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Abstract 

The Ste20‐like kinase (SLK) has been shown to be expressed in all cell lines and tissues. 

Previous studies using siRNA and dominant negative approaches have established that SLK plays 

important roles in cell growth, cytoskeletal dynamics and cell migration. However, the SLK-

dependent signaling mechanisms have yet to be elucidated. To further investigate the role of SLK 

in those processes, we have assessed the effect of a genetic deletion of SLK on cell growth, 

apoptosis and cell motility. Conditional SLK-floxed fibroblasts were derived and the SLK gene 

was inactivated in established cell lines. Using cell counts and flow cytometry, we show that SLK 

deletion does not affect cell growth or progression through the cell cycle. Similarly, Boyden 

chamber migration assay showed that SLK deletion did not affect cell motility. Using a scratch 

wound assays and immunofluorescence, we assessed the localization of cytoskeletal protein during 

migration. Our data show that Paxillin and FAK are still recruited to the leading edge of migrating 

cells in the absence of SLK. However, nocodazole release studies show that SLK-deficient cells 

have a faster focal adhesion turnover rate. As SLK has been shown to play a role in apoptosis, we 

tested the effect of SLK deletion on cell death. Using multiple apoptotic triggers, we show that 

SLK deletion does not affect apoptosis in fibroblasts and that signaling downstream of those 

triggers is unchanged. Overall, in contrast to siRNA studies, our data show that the genetic deletion 

of SLK doesn’t affect cell growth, apoptosis or cell migration. This is likely due to the activation 

of compensatory mechanisms, bypassing the requirements for SLK.  
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1. INTRODUCTION 

1.1 The Ste20-like Kinase SLK 

The archetype Sterile 20 protein (Ste20p) plays a role in the yeast mitogen-activated protein 

kinase kinase kinase kinase (MAP4K) mating pathway (Dan I, Watanabe NM, Kusumi A., 

2001). There are several homologs in different species and those are divided into the p21-

activated kinase (PAK) and germinal center kinase (GCK) families. Their modular structure 

allows them to crosstalk with several regulatory proteins and signaling molecules that are 

involved in multiple biological processes (Dan I, Watanabe NM, Kusumi A., 2001). They play 

critical roles in morphogenesis, cytoskeletal dynamics and apoptosis. The Ste20-like kinase SLK 

was first identified and cloned from the guinea pig (Itoh et al, 1997). The mouse and human 

homologs were subsequently isolated and characterized (Sabourin et al, 1999, Yamada et al, 

2000). A yeast two-hybrid screen was used to isolate murine SLK (Sabourin and Rudnicki 1999). 

Using a muscle specific transactivator as the bait protein, SLK was isolated as a false positive 

clone from a skeletal muscle cDNA library.   Supporting previous studies, homology searches 

revealed that SLK was present in virtually all eukaryotic species, including flies. Northern Blot 

analysis of different mouse tissues showed three different isoforms of SLK (6, 7, 8 Kb) with the 

largest one being the most abundant (Sabourin, Seale, Wagner et.al, 2000). All tissues surveyed 

expressed similar levels of SLK mRNA with lower levels in the liver. The SLK protein has been 

shown to be expressed in most cell lines and tissues (Al-Zahrani et. al, 2013) and localizes to the 

cytoplasm.  

SLK is a member of the group IV Germinal Center Kinases (GCK-IV). The amino-

terminal kinase domain displays sequence similarity to the Xenopus polo-like kinase 1 (xPlkk1), 

MST1 and LOK serine/threonine kinases, playing a role in cell cycle control and apoptosis 
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(Graves JD, Gotoh Y, Draves KE, et al, 1998). The general structure of SLK consists of 1202 

amino acids arranged in three distinct domains: a Ste20 catalytic kinase domain (aa 1-338) near 

the N-terminal, a central coiled-coil region (aa 339-788) and an AT1-46 homology domain 

(ATH: aa-789-1202) at the C-terminal end (Figure 1) . A putative SH3 binding site is present at 

amino acid position 735, suggesting that SLK could directly interact with SH3 domain-

containing proteins (Sabourin, Tamai, Seale, et al., 2000).  

SLK has been shown to be phosphorylated at serine 189, threonines 183 and 193 (T183 

and T193) following auto-activation (Cybulsky et al. 2017). Experiments have shown a 60% 

reduction in kinase activity with a serine 189 to alanine 189 mutant (S189A) and a 

T183A/S189A double mutant showed an 80% reduction (Luhovy, Jaberi, Papillon et al., 2011). 

Both sites are never completely phosphorylated, suggesting that they become phosphorylated in 

a primary and secondary manner. A glutamine 185 mutation (Q185P) that prevents SLK from 

dimerizing, shows reduced auto-phosphorylation, suggesting that SLK forms a dimer in a trans-

orientation prior to auto-phosphorylation (Pike, 2008). Based on deletion studies, it was reported 

that an important regulatory region lies between amino acids 373 to 592 (Sabourin, Tamai, Seale 

et al., 2000). The C-terminal ATH domain of SLK also plays a role in the regulation of its 

activity. SLK-binding proteins include the transcriptional co-activators LMO4, Ldb1, Ldb2, the 

cytoskeletal protein Actinin and Translocated Promoter Region (TPR) (Jaberi A, Hooker E, 

Guillemette J et.al, 2015, Storbeck CJ, Wagner S, O'Reilly P, et al., 2009).  Binding to Ldb1/2 

appears to downregulate kinase activity (Storbeck et al., 2009). Supporting this, deletion of the 

ATH region enhances SLK kinase activity. The various pathways regulating SLK, its regulators 

and downstream effectors are still being uncovered.  
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SLK has been shown to play a role in apoptosis, cytoskeletal dynamics and cell migration 

(Hao W, Takano T, Guillemette J et al., 2006; Wagner et al., 2002; Quizi JL, Baron K, Al-Zahrani 

KN, 2013).  SLK has distinct functions and likely signals differently depending on the cellular 

context. In a renal ischemia-reperfusion injury model, SLK reduces the effect of the endoplasmic 

reticulum stress response and activates the apoptosis signal-regulating kinase-1 (ASK1) (Hao W, 

Takano T, Guillemette J et al., 2006). ASK1 activation through phosphorylation leads to direct 

phosphorylation of its downstream target, the p38 mitogen-activated protein kinase (G. Bunkoczi, 

E. Salah, P. Filippakopoulos et al., 2007).  This leads to the release of cytochrome C from its 

mitochondrial complex that culminates in the activation of caspase 8 and 9. In glomerular epithelial 

cells, SLK over expression induces apoptosis through the c-Jun N-terminal kinase-1 (JNK1) JNK 

dependent pathway (Cybulsky AV, Takano T, Guillemette J et. al, 2009). SLK has also been shown 

to be required for cell cycle progression from G2 to Mitosis (G2/M) and activate the polo-like 

kinase homolog (PLK1) and cyclin dependent kinase (Ellinger-Ziegelbauer H, Karasuyama H, 

Yamada E et al., 2000; Reilly P., Wagner S, Franks D., et al. 2005). Both these kinases are 

important to regulate transit through the cell cycle. In addition to cell death and cell cycle 

progression, SLK has been demonstrated to regulate cytoskeletal dynamics and cell migration 

through actin destabilization and focal adhesion dynamics (S.Wagner, C. Storbeck, K. Roovers et 

al., 2008; Quizi JL, Baron K, Al-Zahrani KN, 2013).  

SLK has been shown to play a critical role in development as the global knock out results 

in embryonic lethality (Pryce et al., 2017).  Consistent with this, an SLK gene trap allele (SLK-

LacZ) resulting in an SLK truncation at the ATH domain was found to be embryonic lethal in 

homozygote mice (Al‐Zahrani, K. N., Sekhon, P., Tessier et al, 2014). At embryonic day E12.5, 

H&E staining showed severe developmental defects in about 40% of the embryos. At E14.5, 
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almost all of the tissue analysed had anomalies. Mouse embryonic fibroblasts (MEFs) were 

isolated from SLK-LacZ mice and cultured in vitro. Proliferation assays were performed and it 

was noted that SLK-LacZ cells grew poorly compared to wild type MEFS, supporting previous 

data on SLK and cell cycle progression (Ellinger-Ziegelbauer, H., Karasuyama, H., Yamada E., et 

al., 2000; Wagner, S., Flood T.A., O’Reilly P. et al, 2002).  
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Figure 1. Schematic of the murine SLK structure. The Ste20-like kinase SLK bears a Ste20 

signature kinase region (amino acids 1-338) located at the amino terminus (Al-Zahrani et. al, 

2013). The kinase domain contains the Ste20 kinase sequence TPYWMAPE. The central coiled 

coil region extends from amino acids 339-788 and bears a putative SH3-binding domain 

consensus site (PXXPX) and a consensus caspase 3 cleavage site (DXXD) (Cybulsky et al. 2017, 

Conway et al. 2017, and Sabourin et al. 2000). The ATH domain is a disorganized region located 

at the C-terminus and contains a SARAH domain.  Proteins that are similar in sequence to the 

kinase region of SLK include LOK and MST1. The AT1-46 and LOK proteins share similarities 

to the ATH region (Al-Zahrani et. al, 2013). SLK activity is dependent on three main sites (S189, 

T193, and T183) (Cybulsky et al. 2017, Conway 2017).   
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1.2 SLK and Cell Cycle Control 

The cell cycle is tightly controlled as it is an important process that allows cells the 

ability to multiply and create new daughter cells (Satyanarayana, Kaldis. 2009). The cell cycle is 

characterized into different sections which include Mitosis (M phase) and Interphase (Alberts B, 

Johnson A, Lewis J, et al., 1983, Schafer, K. A., 1998). Interphase consists of S, G1, G2 and G0 

sub phases. S phase is when DNA doubles, hence the cell goes from a 2N to a 4N DNA content. 

In G1, critical proteins are created in order to help the cell move into S phase and create DNA. 

G2 phase consists of DNA proofreading and repair to get ready for mitosis or M phase 

(prophase, metaphase, anaphase and telophase), where chromosomes align and divide into two 

new daughter cells. G0 consists of not actively dividing cells.   

Progress in the cell cycle has many proteins that control and coordinate cell cycle events 

through different checkpoints. Cyclin-dependent kinases (cdks) and cyclin proteins are in charge 

of various stages in the cell cycle (Devault A, Cavadore JC, Fesquet D et al, 1991; Parker LL, 

Piwnica-Worms H, 1992; Van den Heuvel S, Harlow E: 1993). Serine/threonine protein kinases, 

known as cdks, help in mitotic progression. Phosphorylation regulates cdks along with different 

cyclin levels (Schafer, K.A, 1998) and cyclin interactions that activate cdks. Changes in the 

levels of varying phase-specific cyclins direct cells through the cell cycle. When one specific 

cyclin increases, another one is destroyed from a previous phase.   

The cell cycle, as described by classic literature, has classified the following: D-type 

cyclins bind to Cdk4 and Cdk6 during G1, which helps prepare for DNA synthesis (Malumbres, 

M., Barbacid, M., 2001).   These complexes can cause a partial inactivation of the retinoblastoma 

proteins RBL2, RB and RBL1. E-type cyclins are then expressed and bind to CDK2 (Harbour, J. 

W., Luo, R. X., Dei Santi, A., et al., 1999). The CDK2-cyclin E complex pushes G1/S transition 
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(Hochegger, H., Takeda, S., Hunt, T., 2008). When DNA replication is almost over, cyclin A 

activates CDK2, allowing for transit between S to the start of M phase. Nuclear envelope and 

cyclin A degradation occurs. CDK1-cyclin B complex forms as a result of the degradation which 

pushes the cells to pass into mitosis (Malumbres, M., Barbacid, M., 2005).  

Interestingly, SLK has been shown to co-localize with the mitotic spindle involved in 

chromosome alignment and segregation at M phase. Consistent with this, SLK activity is 

increased during M phase (O’Reilly PG, Wagner S, Franks DJ et al., 2005) and SLK has been 

shown to be associated with the microtubule network and co-immunoprecipitate with α-tubulin 

(Wagner S, Flood TA, O'Reilly P et al., 2002). Expression of kinase-inactive SLK in MEF-3T3 

fibroblasts inhibited proliferation and blocked progression through G2. Overexpression of active 

SLK induced aberrant mitotic entry and spindle formation in MEF-3T3 fibroblasts. Supporting a 

role for SLK in G2/M, SLK has been shown to phosphorylate and activate Plk1 during the G2 

phase of the cell cycle (Ellinger-Ziegelbauer H, Karasuyama H, Yamada E et al, 2000).  
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Figure 2 – SLK and cell cycle control. SLK has been shown to act upstream of PLK1 and Cdc2 

in cell cycle progression, during G2/M. Those mechanisms have yet to be clearly elucidated (Al-

Zahrani, Khalid N., Kyla D. Baron, and Luc A. Sabourin, 2013).  
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1.3 SLK and Cell Migration 

Cell migration is critical for several processes including morphogenesis, wound repair, 

maintaining homeostasis and development (Trepat et al. 2012). The cytoskeleton is required for 

integrin-dependent focal adhesion assembly and migration signaling (Bershadsky, 1996).   

During cell migration, integrins first attach to the extra-cellular matrix (ECM) (V Bolós, Gasent, 

J. M., Lopez-Tarruella S. et al., 2010; M. Nagano, D. Hoshino, N. Koshikawa et al. 2012), 

allowing signaling and scaffold/adaptor proteins to be recruited on the cytosolic side of the cell. 

These complex structures are referred to as focal adhesions and are made up of several proteins 

(Paxillin, Talin, Tensin, Zyxin, Vinculin) that provide a strong connection to the actin 

cytoskeleton (V Bolós, Gasent, J. M., Lopez-Tarruella S. et al., 2010; M. Nagano, D. Hoshino, 

N. Koshikawa et al. 2012). The assembly of focal adhesions involves the recruitment of focal 

adhesion kinase (FAK), a major regulator of adhesion signaling. The FAK-integrin complex 

interacts with the c-Src tyrosine kinase, triggering multiple downstream phosphorylation events 

critical for the signaling at focal adhesions (V Bolós, Gasent, J. M., Lopez-Tarruella S. et al., 

2010; M. Nagano, D. Hoshino, N. Koshikawa et al. 2012). Through its SH2 domains, c-Src binds 

directly to phopsho-tyrosine 397 on FAK. The signaling that ensues induces focal adhesion 

disassembly. Disassembly is regulated by calpain and microtubules, however the full mechanism 

has not been fully elucidated. The successive cycles of assembly and disassembly propels the 

cell forward during migration (V Bolós, Gasent, J. M., Lopez-Tarruella S. et al., 2010; M. 

Nagano, D. Hoshino, N. Koshikawa et al. 2012).  

Scratch wounding in mouse embryonic fibroblasts (MEFs) triggers cell migration and 

induces SLK activity (Wagner S., Storbeck C., Roovers K. et al, 2008). Interestingly, MEFs that 

were deficient for FAK showed a lack of SLK upregulation upon scratch wounding when 
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compared to wildtype FAK MEFs, suggesting that FAK is critical for SLK activation. Different 

inhibitors (U0126, SB203580) of the MAPK signaling system were used and showed a similar 

effect on SLK activation, suggesting that the upregulation of SLK activity during migration is 

dependent on MAPK signaling. It has been shown that SLK is associated with the microtubule 

network, a component of the cytoskeletal system (Wagner et al., 2002). Interestingly, SLK has 

also been shown to play a role in the microtubule-dependent focal adhesion turnover after scratch 

wound-induced migration (Wagner et al., 2008). SLK has been demonstrated to promote focal 

adhesion turnover by directly phosphorylating Paxillin on serine 250 (Quizi, 2013). It was 

observed that 293T cells that expressed a Paxillin mutant at the S250 SLK phosphorylation site 

(S250A), had a two-fold decrease in migration rates, suggesting that SLK is a critical regulator 

of cell migration. Interestingly, the same Paxillin mutant also delayed the phosphorylation of 

FAK-Y925, indicating that focal adhesion turnover was impaired.  

Factors that have been found to regulate SLK activity and migration rates include the 

LIM domain binding co-factors Ldb1 and Ldb2 (Storbeck et al., 2009).  When Ldb1 levels were 

reduced, SLK activity was upregulated and migration increased by two-fold while SLK knocked 

downs impaired cell migration. When both Ldb1 and SLK were knocked down, migration was 

unaffected, suggesting that the increased migration upon Ldb1 knock down is SLK dependent. In 

disease contexts, SLK activity has been shown to drive breast cancer cell invasion in the 

presence of Heregulin, an activator of the HER2/Neu oncogene (Roovers K., Wagner S., 

Storbeck CJ, et al., 2009). As for mouse fibroblasts, the FAK/Src complex was also required for 

invasion and migration of breast cancer cells and mammary epithelial cells (Roovers K., Wagner 

S., Storbeck CJ, et al., 2009).  Recently, LMO4 was found to interact directly with the ATH 

domain of SLK (Baron et al., 2015). It has been shown that the activation and recruitment of 
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SLK at the leading edge of migrating cells requires the LIM-only protein 4 (LMO4) and Src 

family kinase activity (Baron et al., 2015). LMO4-deficient cells failed to recruit SLK at the 

leading edge and to induce SLK kinase activity upon scratch wounding. SLK also co-localizes 

with Rac1, a regulator of actin stress fiber dynamics, at the leading edge of migrating cells 

(Wagner et al., 2002). Supporting a role for SLK in focal adhesion breakdown, overexpression of 

SLK induces actin stress-fiber disassembly, focal adhesion disassembly and apoptosis in C2C12 

myoblasts (Sabourin et al., 2000).  The v-Src oncogene has been shown to inhibit SLK activity 

indirectly through CK2 activation. SLK has been shown to be directly phosphorylated by Casein 

Kinase II (CK2) downstream of v-Src, resulting in the downregulation of SLK kinase activity 

(Chaar et al., 2006). Supporting this, SLK catalytic activity could be restored following CK2 

inhibition in v-Src transformed cells. 

In adult mice, SLK-null skeletal muscles show Paxillin mis-localization while wildtype 

muscles have a normal Paxillin distribution at costameres. FAK also displayed an altered 

localization and patchy distribution throughout the myofibers. This impaired localization might 

be responsible for the observed defects in the myotendinous junctions and myofibers stability.  
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Figure 3. Mechanisms of SLK recruitment and activation during cell migration. 

Downstream of growth factor receptor activation or direct integrin engagement with the ECM, 

the FAK/src complex is stimulated (Al Zahrani et. al, 2013), triggering signaling events that lead 

to SLK activation. SLK is recruited to the leading edge where it can phosphorylate Paxillin to 

induce focal adhesion destabilization. Focal adhesion turnover propels the cell forward in the 

direction of migration/invasion. The Ldb1/2 proteins can play a role in modulating SLK activity 

depending on the context (Storbeck, 2009).  

 

 

 

 

 

 

  



15 

 

1.4 SLK and Apoptosis 

The word apoptosis was coined by Kerr and colleagues in 1972 to illustrate the physically unique 

appearance of a cell’s “loss of life” (Kerr et al, 1972; Paweletz, 2001; Kerr, 2002; Susan E., 

2007).  Apoptosis is defined as programmed cell death (Susan E., 2007). In other words, cells 

lose their viability at distinct or regulated stops during certain cellular processes. Some features 

of apoptotic cells are that they have DNA breakdown, cleavage of proteins and cross-linking of 

proteins.  Apoptosis was first studied in the nematode Caenorhabditis elegans (Horvitz, 1999; 

Susan E., 2007). Out of the 1090 somatic cells of the nematode, 131 underwent apoptosis 

between different stages highlighting the importance of this process for the control of cell 

number (Horvitz, 1999; Susan E., 2007). Other processes where apoptosis has been shown to 

occur include: aging, development and homeostatic cell population maintenance. For example, 

aging females have a higher rate of apoptosis for their oocytes than younger women possibly 

suggesting why older women have lower fertility (Wu J, Zhang I, Wang X, 2000; Muradian K, 

Schachtschabel DO., 2001). When cells have been damaged by toxins and/or pathogens or are 

under attack due to an immune response, apoptosis can occur to protect the organism (Norbury 

and Hickson, 2001; Susan E., 2007). Different stimuli cause apoptotic death through different 

signaling pathways. Current literature has divided apoptotic pathways into two categories: 

intrinsic (mitochondrial pathway) and extrinsic (death receptor pathway) (Igney FH, Krammer 

PH, 2002; Susan E., 2007). There is also evidence that connects both pathways to each other and 

studies that suggest the existence of a third system known as the perforin/granzyme pathway. 

These systems eventually lead to a final stage known as the execution pathway. 

 

The Extrinsic Signaling Pathway 
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This pathway is initiated by the activation of a transmembrane receptor-mediated 

interaction with a death signal or ligand (Hsu et al., 1995; Grimm et al., 1996; Wajant, 2002; 

Susan E., 2007).  Death receptors, from the tumor necrosis factor (TNF) family, play an 

important role in this process. There are two critical death receptor pathways: the TNF-α/TNFR1 

and the FasL/FasR.  Ligand-mediated receptor clustering triggers the recruitment of adaptor 

proteins (FADD or TRADD) that interact with procaspase-8 (Hsu et al., 1995; Grimm et al., 

1996; Wajant, 2002; Susan E., 2007). This death-inducing complex (DISC) activates Procaspase-

8 through auto-catalysis, leading to the execution phase of apoptosis.  

The Intrinsic Signaling Pathway   

There are several stimuli that can cause apoptosis either through negative signals (lack of 

key components for cell survival) or positive signals (infections, radiation etc.). All of those 

stimuli disrupt mitochondrial function culminating in cell death (Saelens et al., 2004; Susan E., 

2007).  Two groups of pro-apoptotic proteins are key for intrinsic apoptosis. The first group is 

made up of the serine protease HtrA2/Omi, Cytochrome C and Smac/DIABLO (Cai et al., 1998; 

Du et al., 2000; Loo et al., 2002; Garrido et al., 2006; Susan E., 2007). The second is made up of 

endonuclease G, CAD and AIF (Joza N, Susin SA, Daugas E et al., 2001; Susan E., 2007). These 

factors all have pro-apoptotic activity in the intrinsic cascade. 

 Caspases are the ultimate effectors of the apoptotic response. They can be divided into 

initiator caspases (caspases 2, 8, 9, and 10), executioner (caspases 3, 6, and 7) and inflammatory 

(caspases 1, 4, and 5) (Cohen, 1997; Rai et al., 2005; Susan E., 2007). Other caspases include 11, 

12, 13 and 14 with their own distinct roles. Caspase 11 helps cytokines mature during septic 

shock and regulates apoptosis (Kang et al., 2002; Susan E., 2007). Caspase 12 controls the 

cytotoxic effects of amyloid-and apoptosis specific to the endoplasmic reticulum (Nakagawa et 
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al., 2000; Susan E., 2007). Caspase 13 was initially thought to be solely in humans, but later 

found to be in cattle (Koenig et al., 2001; Susan E., 2007). Caspase 14 is expressed in low 

amounts within adult tissues but at very high levels within embryonic tissues (Hu et al., 1998; 

Susan E., 2007). It has been shown to play a role in epidermal barrier formation (Denecker G., E. 

Hoste, B. Gilbert et al., 2007; Denecker G., Ovaere P., Vandenabeele P. et al, 2008). Most cells 

have inactive caspases. Once those inactive initiator caspases are activated, they cleave the pro-

caspase forms to activate executioner caspases, resulting in a protease cascade (D. Mcllwain, T. 

Berger, T. Mak, 2013; Hengartner, 2000). This chain of events, known as the proteolytic 

cascade, accelerates the apoptotic signaling pathway and ultimately cell death. Both the intrinsic 

and extrinsic pathways eventually culminates in the activation of executioner caspases which 

then trigger several downstream processes including protein cross-linking, apoptotic body 

formation, degradation of nuclear and cytoskeletal proteins and DNA fragmentation (Igney FH, 

Krammer PH, 2002; Susan E., 2007).  

Execution Pathway  

 Executioner caspases activate cytoplasmic endonucleases and proteases to breakdown 

nuclear material and proteins.  They cleave multiple substrates such as poly (ADP-ribose) 

polymerase (PARP) and cytokeratins which causes the cell to change biochemically and 

morphologically. PARP helps in transcription, DNA repair and other processes (Morales J., 

Longshan L., Farjana F. et al., 2016). Caspase 3 cleaves ICAD (CAD inhibitor) to release the 

endonuclease CAD, causing degradation of chromosomal DNA (Sakahira H, Enari M, Nagata S, 

1998; Susan E., 2007). Caspase-3 also cleaves the actin-binding protein Gelsolin and the cleaved 

portions negatively affects cell division, intracellular transport, the cytoskeleton and multiple 

signaling pathways (Kothakota S, Azuma T, Reinhard C, et al., 1997; Susan E., 2007). The 
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apoptotic cells also externalize phosphatidylserine residues on the cell surface (Susan E., 2007), 

allowing for non-inflammatory phagocytic recognition (Fadok VA, de Cathelineau A, Daleke 

DL, et al., 2001).  

Interestingly, SLK was also shown to induce apoptosis in C2C12 myoblasts when 

overexpressed, by activating the c-Jun-N-terminal kinase 1 (JNK1)-dependent pathway 

(Sabourin LA, Rudnicki MA, 1999; Yan Y, Tulasne D, Browaeys E, 2007; Al-Zahrani, KN., 

Baron KD, and Sabourin LA, 2013).  In another study, SLK overexpression lead to membrane 

blebbing, actin redistribution to the periphery of the cell, actin stress fiber dissolution and loss of 

substrate adhesion (Sabourin LA, Tamai K, Seale P, 2000; Al-Zahrani, KN., Baron KD, and 

Sabourin LA, 2013).  Expression of active SLK caused rapid apoptosis while expression of the 

ATH domain caused a delay in apoptosis. A number of apoptotic triggers were shown to induce 

caspase 3-mediated cleavage of SLK, releasing the active kinase region, thereby accelerating 

apoptosis. In the context of renal ischemia-reperfusion injury, SLK expression increased the 

endoplasmic reticulum (ER) stress response through ASK-1 and p38. In glomerular epithelial 

cells, SLK overexpression induced p53 activity through the JNK pathway (Cybulsky AV, 

Takano T, Guillemette J et al., 2009; Al-Zahrani, KN., Baron KD, and Sabourin LA, 2013). The 

same effect was seen in a transgenic mouse line that overexpressed SLK in kidney glomerular 

podocytes (Cybulsky AV, Takano T, Papillon J et al., 2010; Al-Zahrani, KN., Baron KD, and 

Sabourin LA, 2013). This led to a loss of the podocytes, coupled with an elevation of p38 

activity. In glomerular epithelial cells, SLK overexpression also induces the HSF1-HSP70 

pathway (Cybulsky AV, Guillemette J, Papillon J. et al, 2016). HSF1 is involved in the 

transcription of various other heatshock proteins that help control protein folding, such as 

HSP70. 
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1.5 Rationale and Hypothesis 

Numerous studies have shown that SLK plays a critical role in cell cycle transit and cell 

migration. It has also been demonstrated to be a substrate for Caspase 3, suggesting that it may 

have an active function in cell death (Ellinger-Ziegelbauer H, Karasuyama H, Yamada E et al., 

2000; Reilly P., Wagner S, Franks D., et al. 2005; Hao W, Takano T, Guillemette J et al., 2006; 

Wagner et al., 2002; S. Wagner, C. Storbeck, K. Roovers et al., 2008; Quizi JL, Baron K, Al-

Zahrani KN, 2013). The recent generation of a conditional SLK-floxed allele has allowed us to 

derive SLK-null fibroblasts to test the effect of an actual genetic deletion of SLK on those 

processes. Our hypothesis was that the deletion of SLK would markedly delay cell growth, 

migration and apoptosis. We tested this using the following approaches: 

1.6 Objectives  

1.  Test the effect of SLK deletion on the proliferation of embryonic fibroblasts using cell counts, 

Flow Cytometry and Western blotting for cell cycle markers.  

2. Test the effect of SLK deletion on the migration potential of fibroblasts using Boyden 

Chamber Migration Assays, scratch wounding and Nocodazole wash outs.  

3. Test the effect of SLK ablation on cell death and apoptosis signaling using various triggers.  
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2. Materials and Methods 

2.1. Cell Culture  

Mouse Embryonic Fibroblasts (MEFs) were cultured in DMEM 1X (Dulbecco’s 

Modified Eagle’s Medium), 2mM L-glutamine (Invitrogen), with 200 U mL-1 

penicillin/streptomycin (Invitrogen), and 10% fetal bovine serum (FBS; Invitrogen). All 

experiments were performed in complete medium as described above. Cells were grown in an 

incubator that was humidified and set at a temperature of 37⁰C with 5% CO2.  For Nocodazole 

(450 µM) arrest experiments, MEFs cells were always arrested for 24 hours prior to re-feeding 

with full media.  

2.2 Western Blots and Protein Harvesting 

 Proteins were extracted with cell scraping from a 10 cm plate.  0.5 mL 1xPBS was the 

final volume, prior to washing with 1 mL of 1X PBS, which was collected to be spun in a 

centrifuge at 8000 rpm for 3 minutes (1xPBS was made from a 10x solution which consisted of: 

2.1g Na2HPO4, 500mL H2O, 45g NaCl, 0.72g KH2PO4) (Conway, J., Sabourin, L., 2016). 

Afterwards, the pellets were lysed with RIPA (1mg/mL leupeptin, 1M DTT, 150 mM NaCl, , 1M 

β- glycerophosphate, 0.05% SDS, 1M NaF, 1% Igepal CA-630, 0.1M PMSF, 1% Triton X-100, 

1M Tris, 50 mM Tris-HCl, pH 7.5, 12 mM Na-Deoxycholate buffer, 1mg/mL pepstatin, 2 mM 

EDTA, pH 8.0, 0.2M NaVO3, 100μM benzamide, , 1mg/mL aprotinin)(Conway, J., Sabourin, 

L., 2016). Protein lysates were spun at 13500 rpm for 10 minutes to isolate the protein. Bradford 

Lowry Reagent was used to determine the protein concentration (Bio-Rad, Mississauga, Ontario, 

Canada) (Conway, J., Sabourin, L., 2016). For western blotting, 10-20 µg of total protein was 

electrophoresed on an 8, 10 or 12% polyacrylamide gel (depending on the experiment) and 

transferred onto a PVDF (polyvinylidene difluoride) membrane (Thermo Fisher Scientific, USA) 
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(Conway, J., Sabourin, L., 2016). BSA (5%) was used to block the membranes (Sigma-Aldrich, 

Oakville, Ontario, Canada). Membranes were mixed with primary antibodies in 1xTBST (150 

mM NaCl, 0.05% Tween 20, 50 mM Tris, pH 7.4)(Conway, J., & Sabourin, L., 2016) for one 

hour at room temperature (or overnight). The membrane underwent 3 1xTBST washes, of 5 

minutes. The primary antibody was then probed with a secondary antibody (Horseradish 

peroxidase-coupled from Bio-Rad, USA) and visualized with Western Lightning Plus 

chemiluminescence (Perkin-Elmer, USA). The following primary antibodies were used: anti-

SLK (custom antibody, Japan, (Wagner, et al., 2008)), anti-α-tubulin (Sigma-Aldrich, Oakville, 

Ontario, Canada), Paxillin, FAK, phospho-FAK-Y397 (BD transduction laboratories, 

Mississauga, Ontario, Canada), Myc (Sigma- Aldrich; 9E10 mouse ascites), Beta-Actin (Sigma, 

A5316), PARP (Cell Signalling Technology, 9542), JNK1 (Cell Signalling, 9252), p-JNK 

(T183/Y185)(Cell Signalling, 9251), p38 (Cell Signalling, 9211), p-p38 (T180, Y182) (Cell 

Signalling 9211), ASK1 (Cell Signalling, 3762), p-ASK(966)(Cell Signalling Technologies), 

Caspase 3 (Cell Signalling, 9662), Cyclin D1 (Santa Cruz, sc-20044), Cyclin A (Santa Cruz, sc-

271682). 

2.3 Transfections  

For transfections, MEFs were seeded at 50000 cells on a 6 cm plate and transfected the next day. 

The cells were transfected with Polyethylenimine (PEI - linear, 25,000 MW) in serum-free 

media, and changed for a 10 cm plate according to details specified by the manufacturer. The 

transfection mix was then added to the adherent cells and topped up with 10% FBS DMEM after 

3 hours. The cells were harvested 48 hours following transfection.  

2.4 Proliferation Assay 
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Cells were seeded in cell culture plates at an initial density of 50,000 cells in 6 cm plates 

in biological triplicates and counted every day for up to 8 days. Cells were removed through 

trypsinization and collected using a centrifuge at a speed of 1200 rpm for 3 minutes. The cells 

were then washed in PBS and collected in 2 mL of media. Technical triplicates, three individual 

counts from the same sample, were also taken using the Beckman Vi-Cell cell counter. 

2.5 Flow Cytometry 

Cells were seeded on 10 cm plates at around 70% confluency. On the following day, they 

were exposed to 450 µM Nocodazole for 24 hours. Cells were then released from arrest in 

complete media and collected at the indicated time points (0, 3, 6, 18, 20 hours). The cells were 

washed, trypsinized and spun at 1200 rpm for 5 minutes. They were then fixed in cold 70% 

ethanol and stained with Propidium Iodide Buffer (100 ug/mL RNaseA, 0.2% Triton-X, 25 

ug/mL propidium Iodide, 0.5M EDTA, pH 8.0). The stained cells were then gated and counted 

using flow cytometry (Beckman Coulter MoFlo XDP).  

2.6 Boyden Chamber Migration Assay  

Boyden chambers were coated the night before with fibronectin (1% of total volume 

used, dissolved in PBS) and incubated at 4oC. Cells were serum-starved 24h before the 

experiment. 50,000 cells were placed in the top portion of the Boyden chamber in a volume of 

400 µL. The bottom chamber was also placed in 400 µl of media.   SLK wildtype and SLK (-/-) 

cells were seeded into Boyden chambers in triplicate and allowed to migrate for 6 hours. 

Migration time and serum concentration were optimized in separate experiments and migration 

assays were performed for 6 hours at 1% FBS (bottom and top chamber), in DMEM to measure 

haptotaxis. The cells that remained on the bottom part of the chamber were fixed with 10% 
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buffered formalin phosphate and finally stained with 0.5% crystal violet (dissolved in 25% 

methanol) for quantification after imaging.  

 

2.7 Alamar Blue Apoptosis Assay  

SLK (fl/fl) and SLK (-/-) cells were seeded at 70-80% density (5000 cells) in a 96 well 

plate in quadruplicates for each time point. The following day, the cells were exposed to specific 

apoptotic triggers (1 µM Staurosporine/ 150 µM Etoposide/ 4 µM Chelerythrine; Cell Signaling 

and Sigma) for the indicated time (0, 3, 6, 12, and 24). Staurosporine is a protein kinase C 

inhibitor and also inhibits other kinases at higher concentrations (Ruegg, U. T. and Burgess, G. 

M., 1989). Etoposide is used for chemotherapy and it causes DNA damage by stopping 

Topoisomerase II (Jamil S, Lam I, Majd M et al., 2015). Chelerythrine acts as a strong inhibitor 

towards protein kinase C, causes DNA fragmentation and cell death (Barg, J. et al, 1992). 

Following treatment, the cells were mixed with Alamar blue (10x) solution and live/dead cells 

were quantitated, 4 hours after to allow the reagent to change color, using a Fluorescence 

Multiskan reader at 570 nm and 604 nm.  

2.8 Immunofluorescence  

For the Scratch Wound Assay, the cells were plated on glass coverslips in 6 well plates 

and grown to confluency. The monolayers were then scratched with a pipet tip and allowed to 

migrate into the wound for t=0 and 60 minutes. For the Nocodazole Arrest Assay, cells were 

plated at 50,000 cells on a 6 well plate. Subconfluent monolayers were re-fed with full media the 

following day and treated with 450 µM of Nocodazole for 24 hours, then fixed at t= 0 and 45 

minutes with 4% PFA following nocodazole wash-out. From this point on, the procedure 
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remains the same for both assays. Media was removed and the cells were washed with 1X PBS. 

Cells were then fixed with cold 4% PFA (Paraformaldehyde) for 10 minutes. They were then 

washed with 1X PBS three times and permeabilized with 0.1% Triton (mixed with PBS) for 10 

minutes. They were then washed again with PBS three times. The coverslips were blocked with 

5% goat serum, diluted in PBS, (Original stock 45-75 mg/mL) for 1 hour. Primary antibody 

diluted in 5% goat serum was then added at room temperature. Fluorescent secondary antibodies 

were then added to bind to the primary antibodies with 5% goat serum. ProLong Gold antifade 

reagent with DAPI (4, 6-diamidino-2-phenylindole) was added to the coverslips and then sealed 

with nail polish. Images were captured using a Zeiss AxioCam Fluorescence Microscope.  

2.9 Immunoprecipitation  

Different Melanoma cell lines were seeded at an equal density on 10 cm cell culture 

plates. Cells were harvested and collected into an Eppendorf tube and lysed in RIPA lysis buffer. 

At least 300 µg of total protein were used in immunoprecipitations. 20 µL of protein A-

Sepharose 4 Fast Flow beads were added to the tubes along with 1 µL of SLK primary antibody. 

The sample were incubated for 2 hours at 4 ⁰ C and washed three times with NETN (200 mM 

NaCl, 20 mM Tris-HCl, pH 8.0, 0.5% NP-40, 1 mM EDTA, pH 8.0) (Al-Zahrani, 2018) buffer 

to remove non-specific binding. SDS sample buffer was then added to the samples, heated at 100 

⁰ C for 5 minutes and fractionated by SDS-PAGE for western analysis.  

2.10 In-vitro binding assay 

Binding assays were performed to test the binding between the SLK and RASSF1A. For 

the binding assays, recombinant proteins were prepared using GST fusion constructs.  GST and 

GST-fusion plasmids were transformed into DH5α E. coli and clones were isolated. Bacterial 
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clones were inoculated the night before the experiment. One tenth of the culture was then 

transferred into a new flask and grown for an hour at 37 ⁰ C. Protein expression was induced 

using 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 2 hours at 37oC. The samples 

were then spun down and the cell pellets were lysed using 500 µL of RIPA lysis buffer. To 

prevent protein degradation, the tubes were constantly kept on ice. The cells were subjected to 

sonication and vortexed every 5 minutes for 15 minutes. The samples were cleared for 30 

minutes at 13500 rpm at 4 ⁰ C and the supernatant was transferred into fresh chilled tubes and 20 

µL of GST sepharose beads were added. The tube was rotated for 2h to isolate the GST-fusions.  

In vitro translation of HA-RASSF1A or Myc-SLK was performed using the TNT reticulocyte 

lysate system and purified plasmid DNA in the presence of 35S-Methionine. The isolated GST 

and GST-fusion samples were washed with NETN to remove non-specific binding. The in-vitro 

translated products were then incubated with the GST-fusions for 45 minutes at room 

temperature. The samples were then washed with NETN, denatured and loaded onto SDS gels. 

The gels were stained with coomassie blue, washed with water and enlightening agent to 

increase the radioactive signal of 35S. The gel was dried down and exposed to X-ray film at -

80⁰C.   
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3. Results 

3.1 Generation of SLK-deficient Fibroblasts 

Prior to the start of this project, Dr. Khalid Al-Zahrani from the Sabourin lab had 

generated SLK-deficient mouse embryonic fibroblasts (MEFs) from a conditional SLK floxed 

allele (Figure 4A). Briefly, 14.5 day old embryos were obtained from timed matings by 

caesarean section, decapitated and dissociated by trypsinization. The cell line was established 

following a 30 day period in culture. To delete SLK, cultures were exposed to AdCre virus or an 

AdGFP control (Figure 4B). As shown in Figure 4C, AdCre-infected SLK floxed MEFs are 

devoid of SLK proteins, suggesting complete inactivation of the SLK gene.  
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Figure 4. Generation of SLK-deficient Fibroblasts. (A) Diagram depicting the floxed SLK 

allele. Exons 3-6 were flanked by LoxP sites and a Neo cassette flanked by FRT sites was 

inserted in intro 2. Infection with AdCre deletes exons 3-6 (recombined locus) (Pryce, B. R., Al-

Zahrani, K. N., Dufresne, S et al, 2017). (B) Validation of the genetic deletion of SLK illustrated 

by shift in the Δ3-6 PCR products encompassing the deleted region (done by John Abou-

Hamad). (C) Western blot analysis of fibroblast extracts showing loss of SLK protein in Cre-

infected cells.  
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3.2 SLK deletion in MEFs does not impair proliferation in vitro 

Previous studies from our lab have shown that SLK kinase activity is induced during 

G2/M and that the expression of a kinase dead SLK in MEF-3T3 cells induces a G2/M cell cycle 

arrest (PG. O’Reilly, 2005). Supporting this, expression of active SLK induces ectopic spindle 

formation and mitotic catastrophe. Similarly, cells expressing a mutant SLK-LacZ gene trap 

fusion protein showed reduced proliferation (Al-Zahrani KN, Sekhon P, Tessier DR et al., 2014). 

Together these data suggest that SLK is critical for progression through the cell cycle. To assess 

the effect of an SLK genetic deletion on proliferation, we tested the growth potential of SLK-

deficient MEFs. MEFs cells were plated at equal densities and growth was monitored over time. 

Surprisingly, the deletion of SLK had no effect on the proliferation of the MEFs in vitro in 

complete medium (Figure 5). This suggests that SLK is not required for the growth of MEFs in 

vitro or that compensatory pathways have been activated. To test the effect of SLK deletion on 

cell cycle distribution, Nocodazole-arrested cultures were released in complete medium and 

subjected to flow cytometry following Propidium iodide staining. As for the cell counts, no 

differences were observed in the cell content of the different cell cycle phases (Figure 6A). 

Supporting this, the expression pattern for cyclin A (G2/M phase) and cyclin E (S phase) were 

similar between the two cell lines, suggesting that SLK deletion does not affect cell cycle transit 

(Figure 6B). To further elucidate if there is a potential difference in growth, the time period of 

all the proliferation experiments could have been increased to 64 hours because 32 hours might 

have not been a long enough time frame to observe any changes.  
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Figure 5. SLK deletion in MEFs does not impair proliferation in vitro. Cells were plated at 

an equal density, in 6 cm plates, and counted daily for 7 days in biological and technical 

triplicates using the Beckman Vi-Cell cell counter (n=3). No difference in growth between 

SLK(fl/fl) and SLK(-/-) MEFs were observed.   
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Figure 6. SLK deletion does not impair cell cycle progression. (A) Cells were arrested in 450 

µM Nocodazole, refed in full media and fixed at specific time points for staining with Propidium 

Iodide and flow cytometry analysis. No difference in the percentage of cells in G2/M 

compartment was observed between SLK(fl/fl) and SLK(-/-) MEFs (n=3). (B) Cells were 

arrested in 450 µM Nocodazole and analysed by Western Blot for cyclin A and E. No change in 

cyclin levels were observed between SLK(fl/fl) and SLK(-/-) MEFs over a 32 hour time course. 
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3.3 SLK Deletion does not impair cell Migration  

It has been shown that SLK is associated with the microtubule network (Wagner et al., 

2002). In addition, SLK was shown to phosphorylate the signaling adapter Paxillin, critical for cell 

motility (Quizi, 2013). When a Paxillin mutant (S250A) at an SLK phosphorylation site was 

expressed in 293T, migration rates decreased two-fold. Similarly, when SLK was knocked down 

in cells that were activated by heregulin, migration was inhibited by 75% (K Roovers, S Wagner, 

CJ Storbeck et al., 2009), strongly supporting a role for SLK in cell migration. Therefore, motility 

was assessed in MEFs using a Boyden Chamber migration assay. Boyden chambers were coated 

with fibronectin the day before the experiment. Equal amounts of both wildtype and SLK-null 

cells were seeded in biological and technical triplicates and allowed to migrate to the fibronectin-

coated side. Surprisingly, there were no detectable differences in motility rates between the two 

cells lines (Figure 7A). Similarly, no differences were observed in the relative levels of migration 

signaling components such as Paxillin and FAK by Western blot (Figure 7B). These results 

suggest that SLK-deficient MEFs might have activated compensatory pathways to bypass the 

requirements for SLK during cell migration. There could also be compensation by a splice variant 

of SLK, as potentially predicted by past experiments, and they may not be detected by the regular 

SLK antibody due to possible post-transitional modifications ((Sabourin LA and Rudnicki MA, 

1999) (Sierra Delarosa, 2009).   
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Figure 7. SLK deletion does not impair cell migration (A) An equal density of cells were placed 

on top of the Boyden chambers, left to migrate for 6 hours, fixed with 10% buffered formalin 

phosphate and finally stained with 0.5% crystal violet (dissolved in 25% methanol) for 

quantification after imaging.  No difference in migration rates were seen between SLK (fl/fl) and 

SLK (-/-) MEFs. (B) Western blot analysis showing that the levels of critical migration signaling 

proteins are unaffected (n=3).  
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3.4 SLK deletion enhances Nocodazole washout-induced focal adhesion turnover 

Microtubule polymerization and contact with focal adhesions have been shown to induce 

their destabilization (Kaverina et al., 1999). Similarly, Nocodazole treatment induces focal 

adhesion stabilization and accumulation of pFAK-Y397 (Kaverina et al., 1998), whereas 

Nocodazole release induces a loss of pFAK-Y397, indicative of focal adhesion turnover. We have 

previously shown that SLK is activated downstream of the FAK/Src complex, required for focal 

adhesion turnover and cell migration (S. Wagner, C. Storbeck, K. Roovers et al., 2008). To assess 

the effect of SLK deletion on focal adhesion turnover, we monitored the levels of pFAK-Y397 

following Nocodazole treatment. Although no difference in motility was observed, the loss of 

pFAK-Y397 was more rapid in SLK-null MEFs, suggesting that microtubule-dependent focal 

adhesion turnover is faster (Figure 8A). An immunofluorescence experiment was done to validate 

this finding, however no difference was observed through immunofluorescence (Figure 8B & 9). 

This is in stark contrast to what has been observed in SLK knockdown studies. Interestingly, 

scratch wounding of SLK-null MEFs still results in the recruitment of FAK and Paxillin at the 

leading edge of migrating cells, suggesting that SLK is not required for this process (Figure 10).  
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Figure 8. SLK deletion enhances Nocodazole washout-induced focal adhesion turnover (A) 

Sub-confluent monolayers were arrested with 450 µM Nocodazole, refed with full media and 

finally harvested for western blot analysis at specific time points. A more rapid loss of pFAK-

Y397 was observed in SLK (-/-) MEFs, suggesting altered kinetics. (B) Focal adhesion size was 

assessed by fluorescence microscopy following Nocodazole washout. No change in focal adhesion 

size was observed. Focal adhesions that did not fit the bin sizes were excluded from the graph due 

to them being false positives outside the average focal adhesion size. Quantification was done 

through ImageJ and is thoroughly explained by the following paper (Horzum U., Ozdil B., Pesen-

Okvur D., 2014) (n=3). 
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Figure 9. SLK deletion does not alter focal adhesion size (A) In Figure 8, cells were arrested 

with 450 µM Nocodazole, refed with full media and fixed with 4% PFA for total FAK 

immunofluorescence analysis. The size of the FAK-positive adhesions was quantitated. (B) The 

boxed regions in (A) are shown at higher magnification. Adhesions are indicated by the 

arrowheads (n=3). 
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Figure 10 – SLK is not required for Paxillin localization at the leading edge. (A) Confluent 

monolayers were subjected to Scratch Wound Assays and Paxillin localization was assessed by 

immunofluorescence. Paxillin was still recruited to the leading edge in SLK-deficient cells. 

Arrowheads show Paxillin at the leading edge of cells migrating into the wound (n=3). (B) Close 

up immunofluorescent images of Paxillin (SLK (-/-) on the left, SLK (fl/fl) on the right). 
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3.5 SLK is not required for programmed cell death 

Previously SLK overexpression was shown to induce apoptosis and to activate JNK in 

various cell lines and podocytes (Sabourin LA, Rudnicki MA, 1999; Yan Y, Tulasne D, Browaeys 

E, 2007; Al-Zahrani, KN., Baron KD, and Sabourin LA, 2013; Cybulsky AV, Takano T, 

Guillemette J et. al, 2009). Furthermore, apoptotic triggers induced the caspase 3-mediated 

cleavage of SLK into its active kinase domain and the actin-regulating ATH region (Sabourin LA 

and Rudnicki MA, 1999).  To test the effect of SLK deletion on cell death, wildtype and SLK-null 

MEFS were exposed to various apoptotic triggers. Both cell lines were treated with etoposide, 

Staurosporine or Chelerythrine and monitored for cell viability by Alamar blue over 24 hours. 

Surprisingly, SLK deletion had no effect of cell viability and did not delay cell death upon 

exposure to the apoptotic triggers (Figure 11). As previously reported, SLK was observed to 

breakdown during cell death (see Figure 12-14; Sabourin L.A., Tamai K, Seale P., et al., 2000).  

To further investigate the role of SLK in cell death signaling, both wildtype and knockout cells 

were treated with Staurosporine for a period of 6 hours and the activation or levels of apoptotic 

markers were assessed. Western Blot analysis showed no differences in PARP cleavage and 

caspase 3 activation between the two cell lines (Figure 12A). Other drugs also displayed the same 

phenotype (Figure 12B, C). Similarly, no changes were observed in the activation status of JNK 

and p38 (Figure 13). Interestingly, higher levels of total and inactive ASK-1 (pS966) were 

observed in SLK-deficient cells, suggesting that the loss of SLK delays ASK-1 activation and 

degradation during cell death (Figure 13). However, this had no effect on p38 activity, an ASK-1 

target (Watanabe T., Sekine S., Naguro I., et al, 2015). One possibility is that ASK-1 de-

phosphorylation at serine 966 affects its stability and might be SLK-dependent. Due to the 
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availability of an SLK-deficient Neu-expressing breast cancer line (Al Zahrani K., Sabourin L., 

2018), we tested the role of SLK in apoptosis in the context of transformation. Wildtype and SLK-

null NDL cell lines (Neu Deleted Line; Al Zahrani K., Sabourin L., 2018) were treated with 

Staurosporine for 48 hours and assessed for apoptotic markers. As for MEFs, SLK was also shown 

to breakdown in the NDLs. Along with PARP cleavage and p38 activation, this was markedly 

delayed (Figure 14), consistent with an apoptosis-resistant transformed phenotype. Overall, our 

data show that SLK deletion does not significantly affect cell death in normal or transformed cells.  

In conclusion, the results show that SLK is not required for proliferation, migration or apoptosis 

in MEFs that were genetically deleted for SLK. However, pFAK(Y397) levels differ post 

Nocodazole arrest which suggests a possible change in focal adhesion turnover.  

 

 

 

 

 



46 

 

 

 



47 

 

 

 

 

 

 

 

Figure 11.  SLK is not required for programmed cell death. Cultures of SLK-null and 

wildtype cells were exposed to 1 µM Staurosporine (A, B), 150 µM Etoposide (C) or 4 µM 

Chelerythrine (D) and cell viability was assessed using Alamar blue (5x).  No difference in 

viability or Apoptosis rates were observed throughout the time courses between the two cell 

lines.  
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Figure 12. SLK deletion does not affect PARP breakdown or Caspase 3 activation. (A) 

MEFs were treated with 1 µM Staurosporine for 6 hours and assessed for SLK, PARP and 

Paxillin levels by Western blot analysis. (B) Western analysis for SLK, PARP and Caspase 3 

following 150 µM Etoposide treatment (C) Western analysis for SLK, PARP and Caspase 3 

following 4 µM Chelerythrine treatment. All treatments showed SLK and PARP breakdown as 

well as caspase 3 activation (cleaved caspase). 
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Figure 13. Apoptotic signaling in SLK-null cells.  Staurosporine (1 µM) was used to induce 

apoptosis in MEFs over a time course of 6 hours. Protein extracts were analysed by Western blot 

for the activation status of various kinases implicated in cell death and stress response [pp38 

(phospho-p38, Thr180 and Tyr182), ppJNK (phosphor-JNK, Thr183 Tyr185), pASK1 (phospho-

ASK1 Ser966)]. Caspase 3 shows cleaved and active caspase 3.  
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Figure 14.  Apoptotic signaling in Neu-transformed SLK-null cells.  Staurosporine (1 µM) 

was used to induce apoptosis in Neu-positive breast cancer cells (NDL; established by Dr. 

Khalid Al-Zahrani) over 48 hours.  Protein extracts were analysed by Western blot for the 

activation status of various kinases implicated in cell death and stress response [pp38 (phospho-

p38, Thr180 and Tyr182), ppJNK (phosphor-JNK, Thr183 and Tyr185), pASK1 (phospho-ASK1 

Ser966)]. 
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4. Discussion 

To assess the role of SLK in various biological processes we have analyzed the growth 

potential, motility and apoptotic response of SLK-deficient MEFs. In contrast to previous 

observations using acute knock down, our data show that the genetic deletion of SLK in MEFs 

does not affect proliferation or susceptibility to apoptotic triggers. Although motility was 

unaffected, differences in focal adhesion turnover were observed, suggesting that compensatory 

mechanisms have been activated in SLK-null cells.  

4.1 SLK is not required for the growth of Mouse Embryonic Fibroblasts in vitro 

Our lab has previously shown that SLK co-localizes with the mitotic spindle during M 

phase and is required for progression through G2/M (O’Reilly PG, Wagner S, Franks DJ et al., 

2005). SLK was also shown to phosphorylate and activate PLK1 during mitosis (Ellinger-

Ziegelbauer H, Karasuyama H, Yamada E et al, 2000). Expression of a kinase dead SLK results 

in a G2/M arrest in fibroblasts and sustained expression of cyclin A, suggesting that SLK is 

required for cell cycle progression. Supporting this, MEFs expressing an SLK gene-trap (SLK 

truncation), which involved removing the ATH domain (known for regulating SLK kinase 

activity) (Sabourin, Tamai, Seale et al., 2000), displayed reduced growth potential when 

compared to wildtype MEFs (Al‐Zahrani, K. N., Sekhon, P., Tessier et al, 2014). Using viable 

cell counts, we did not observe any differences in the growth rate of SLK-deficient cells (Figure 

5). Similarly, flow cytometry and Nocodazole release studies did not show any delay in the 

G2/M transition for the SLK-null cells (Figure 6A). Supporting this, western blotting showed 

similar levels of cyclin A expression following release (Figure 6B). Together, our data suggests 

that SLK is not required for proliferation in MEFs in vitro. For future experiments, it would be 

better to increase the time-course to see whether the cells require a longer period of time to exit 
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Nocodazole arrest. This is in stark contrast to previous data using kinase inactive SLK (O’Reilly 

PG, Wagner S, Franks DJ et al., 2005). One particular study could potentially explain these 

differences (Hall EA, Keighren M, Ford MJ et al. 2013). It focuses on a gene known as 5-

azacytidine induced gene 1 (Azi1)/Cep131 that plays a role in ciliogenesis.  Azi1/Cep131 was 

shown through siRNA knockdown and genetic deletion, in the context of MEFs, to have 

different phenotypes. In siRNA knockdown, cilia formation was reported to be reduced (Graser 

et al., 2007; Hall.E, Keighren M., Ford M. et al, 2013). Although male mice were shown to be 

infertile, a genetic deletion of Azi1 showed that it was not absolutely necessary since the 

phenotype of cilia formation was unaffected. This is likely due to the activation of compensatory 

mechanisms during development in the context of a genetic deletion (Graser et al., 2007; Hall.E, 

Keighren M., Ford M. et al, 2013). In a similar way, an SLK siRNA knockdown shows reduced 

cell proliferation, however the deletion of SLK had no effect. One possibility is that alternative 

pathways have been activated, rescuing the proliferation phenotype. An acute siRNA knockdown 

could also not give the cells enough time to adapt or compensate in this context. As shown 

previously, a kinase mutant version of SLK has been shown to be embryonic lethal (Al‐Zahrani, 

K. N., Sekhon, P., Tessier et al, 2014).  Therefore, the genetic deletion of SLK and expansion of 

those cells could have also selected for mutants that can grow without SLK.   

 

4.2 SLK is not required for the migration of Mouse Embryonic Fibroblasts  

Previous knockdown studies in mouse fibroblasts showed that SLK is an important 

regulator of cell migration (Quizi, 2013). SLK has been shown to promote focal adhesion 

turnover by directly phosphorylating Paxillin at serine 250. A Paxillin mutant at the S250 SLK 

phosphorylation site (S250A) showed a two-fold decrease in migration rates. Surprisingly, in 
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MEFs with a genetic deletion of SLK, no effect on cell migration was observed using scratch 

wounding assays or Boyden chambers (Figure 7A, B). FAK and Paxillin were also recruited to 

the leading edge of the wound despite the absence of SLK expression (Figure 9A, B, 10), 

suggesting that SLK is not required for the redistribution of other migration components. Knock 

out of the SLK-related kinase MST1 also showed no impairment of migration in plasma cells 

(Bagherzadeh Y.S, Witalis M, Meli AP, 2019). This similar phenotype could be due to a 

compensatory mechanism that is activated early during development, resulting in the absence of 

an observable phenotype. However, in an acute knock down model, overt phenotypes might be 

observed due to the lack of compensation, leading to impaired motility (Shmidt T, Hampich F, 

Ridders M, 2007; Barabási AL, Oltvai ZN, 2004). There are several ways that the cell could 

potentially compensate for the loss of SLK (El-Brolosy MA, Stainier DYR, 2017). One 

possibility is that other related kinases that perform a similar function to SLK may have been 

upregulated. This is illustrated when a genetic knockout of Rpl22, a ribosomal protein involved 

in translation, caused an enhanced expression of Rpl2211 with no obvious translation problems 

but subtle phenotypes (O'Leary MN, Schreiber KH, Zhang Y, 2013).  

As shown previously, SLK is activated downstream of the activated FAK/Src complex in 

the context of scratch-wound induced migration (Wagner et al., 2008). SLK recruitment to the 

leading edge of migrating cells also requires FAK/Src activity and the SLK-binding protein 

LMO4 (Baron et al., 2015). SLK can then directly phosphorylate Paxillin and promote focal 

adhesion turnover (Quizi et al., 2013). Nocodazole treatment and release induces synchronized 

focal adhesion turnover (Kaverina I., Klemens R.J., J. Victor Small, 1998). This is accompanied 

by a loss of pFAK-Y397, a marker of focal adhesion breakdown (Wagner et al., 2008). 

Nocodazole release studies showed a faster disappearance of pFAK-Y397 in SLK-null cells, 
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suggesting a more rapid turnover (Figure 8A). Surprisingly the motility rates were similar. We 

have previously shown that SLK phosphorylates Paxillin on serine 250, stimulating FAK-

dependent focal adhesion turnover (Quizi et al., 2013). Since SLK can directly phosphorylate 

Paxillin, the rapid reduction of pFAK-Y397 could be in response to the loss of Paxillin S250 

phosphorylation, resulting in increased dynamics of the pFAK-Y397.  This is counter-intuitive 

and different from what has been observed in siSLK-transfected cells. One possibility is that the 

knockdown MEFs could not rapidly compensate for the downregulation of SLK while the 

knockout MEFs have activated compensatory pathways (El-Brolosy MA, Stainier DYR, 2017). 

It is possible that those pathways can effectively induce turnover independently of Paxillin S250 

phosphorylation. Alternatively, the SLK-related kinase LOK could compensate for Paxillin S250 

phosphorylation. This has been observed for other GCK members (Miller, C. J., Lou, H. J., 

Simpson, C., 2019). Another possible explanation could be the heterogeneity of the MEFs 

isolated and immortalized for this project compared to one of the standard cells lines (MEF 3T3) 

used previously (Singhal P., Sassi S., Lan L. et al, 2015).   

 

4.3 The Apoptotic Response is not affected in SLK-deficient MEFs 

When SLK was overexpressed in C2C12 myoblasts, apoptosis was trigged and JNK1 was 

activated (Sabourin LA, Rudnicki MA, 1999; Yan Y, Tulasne D, Browaeys E, 2007; Al-Zahrani, 

KN., Baron KD, and Sabourin LA, 2013). SLK was also shown to be cleaved by capase-3 during 

apoptosis, releasing the active kinase domain and the ATH region. Other studies have shown that 

SLK could activate the p38 MAPK pathway through ASK1 (Cybulsky AV, Takano T, 

Guillemette J et al., 2009; Al-Zahrani, KN., Baron KD, and Sabourin LA, 2013). SLK’s role was 

studied in ischemia-reperfusion within kidney cells and was shown to affect ASK1 pathway and 
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increase the ER-Stress response (Hao W, Takono T, Guillemette J et al., 2006). To test the effect 

of SLK deletion on the apoptotic response, Staurosporine, Chelerythrine and etoposide were used 

on both MEF lines to trigger cell death. In contrast to knockdown studies, there were no 

differences in the rates of cell death between the two cell lines, suggesting that SLK deletion 

does not impair apoptosis in MEFs (Figure 11).  Similar findings have been reported in several 

other models (El-Brolosy MA, Stainier DYR, 2017). As above, there could be an alternative 

pathway that compensates for the genetic loss of SLK. There could also be another regulator that 

needed to be deleted, along with SLK, to notice an observable phenotype. An example of this 

hypothesis is illustrated when HEK293A cells were CRISPR deleted either with MST1/2 or 

MAK4K4/6/7 but only showed partly reduction of LATS1/2 in the Hippo pathway (Meng Z., 

Moroishi T., Mottier-Pavie V. et al., 2015). The Hippo Pathway plays a role in regulating tissue 

state, the final role a cell plays and how big an organ will be (Meng Z., Moroishi T., Mottier-

Pavie V. et al., 2015).  When both MST1/2 and MAK4K4/6/7 were deleted, phosphorylation of 

LATS1/2 and YAP/TAZ were abolished (Meng Z., Moroishi T., Mottier-Pavie V. et al., 2015). 

Their results show that there was a redundant role between MST1/2 and MAK4K4/6/7 in the 

phosphorylation of LATS1/2 and YAP/TAZ.   Therefore, one possibility is that the genetic 

deletion of SLK along with another unknown gene could result in a more obvious phenotype as 

there could be parallel processing in this context (Sabourin LA, Rudnicki MA, 1999; Yan Y, 

Tulasne D, Browaeys E, 2007; Cybulsky AV, Takano T, Guillemette J et al., 2009; Al-Zahrani, 

KN., Baron KD, and Sabourin LA, 2013; Meng Z., Moroishi T., Mottier-Pavie V. et al., 2015). 

Similarly, if SLK is negative regulator of specific pathways, their sustained activation in the 

absence of SLK could lead to cross-talk and the induction of compensatory mechanisms. 

Alternatively, SLK function is dispensable in MEFs but critical in other cell types. The 
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embryonic nature of MEFs might not make them dependent on SLK and differentiation or 

maturation is required for SLK to take over the functions of a more embryonic protein. 

 

 

 

4.4 Future Directions 

Here, we have shown that the deletion of SLK in conditional MEFs did not affect growth, 

motility or apoptosis. The knockdown of SLK through siRNA was previously shown to impair 

all those processes. It is then likely that a genetic deletion (and expansion in culture) rather than 

an acute downregulation through siRNA has led to the activation of compensatory pathways. It 

would then be of interest to screen our cell lines for differentially expressed genes using arrays or 

RNAseq. Mass spectrometry could also be used to identify global changes in phosphorylated 

peptides in an effort to identify compensatory pathways. Furthermore, it would be helpful to 

identify more interacting partners and substrates through immunoprecipitation, mass 

spectrometry and global kinase assays. Candidate proteins could be knocked down or re-

expressed in a genetically deleted SLK context in an attempt to identify proteins or pathways that 

can compensate for the loss of SLK. Those tagged proteins could also be tested in MEFs that 

express the gene trap version of SLK (obtained by mating SLK heterozygous mice due to its 

lethality).  A focus for candidates involved in growth, motility and cell death could unravel SLK 

compensatory pathways in different contexts. 
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4.5 Physiological Relevance 

Due to its potential role in growth and development, understanding the many functions of 

SLK is of major interest (Yi-Hong Zhang, Karri Hume, Robert Cadonic, et al., 2002). 

Specifically, SLK has been shown to play a role in key processes such as proliferation, apoptosis 

and migration in several contexts (Al-Zahrani, KN., Baron KD, and Sabourin LA, 2013).  

Currently, several SLK-deficient cell lines have been generated in the Sabourin lab, providing an 

opportunity to test the role of SLK in several contexts such as neuronal and muscle development 

(Yi-Hong Zhang, Karri Hume, Robert Cadonic, et al., 2002). We have shown that a genetic 

deletion of SLK affects focal adhesion dynamics in MEFs. However, whether this is the case in 

other cellular contexts remains to be investigated.  Movement, morphogenesis, ECM interaction 

and cell division are all important processes that require focal adhesion signaling (K. 

Chinthalapudi, E. S. Rangarajan, Tina Izard, 2018). Therefore, a better understanding of the 

SLK-dependent pathways may unravel new therapeutic targets for the modulation of those 

processes in disease contexts.   

 

5. Conclusion 

Current literature has mentioned potential compensation mechanisms that occur with 

genetic knockouts when compared to transient knockdowns as a way to explain the observed 

phenotypes (Liang H., Wen-Hsiung Li., 2009; El-Brolosy MA, Stainier DYR, 2017).  In this 

project, in contrast to siRNA knockdowns, the genetic deletion of SLK did not affect cell growth, 

motility or cell death. This is likely due to the activation of alternate pathways in SLK-deficient 

cells. SLK has been identified more than 20 years ago and several studies have highlighted its 
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importance in many cell types. Due to recent advances in CRISPR technology, SLK can now be 

genetically deleted in several cellular contexts. The existence of multiple cell lines and in vitro 

models makes it possible to identify specific pathways that involve SLK. The discovery of those 

pathways might lead to the identification of disease genes linked to SLK signaling. The 

development of SLK inhibitors or modulators could then useful in the treatment of 

developmental defects and cancer.  
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6. Appendix I – Validate the putative interaction between SLK and RASSF1A 

This project was pursued due to the possibility of RASSF1A being a binding or activating 

partner of SLK due to their interplay in similar processes such as proliferation, migration and 

apoptosis. Both RASSF1A and SLK have a domain known as the SARAH domain which plays a 

role in apoptosis. It was thought that these proteins might potentially bind through their SARAH 

domains, however there was only binding in the binding assay but not within the Melanoma Cell 

lines. There might be a specific event that could cause these proteins to interact however it is 

currently unknown.  

6.1 Introduction to Melanoma 

According to the Canadian Cancer Society’s Advisory, approximately 7640 people will 

be diagnosed with melanoma in 2019 (Canadian Cancer Society, 2017). Melanomas generally 

occur through genetic mutations in pigment producing cells, the melanocytes (Sullivan, R. J., 

2015). Melanocyte development is regulated by a multitude of transcription factors and 

receptors, of which SOX10, MITF and the receptor tyrosine kinase c-KIT are the most important 

(Tudrej K., Czepielewska E., Wojciechowska M.K., 2016). Melanoma initiation and progression 

can be affected by genetic and environmental factors (Sullivan, R. J., 2015). In hereditary 

melanoma, mutations in genes that modulate the cell cycle such as cyclin-dependent kinase 

inhibitor 2A (CDKN2A) and cyclin-dependent kinase 4 (CDK4) are quite frequent (Sullivan, R. 

J., 2015). Environmental factors play a role and mostly consists in excessive sun exposure. There 

are two particular pathways that are commonly affected in melanoma, which are the MAPK and 

PI3K pathways (Sullivan, R. J., 2015). In melanomas, mutations in the BRAF proto-oncogene 

(the v-raf murine sarcoma viral oncogene homolog B1) is observed in 50-60% of cases (Perna 

D., Karreth F., Rust A. et al., 2014). BRAF is a serine/threonine kinase that is highly expressed 
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in melanocytes (Sullivan, R. J., 2015). In a normal melanocyte, mitogen-activated protein kinase 

(MAPK) signaling only occurs when there is a ligand interaction with cell membrane receptors 

and signaling occurs following the activation of those receptors (e.g. epidermal growth factor 

receptor (EGFR), Platelet derived growth factor receptor (PDGFR)) (Sullivan, R. J., 2015). 

MAPK signaling activates the RAS family of G proteins that can then activate the BRAF kinase 

(Sullivan, R. J., 2015). BRAF can activate the MEK-ERK cascade through direct 

phosphorylation of MEK. ERK then phosphorylates several other downstream targets critical for 

cell growth and survival (Sullivan, R. J., 2015). For example, one target that ERK 

phosphorylates is ELK-1 which can then bind to DNA and drive transcription (Sullivan, R. J., 

2015). In malignant melanomas bearing BRAF mutations, the MAPK signaling pathway is 

constitutively activated (Sullivan, R. J., 2015). About 90% of BRAF mutations consist in a 

valine to glutamic acid change at codon 600 within exon 15 (V600E). This causes the kinase 

domain to remain in an active state.  Two other proteins are frequently mutated with BRAF in 

melanomas: phosphatase and tensin homolog (PTEN) and CDKN2A. In 50-60% of melanomas, 

PTEN either has point mutations, small or complete deletions which affects its ability to 

negatively regulate phosphoinositide (PI) 3-Kinase (PI3K) (Sullivan, R. J., 2015). This leads to 

increased AKT activity, promoting growth and survival (Hemmings. B, Restuccia D., 2012). 

CDKN2A encodes for two tumor suppressor proteins, p16INK4a and p14ARF, that are involved in 

the retinoblastoma (Rb) and p53 pathways, respectively (Sullivan, R. J., 2015).  CDKN2A is 

usually inactivated by point mutations in melanoma, leading to a loss of gatekeeper function 

(inducing cell cycle arrest) of the RB or p53 pathway (Sullivan, R. J., 2015).  

 

 



64 

 

6.1.1 The RASSF1A tumor suppressor 

Before the year 2000, the 3p21.3 gene region was hypothesized to have potential tumor 

suppressor activity as many lung cancer mutations mapped to this region. Those cancers also 

displayed loss of heterozygosity, a hallmark of tumor suppressor mutations (Donninger H., Vos 

M., Clark G., 2007). The RASSF1A gene was later mapped to 3p21.3 region and shown to 

contain a domain known as the RAS association (RA) domain (Donninger H., Vos M., Clark G., 

2007). Two isoforms are encoded by the RASSF1: RASSF1A and RASSF1C (Donninger H., 

Vos M., Clark G., 2007). RASSF1A was shown to be inactivated in many tumors due to its 

promoter region being methylated (Donninger H., Vos M., Clark G., 2007). It human cancer, 

RASSF1A is inactivated at a high frequency (Donninger H., Vos M., Clark G., 2007).  

Hypermethylation of the RASSF1A promoter CpG islands causes reduced expression of 

RASSF1A mRNA and protein levels in melanoma cells and tumors (Gordon, M., Baksh, S., 

2011; Yi M., Yang J., Chen X., et al., 2012). As expected, the RASSF1A isoform of the Rassf1 

gene was shown to have tumor suppressor activity (Oh, H. J., 2006). RASSF1A is 340 amino 

acids long and has several different domains, including an SH3 binding domain, a zinc Finger 

Domain, a RAS Association Domain and a SARAH (Sav/Rassf/Hpo) domain (Oh, H. J., 2006).  

RASSF1A has been shown to also play a role in apoptosis and cell cycle control in 

melanoma (Gordon, M., Baksh, S., 2011). During programmed cell death of A375 melanoma 

cells, RASSF1A can activate ASK1 which then targets JNK and p38 MAP kinase (Gordon, M., 

Baksh, S., 2011).  This will eventually lead to the activation of caspase 3 and apoptosis (Gordon, 

M., Baksh, S., 2011). In the context of melanoma, RASSF1A overexpression has been show to 

block cell cycle transition from G1-S (Oh, H. J., 2006). RASSF1A prevents phospho-RB and 

cyclin D1 proteins from building up within the cell, preventing S phase entry (Oh, H. J., 2006). 
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RASSF1A has been shown to also modulate MST1 in apoptosis (Bitra A., Sistla S., Mariam J., 

2017) through interactions between its SARAH domain and MST1 (Canadian Cancer Society, 

2017).  This is required for the apoptotic functions of RASSF1A. This supports numerous studies 

highlighting the disruption apoptosis in melanoma (Broussard L., Howland A., Ryu S. et al., 

2018). 

6.2 Purpose of Research  

6.2.1 Rationale and Hypothesis  

A putative interaction between SLK and RASSF1A was identified by 

immunoprecipitation and mass spectrometry. Extensive literature has highlighted the role of 

RASSF1A in tumor progression, metastasis and cell death in the context of melanoma. (Gordon, 

M., Baksh, S., 2011, Oh, H. J., Lee, K. K., Song, S. J. et al, 2006). As SLK plays a potential role 

in migration and tumor cell signaling (Al-Zahrani, PhD Thesis, 2018), we tested the potential of 

a direct interaction between RASSF1A and SLK. As SLK knockdown impairs growth and 

migration, our initial hypothesis was that RASSF1A could regulate SLK kinase activity through 

direct interaction.   

6.2.2 Objective(s) 

- To determine if RASSF1A binds directly to SLK in vitro. 

- To assess complex formation between SLK and RASSF1A in melanoma cells. 
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6.3 Results 

6.3.1 SLK does not interact with RASSF1A in a specific manner   

RASSF1A has been shown to also play a role in apoptosis and cell cycle control in 

melanoma (Gordon, M., Baksh, S., 2011). In this context, RASSF1A overexpression has been 

show to block cell cycle transition from G1 to S (Oh, H. J., 2006).  The identification of 

RASSF1A in SLK immunoprecipitates suggests that it binds SLK or that they are part of a 

complex. To test a potential direct interaction, both proteins were in vitro translated in the 

presence of 35S-methionine and subjected to in vitro binding assays with GST fusion proteins of 

the other partner.  As seen in Figure 15A, all the domains of RASSF1A were capable of 

interacting with in vitro translated full length Myc-SLK.  No binding was observed to a GST 

control, suggesting that the binding to RASSF1A fragments is not to the GST moiety but occurs 

through non-specific binding. Similarly, HA-RASSF1A bound to all SLK GST fusions, again 

supporting that the interactions are non-specific (Figure 15B). To further investigate this, SLK 

was immunoprecipitated from melanoma cell lines that were wildtype, deficient or re-expressed 

RASSF1A (Figure 16). Immunoprecipitation for SLK and blot back for RASSF1A showed no 

RASSF1A-specific signal when compared to a control lysate, suggesting that they do not form a 

complex in vivo (Figure 16A). Together these results suggest that the in vitro interactions are 

non-specific and that SLK and RASSF1A are unlikely to interact in vivo. One possibility is that 

the “sticky” and disorganized nature of the RASSF1A protein induces a high degree of non-

specificity in vitro. As these proteins failed to interact, the project was abandoned. 
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Figure 15.  The SLK-RASSF1A interaction is non-specific. (A) GST-SLK constructs used for 

In vitro binding assays (Quizi JL, Baron K, Al-Zahrani KN, 2013). (B) GST-RASSF1A 

constructs used for In-vitro binding assays (Gordon, M., Baksh, S., 2011). Numbers represent 

amino acid positions. In vitro binding assays were conducted with in vitro translated Myc-SLK 

(C) or HA-RASSF1A (D). The indicated immobilized GST-fusions were prepared in bacteria 

and incubated with the input amount of 35S-labelled protein at room temperature. Interaction 

was visualized by running the binding assays on SDS gels and exposure to X-ray film (n=3). 
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Figure 16. RASSF1A and SLK do not interact in vivo.  (A) SLK was immunoprecipitated 

from various melanoma cell lines (YUMM and B16) expressing different levels of RASSF1A or 

re-expressing RASSF1A (HA-RASSF1A). Immune complexes were subjected to Western blot 

for SLK.  No co-immunoprecipitation was observed. (B) Western blot showing the levels of 

RASSF1A and SLK in the lines used in panel (A) (n=3).  
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6.4 Discussion 

RASSF1A is frequently deleted in melanoma, suggesting that it is a critical tumor 

suppressor (Gordon, M., Baksh, S., 2011). Its overexpression also suppresses melanoma growth 

by blocking the G1 to S transition (Oh, H. J., 2006). SLK has a variety of roles different cellular 

processes including cell migration, changes of the cytoskeleton and cell death (Wagner et al., 

2002; Hao W, Takano T, Guillemette J et al., 2006; Quizi JL, Baron K, Al-Zahrani KN, 2013). 

My data show that SLK and RASSF1A interact in vitro in a non-specific manner. Supporting 

this, no interaction was observed in vivo. The non-specific interactions could be due to the 

isolated system in which the binding assay is conducted. Those conditions do not contain 

exogenous proteins that could be required for specific interactions or to mediate structural 

changes in SLK or RASSF1A. Alternatively, their association only occurs under specific 

conditions or in distinct cell types. One possibility is that this interaction occurs during cell 

migration or cell death. This could be tested under conditions that stimulate those processes. In 

addition, the interactions could be transient and difficult to detect. It is also possible that this 

interaction is lost in melanomas. This could perhaps lead to increased SLK activity and enhanced 

migration and metastasis. Further studies will be required to test these various possibilities.  
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