le of 
PPL-101.

Effect of JDTic on U-69,593-Induced 
Analgesia in Rats
To con�rm that JDTic (10  mg/kg) was functioning as a kappa 
antagonist during the self-administration experiments, we 
examined whether U-69,593-induced antinociception could 
be blocked using the rats that underwent self-administration 
testing. On plantar test, 0.3  mg/kg U-69,593 (i.p.) successfully 
induced antinociception [F(1,16)  =  7.4, P  <  0.05], whereas the 
original single treatment with JDTic by itself did not [F(1,16) = 0.7, 
NS]. ANOVA revealed “pre-treatment ×  treatment” interaction 
[F(1,16) = 8.7, P < 0.01]. Post hoc pairwise comparisons, con�rmed 
that the single dose of JDTic used (10 mg/kg) was able to block 
the antinociceptive e�ect U-69,593 (P  <  0.01) and return paw 
withdrawal latencies to the level of controls (P < 0.05; Figure 9).

DISCUSSION

It has been demonstrated repeatedly that the N-substituent of 
several opioid backbones, including morphine, morphinan, and 

benzomorphan, greatly a�ects its a�nity, selectivity, and e�cacy 
at each opioid receptor. It has been known for many years that 
compared to morphine, the presence of a N-CPM moiety causes 
an increase in a�nity at delta and kappa receptors, as well as a 
decrease in e�cacy at mu receptors (15). Given the potential use-
fulness of opiates with N-substituent variations, such compounds 
have been carefully examined in both rodents and primates, 
leading to several compounds used in the clinic. In particular, 
the antagonist naltrexone and the partial agonist buprenorphine 
have a N-CPM moiety while nalbuphine and butorphanol both 
have N-cyclobutylmethyl substituents. Each of these clinically 
available compounds has relatively high a�nity at each of the 
opioid receptors, with variations in the relative e�cacy at each 
receptor, as do other N-CPM containing compounds such as 
kappa agonists cyclazocine and EKC (16, 20, 45, 46). None of 
these have an ideal pro�le as a non-addicting analgesic.

PPL-101, a morphine analog initially synthesized in 1979, 
and PPL-103, a recently synthesized morphinan version, have a 
CPM moiety as well as an additional methyl group attached to the 
α-carbon o� the basic nitrogen. �e presence of the alpha-methyl 
moiety restricts the rotation of the N-substituent and results 
in two diastereomers with di�erent properties, the R-isomer 
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FIGURE 6 | Self-administration of PPL-101 (30 and 100 µg/kg/infusion) and PPL-103 (30 and 100 µg/kg/infusion) under �xed ratio 1 (FR-1) (A,B) and 

progressive ratio (PR) (C,D) schedules of reinforcement in rats. For the PPL-101 experiment (A,C), a between-subject design was used with four groups of 

n = 6. For the PPL-103 experiment (B,D), a Latin Square within-subject design was used (n = 8). In both procedures, initial self-administration (baseline) was 

established with morphine (100 µg/kg/infusion). Data are mean (± SEM) number of infusions under both FR-1 and PR schedules. *P < 0.05, **P < 0.01, and 

***P < 0.001 signi�cant difference from morphine. B, baseline; MR, morphine re-acquisition.
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having higher a�nity and more potent analgesic activity than the 
S-isomer (26). PPL-101 and PPL-103 bind with high a�nity to 
the mu and kappa receptors with a 10-fold lower binding a�nity 
at delta opioid receptors. �ey both have low e�cacy at mu and 
low to moderate e�cacy at delta receptors with somewhat higher 
e�cacy at kappa opioid receptors. Both compounds produced 
potent dose-dependent antinociception with PPL-103 being 
approximately 3 times more potent than PPL-101, making it 
roughly 10 times more potent than morphine in the mouse tail 
�ick assay. Pretreatment with the long-lasting kappa antagonist 
JDTic, but not the irreversible mu antagonist beta-FNA, produced 
a downward shi� of the PPL-101 dose–response curve indicating 
that the antinociceptive e�ects of PPL-101 were primarily due 
to kappa opioid receptor stimulation. �is is interesting since 
even the prototypical kappa agonist EKC has su�cient mu 
receptor-mediated antinociceptive activity to be attenuated by 
beta-FNA (47). Despite the fact that PPL-101 is active through 

kappa receptors, its antinociceptive potency is �ve times that of 
the selective agonist U-50,488, and roughly three times that of 
morphine (48).

It is interesting to note that, although the mu receptor antag-
onist beta-FNA did not e�ectively decrease PPL-101 antinocic-
eption, nor did it have antinociceptive activity of its own when 
administered 24 h prior to the tail �ick test, it was able to potenti-
ate antinociception by the lowest dose of PPL-101. Partial agonist 
activity of beta-FNA at kappa receptors has been previously 
reported in smooth muscle preparations (49) and the acetic acid 
writhing test, though not in tail �ick (50). �erefore, it is possible 
that some low level of kappa agonist activity of beta-FNA could 
potentiate antinociception produced by low doses of PPL-101.

In the present experiments, we also examined the potential 
rewarding and reinforcing e�ects of PPL-101 and PPL-103 using 
the CPP and self-administration paradigms in mice and rats, 
respectively. Typical kappa receptor agonists are powerfully 
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FIGURE 8 | Effect of kappa antagonist JDTic [10 mg/kg, 

intraperitoneal (i.p.)] on morphine (100 μg/kg/infusion) (A) and 

PPL-101 (100 μg/kg/infusion) (B) self-administration under an 

FR1TO20 schedule in rats. JDTic was given 24 h prior to the �rst 

self-administration session. Data are the mean (± SEM) of the last 3 days of 

morphine SA prior to JDTic treatment compared to average lever pressing of 

the same rats treated with JDTic and self-administering morphine across the 

following seven sessions (A), and baseline lever pressing for PPL-101 of the 

last three sessions versus the average lever pressing of JDTic-treated rats 

self-administering PPL-101 across 7 days (B). **P < 0.01 difference from rats 

JDTic-treated and self-administering PPL-101.

FIGURE 7 | Effect of PPL-101 [0.3–3.0 mg/kg, intraperitoneal (i.p.)] 

pretreatment on morphine (100 µg/kg/infusion) self-administration 

under an FR1TO20 schedule in rats. Data are mean (± SEM) number of 

infusions during 120 min session. *P < 0.05 difference from vehicle treated 

group (PPL-101, 0.0 mg/kg).
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dysphoric, produce a profound conditioned place aversion (51) 
and do not support self-administration in drug-naïve animals 
(52, 53). Furthermore, studies with the mu/kappa agonists such 
as butorphanol and nalbuphine, although initially reported to 
have lower dependence liability in humans, in animal models 
they produce mixed e�ects such that butorphanol produces 
CPP and supports self-administration, whereas nalbuphine only 
produces CPP at certain doses (54–56). PPL-101 or PPL-103 
administration was neither aversive nor rewarding in mice, 
since animals did not spend signi�cantly less or more time 
in their drug-paired compartment relative to vehicle controls, 
although surprisingly there was a trend toward CPP. �is 
trend was not accompanied by the usual mu receptor agonist-
mediated increase in locomotor activity, or by locomotor 
sensitization, a characteristic o�en considered as an indication 
of activation of the mesolimbic dopaminergic pathway. In fact, 
PPL-101 and PPL-103 both induced sedation at their highest 
dose, generally considered a kappa-mediated side e�ect (4). 
Furthermore, animals that were trained to self-administer 
morphine did not self-administer PPL-101 or PPL-103 in either 
FR or PR schedules. In order to determine whether PPL-101 
was not self-administered because the mu activity was too 
low, or because the kappa activity counteracted mu reward, 
rats were injected with the long-lasting kappa antagonist JDTic 
prior to 1 week of PPL-101 and morphine self-administration. 
JDTic had no e�ect on rats that were self-administering either 
morphine or PPL-101. �is suggests that, even in the absence 
of potential kappa receptor-mediated reduction of reinforcing 
properties, PPL-101 does not have su�cient mu activity to be 
self-administered.

Unlike the antinociceptive activity, subjective e�ects associ-
ated with PPL-101 and PPL-103 appear to suggest a mixed mu/
kappa pro�le. Although the mu receptor component in PPL-101 
seems to be very low, previous research in non-human primates 
have demonstrated that PPL-101 (then called NIH10497) was 
recognized as codeine and not EKC in a drug discrimination 

test, and substituted for morphine, thereby preventing with-
drawal in morphine-dependent non-human primates (27, 28). 
Similarly, PPL-103 also substituted for morphine in a single-
dose suppression test in non-human primates (Harris et  al. 
unpublished observation). �us, although the antinociceptive 
e�ects of PPL-101 and PPL-103 seemed to be orchestrated by 
kappa receptors, the e�ect of these compounds on reward, as 
demonstrated in the CPP paradigm, is distinctly not kappa 
like. Furthermore, despite apparent mu-mediated subjective 
e�ects, PPL-101 and PPL-103 are not reinforcing enough to 
be self-administered.

In conclusion, these results demonstrate that a mixed kappa/
mu/delta compound, with varying partial agonist activity at each 
site, can produce interesting properties, where the �nal in vivo 
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FIGURE 9 | U-69,593-induced antinociception using the plantar test in 

rats. The kappa agonist U-69,593 (0.3 mg/kg) produced analgesia, an effect 

abolished by pretreatment with the kappa antagonist JDTic. Data are mean 

(± SEM) paw-withdrawal latency (seconds). **P < 0.01 difference from 

control group (VEH/VEH), #P < 0.05 difference from U-69,593 treated group 

(VEH/U-69,593).
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pro�le seems to be a function of the relative a�nities and e�ca-
cies at the three opioid receptors. With PPL-101 and PPL-103, this 
pro�le includes potent kappa-mediated antinociceptive activity, 
an apparent lack of dysphoria, with no self-administration, and 
the ability to block morphine self-administration. Kappa agonists 
also are e�ective for reduction of itch (57), and kappa partial 
agonists have been postulated to be e�ective as a treatment for 

cocaine abuse (58). �erefore, a kappa agonist or partial agonist, 
without the accompanying dysphoria could prove useful for a 
number of ailments in humans.
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