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The development of a drug-resistant cell line can take from 3 to 18 months. However, lit-

tle is published on the methodology of this development process. This article will discuss

key decisions to be made prior to starting resistant cell line development; the choice of

parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of

drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by

mimicking the conditions cancer patients experience during chemotherapy and cell lines

display between two- and eight-fold resistance compared to their parental cell line. Doses

of drug administered are low, and a pulsed treatment strategy is often used where the

cells recover in drug-free media. High-level laboratory models are developed with the aim

of understanding potential mechanisms of resistance to chemotherapy agents. Doses of

drug are higher and escalated over time. It is common to have difficulty developing stable

clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell

lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which

agents or type of cell line develops resistance easily. Successful selection strategies from

our research are presented. Pulsed-selection produced platinum or taxane-resistant large

cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M

and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer

cell line (HCC1954).Techniques for maintaining drug-resistant cell lines are outlined includ-

ing; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to

master drug-resistant stocks. The heterogeneity of drug-resistant models produced from

the same parent cell line with the same chemotherapy agent is explored with reference

to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that

can occur in clinical drug resistance.

Keywords: chemotherapy, cancer, drug-resistance, cell lines, selection strategy

INTRODUCTION AND HISTORICAL PERSPECTIVE

The development of chemotherapy drug-resistant cancer cell lines

is a long established approach for investigating the mechanisms

of cytotoxicity and resistance to chemotherapy agents. One of the

first publications to describe the development of an anti-cancer

drug-resistant in vitro model, which exhibited acquired resistance

Abbreviations: 5-FU, fluorouracil; ADR, adriamycin; AUC, area under concentra-

tion time curve; CHL, chlorambucil; CIS, cisplatin; CR, complete response; CSC,

cancer stem cells; CYC, cyclophosphamide; DNR, daunorubicin; DOCE, docetaxel;

DOX, doxorubicin; EPI, epirubicin; ETO, etoposide; GFR, glomerular filtration

rate; IC50, 50% inhibitory concentration; IFO, ifosfamide; IV, intravenous; MEL,

melphalan; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;

NR, no response; OX, oxaliplatin; PARP, poly (ADP-ribose) polymerase; PD, pro-

gressive disease; P-gp, P-glycoprotein; PR, partial response; PRED, prednimustine;

RAD, radiation; SCLC, small cell lung cancer; TAX, paclitaxel; THI, thiotepa; UNK,

unknown; VINC, vincristine; VIND, vindesine.

to a chemotherapy drug, was published in 1970 (1). Resistant

cell lines were developed from parental Chinese hamster cells

using a stepwise increase in treatment dose with actinomycin

D. This induced 2500-fold greater resistance to the drug than

that observed in the parental cells. These resistant cell lines were

also cross resistant to other chemotherapy drugs such as vin-

blastine and daunorubicin. Some earlier drug-resistant cell lines

were developed in the 1950 and 1960s using in vivo mouse mod-

els, including models resistant to methotrexate (2, 3), vinblastine,

terephthalanilide (4), and the guanine analog, 8-azaguanine (5).

Publications in this research field usually place little empha-

sis on how the drug-resistant cell lines were established in the

laboratory. The development of drug-resistant cell lines can take

anything from 3 to 18 months in the laboratory and many deci-

sions are taken along this journey. This review summarizes the

major methodological approaches for developing drug-resistant
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cell lines in vitro with reference to the literature and includes

several case studies from our experience.

IC50 VALUES AND FOLD RESISTANCE

Drug-resistant cell models are developed in the laboratory by

repeatedly exposing cancer cells growing in cell culture to

drugs. The surviving daughter resistant cells are then compared

to the parental sensitive cells using combination cell viabil-

ity/proliferation assays such as the MTT (6), acid phosphatase

(6), or clonogenic assays (7). The sensitivity of these paired cell

lines is usually determined by exposing them to a range of drug

concentrations and then assessing cell viability. The IC50 (drug

concentration causing 50% growth inhibition) for these paired cell

lines can be used to determine the increase in resistance known as

fold resistance by the following equation:

Fold Resistance = IC50 of Resistant Cell Line/IC50 of Parental

Cell Line

WHAT IS A CLINICALLY RELEVANT LEVEL OF RESISTANCE?

To determine the level of drug resistance that occurs in the clin-

ical treatment of cancer we can compare cell lines that have been

established from cancer patients before and after chemotherapy

(Table 1) (8–14). The majority of cell lines listed in Table 1

developed from patients post-chemotherapy show a two- to five-

fold increase in resistance to the agents the patients were treated

with, based on a comparison of IC50 values. Three cell lines had

higher levels of resistance but these were still relatively low-level

at ~8–12-fold higher than the parental cells (PEO4, SK-3, and

GLC-16).

CLINICALLY RELEVANT VS. HIGH-LEVEL LABORATORY MODELS

For the purposes of this review we will divide drug-resistant cell

models into two categories: clinically relevant models or high-level

laboratory models. Both types of models have their advantages and

disadvantages for research.

Clinically relevant models are developed with the aim of try-

ing to mimic the conditions cancer patients experience during

chemotherapy. Doses of drug are lower, and a pulsed treatment

strategy is often used where the cells recover in drug-free media.

This mimics the cycles of chemotherapy a patient receives in the

clinic. Disadvantages to clinically relevant models can include

unstable resistance, very low-level resistance, and small mole-

cular changes to detect and analyze. Based on the cell lines

derived from the patients before and after chemotherapy shown

in Table 1; we have defined clinically relevant resistance as a

two- to five-fold increase from the IC50 value of the parent cell

line. Examples of clinically relevant models are shown in Table 2

(15–21).

High-level laboratory models are developed with the aim of

understanding potential mechanisms of toxicity and resistance to

chemotherapy agents. Doses of drug are often high and treatment

doses are escalated over time. Cells are frequently grown contin-

ually in the presence of drug or highly drug-resistant clones are

selected from a mixed population. In some earlier drug-resistant

models, mutagenesis was also induced prior to drug treatment (22,

Table 1 | Cell lines established from cancer patients before and after chemotherapy.

Cancer type Parent cell line

(established)

Chemotherapy

received

Resistant cell line

(established)

Fold resistance to

chemotherapy received

Reference

Lung EBC-2 (18th September

1997)

CIS, IFO, VIND EBC-2/R (4th October

1997)

CIS – 2.3, IFOa – 3.2,

VIND – 0.77

(8)

SK-1 (August 1986) CYC, ADR, ETO, VINC,

RAD

SK-2 (March 1987) ADR – 1.2, ETO – 1.2,

CYCb – 1.3

(10)

CIS, ETO SK-3 (May 1987) CIS – 8.6, ETO – 6.2

TM1 (April 1987) CYC, ADR, ETO, VINC TM2 (September 1987) CYCb – 5.4, ADR – 3.0,

ETO – 3.5

GLC-14 (December 1984) CYC, DOX, ETO GLC-16 (October 1985) DOX – 3.18, ETO – 12.1 (11)

Neuroblastoma KP-N-AY (October 1984) ADR, CIS, CYC, VINC KP-N-AYR (December

1985)

ADR – 3.0, CIS – 2.7 (9)

Ovarian PEO1 (February 1982) CIS, CHL, 5-FU PEO4 (November 1982) CIS – 8.72 (12, 13)

CIS, CHL, 5-FU PEO6 (February 1983) CIS – 4.64 (12, 13)

PEA1 CIS, PRED PEA2 CIS – 4.30 (13, 14)

PEO14 CIS, CHL PEO23 CIS – 4.48 (13, 14)

ADR, adriamycin; CIS, cisplatin; CHL, chlorambucil; CYC, cyclophosphamide; DOX, doxorubicin; ETO, etoposide; 5-FU, fluorouracil; IFO, ifosfamide; RAD, radiation;

PRED, prednimustine; VINC, vincristine; VIND, vindesine.

aUsed 4-hydroperoxy ifosfamide (the active form of ifosfamide).

bUsed 4-hydroperoxycyclophosphamide (the active form of cyclophosphamide).
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Table 2 | Different selection strategies and classification of resulting drug-resistant cell lines.
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Cervical KB-3-1 CIS Continuous Stepwise and Whole KBCP10 1152 UNK High-level lab (22, 23)

COL mutagenesis Cloned KB-8-5-11 40 UNK High-level lab (24)

Leukemia CCRF-CEM EPI Pulse Constant Whole CEM/E25 7 UNK Clinically relevant (15, 16)

Continuous Stepwise Whole CEM/E1000 94 8 from E25 High-level lab

K562 DNR Pulse Stepwise Whole K562/DNR 3 2 Clinically relevant (17)

Lung DLKP ADR Continuous Stepwise Whole DLKP-A 322 18 High-level lab (25)

A549 PAC Pulse Constant Whole A549-txl 5.5 2.5 Clinically relevant (18)

SKLU1 SKLU1-txl 5.0 Clinically relevant

SKMES1 PAC SKMES1-txl 24.7 High-level lab

DOCE SKMES1-Txt 29.1 High-level lab

DMS53 PAC DMS53-txl 6.3 Clinically relevant

DOCE DMS53-Txt 1.8 Clinically relevant

DLRP DOCE DLRP-Txt 4.1 Clinically relevant

H69 CIS Pulse Constant Whole H69CIS200 1.5–2 8 Clinically relevant (19, 20)

OX H69OX400

Ovarian IGROV-1 CIS Pulse Stepwise Whole IGROVCDDP 8.41 Clinically relevant (21)

ADR, adriamycin; CIS, cisplatin; DNR, daunorubicin; DOCE, docetaxel; EPI, epirubicin; OX, oxaliplatin; UNK, unknown.

23). High-level models are often more stably resistant and there-

fore easier to maintain in culture for an ongoing research project.

Levels of resistance are often higher and as such molecular changes

associated with the mechanism of resistance are larger and easier to

identify. The disadvantage of these models is the higher the level of

resistance the less relevant the model becomes to the clinic. Exam-

ples of high-level laboratory models are shown in Table 2 (15, 16,

18, 22–25).

PLANNING A SELECTION STRATEGY FOR DRUG-RESISTANT

CELL LINES

CHOICE OF PARENTAL CELL LINE

Choosing a parental cell line is very important as it is the basis of all

the subsequent experiments. The parental cell line should be very

easy to maintain in cell culture as resistant variants usually become

more challenging to grow. Ideally, the researchers performing the

drug-resistant selection in the laboratory should be very familiar

with growing the parental cells. Researchers experienced in grow-

ing a particular cell line will have more of an idea of when the

cells need to be subcultured and when it is best to leave them. This

experience is important when deciding when to subculture cells

recovering from the drug treatment.

It is also important to consider the patient from whom the cell

line is derived. If possible, it is good to choose a chemotherapy

and radiation naïve cell line. Previous treatment with chemother-

apeutic agents and radiation may have already caused changes in

resistance pathways, and increased expression of drug resistance

markers that may not be relevant to the agent being studied. How-

ever, chemotherapy and radiation naïve cell lines are relatively rare.

As an alternative to a chemotherapy naïve cell line, choose a cell

line with a relatively low baseline IC50 value for the drug of interest

as a two- to five-fold increase in resistance will result in an IC50

of the daughter resistant cell line remaining within the clinically

relevant range. Table 3 shows the clinical characteristics of some

commonly used ovarian cancer cell lines as an example of the

kind of information that is available for cell lines [(12, 14, 26–38);

Sikic, personal communication]. In the case of ovarian cancer, the

majority of cell lines commonly used in research are derived from

metastatic ascites, and are not chemonaïve (Table 3).

EXPOSURE TO CHEMOTHERAPY AGENT

The researcher needs to decide what kind of model they are trying

to develop, a clinically relevant model or a high-level laboratory

model. A clinically relevant model is informed by data gathered

from the clinical administration of drug and usually has mini-

mal escalation of the treatment dose. The sky is the limit for a

high-level laboratory model where dose escalation is used exten-

sively to achieve a large fold resistance. However, the solubility of

the selecting agent will be final limiting factor in how much drug

can be applied to cancer cells. Doses that approach the limit of

solubility will not be in the clinically relevant range.

The reality is that most selection strategies start out with a clin-

ically relevant strategy and then are escalated within the clinical

range and escalated further again beyond the clinical dose range

to make a high-level model. The main reasons for this approach

are the stability of the resistance phenotype produced and that

the resistance established in the daughter cell line is statistically

significant when compared to the parent cell line.
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Table 3 | Clinical characteristics of ovarian tumors from which ovarian cell lines were established.

Cell line Original tumor histology Isolated from Treatment received

pre-isolation

Response Reference

59M Endometrioid/clear cell Ascites None N/A (26)

EFO27 Mucinous Solid metastasis None N/A (27)

ES2 Serous/clear cell Primary tumor None N/A [(28); Sikic, personal communication]

FUOV1 Serous Primary tumor None N/A (29)

HEY Serous Peritoneal deposit and xenograft Radiotherapy, radium CR (26, 30)

HOC1 Serous Ascites MEL, CIS, ADR, CYC PR, PR (31, 39)

HOC8 Serous Ascites MEL PR (32, 33)

IGROV-1 Endometrioid/clear cell Primary tumor None N/A (34)

OAW28 Adenocarcinoma Ascites CIS, MEL NR, NR (26)

OAW42 Serous Ascites CIS CR (26)

OC316 Serous Ascites CIS, ETO, CYC, TAX PD, SD (35)

OVCAR3 Serous Ascites CYC, CIS, DOX Unknown (26, 36, 37)

PEA1 Adenocarcinoma Pleural effusion None N/A (14)

PEO1 Serous Ascites CIS, CHL, 5-FU CR (12, 14)

PEO14 Serous Ascites None N/A (14)

SKOV3 Adenocarcinoma Ascites THI Unknown (26)

SNU251 Endometrioid Ascites CYC, ADR, CIS Unknown (38)

ADR, adriamycin; CIS, cisplatin; CHL, chlorambucil; CR, complete response; CYC, cyclophosphamide; DOX, doxorubicin; ETO, etoposide; MEL, melphalan; N/A, not

applicable; NR, no response; PD, progressive disease; PR, partial response; TAX, paclitaxel; THI, thiotepa.

Cell lines are frequently cultured in the presence of antibi-

otics in many laboratories. When establishing a new drug-resistant

model, we recommend not using antibiotics as this does not mimic

the clinical situation, cancer patients are not continually treated

with antibiotics. Resistance mechanisms produced in the presence

of antibiotics may not reflect clinical drug resistance.

Pharmacokinetics and drug stability

In order to produce a clinically relevant model of drug resis-

tance, it is important to research how the chemotherapy agent

is administered in the clinical treatment of cancer. The amount of

chemotherapy administered intravenously (IV) is often expressed

in the units milligrams per square meter. These can be converted

to micrograms per milliliter or micromolar by consulting pharma-

cokinetic studies on the drug where the concentration achieved in

the bloodstream is measured.

Chemotherapy administered by IV is often given in cycles where

the patient receives the drug on a weekly or monthly basis. A

pulsed-selection strategy where the cells are treated with drug and

then the surviving population are allowed to recover in drug-free

media mimics this clinical scenario. Pharmacokinetic studies will

give a broad range of doses achieved in the bloodstream, the high-

est immediately after the bolus of drug is administered to the

patient, this then drops over the next hours and days depending

on the rate of excretion of the drug. This gives a broad dose range

to define the clinical relevance of the dose of drug used in the

development of a drug-resistant model. A higher dose for several

hours could model the bolus of drug, a lower dose for a several days

could model the longer excretion of the drug. Following an intra-

venous bolus injection of 100 mg/m2 cisplatin a peak-plasma level

of ~6 µg/mL is reached but this quickly drops to <2 µg/mL after

2 h (40) Clearance of cisplatin from the body is triphasic where the

distribution half-life is 13 min, the elimination half-life is 43 min,

and the terminal half-life is 5.4 days (41). After 24 h, 25% of the

initial cisplatin dose has been eliminated from the body with renal

clearance accounting for 90%.

Carboplatin has a similar mechanism of action to cisplatin but

needs a 20–40-fold higher dose to exhibit the same cytotoxicity

as cisplatin. However, only a 10-fold increase in carboplatin dose

is required to reach similar intracellular platinum concentrations

(42). After intravenous bolus injection of 375 mg/m2 carboplatin

peak-plasma levels of ~39 µg/mL are achieved, which drops to

9 µg/mL within 2 h (43). Clearance of carboplatin has a distribu-

tion half-life of 22 min, an elimination half-life of 116 min, and a

terminal half-life of 5.8 days (44). Clearance of carboplatin from

the body is primarily by the urine as unchanged drug. After 24 h,

90% clearance is achieved. Carboplatin does not have significant

excretion from the renal tubules as seen for cisplatin, instead the

glomerular filtrate accounts for the vast majority of elimination.

For this reason, glomerular filtration rate (GFR) is linearly related

to total renal clearance giving relatively simple pharmacokinetics

for carboplatin. Even at high doses evidence suggests that car-

boplatin has linear pharmacokinetics (45). A formula called the

“Calvert formula” has been derived, which is based on the GFR

and is used to provide a suitable dose for patients in relation to an

area under concentration time curve (AUC) value. AUC is the ratio

of the amount of drug that reaches the systemic circulation and

the clearance of the drug, which correlates to its clinical efficiency

and toxicity. This formula has been validated in a perspective study

(46). Conventional doses of carboplatin administered to patients

generally are aimed at giving an AUC value of between 5 and

7 mg/mL/min.

The amount of chemotherapy administered orally is usually

expressed in the unit milligrams per day. Again pharmacokinetic
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studies can be used to convert this to a concentration in the

bloodstream. A continuous treatment strategy where the cells are

cultured constantly in the presence of drug can be clinically rel-

evant for an oral drug given daily or twice daily as a relatively

constant amount of the drug is present. Olaparib is a member

of the poly (ADP-ribose) polymerase (PARP) inhibitor class of

drugs and is administered orally. The maximum tolerated dose

of olaparib is 400 mg twice daily. Absorption is rapid and its

peak-plasma concentration is reached within 1–3 h. Plasma levels

then decline biphasically and it has a terminal elimination half-

life of ~5–7 h (47). A phase 1 study on Japanese patients found

that peak-plasma values for a single dose of 400 mg olaparib was

~7 µg/mL, which dropped below 0.1 µg/mL after 50 h. For a dose

of 400 mg administered twice daily for 15 days, peak-plasma con-

centrations were found to be similar. The half-life of olaparib was

recorded to be between 7 and 11 h across doses ranging from 100

to 400 mg (48).

The chemical stability of drugs used in establishing drug-

resistant cell line models is also an important consideration when

designing a selection strategy. For example, temozolomide an alky-

lating agent used in the treatment of glioblastoma and metastatic

melanoma when in its active state, has a half-life of 25 and 60 min

for the first and second phases (49) whilst docetaxel a microtubule

destabilizing agent has a half-life of 12 h (50). Lapatinib, a dual

EGFR HER2 inhibitor used in the treatment of HER2-positive

breast cancer has a half-life of 24 h (51) whilst the monoclonal

HER2 antibody trastuzumab also used in HER2-positive breast

cancer has a half-life of over 5 days (52). Drugs with a shorter half-

life will have to be dealt with carefully to ensure that cancer cells

receive the maximal benefit from drug dosing. Also drugs with a

long half-life should be removed from cells long before the models

are to be used in experiments. This ensures that residual drug will

not remain in the cells and effect proliferation assays comparing

survival between the parental and resistant cells.

Optimization of treatment dose in parental cell line

The dose of drug used must be optimized for the parental cell line

selected for use in developing the resistant model. A cytotoxicity

assay in the parental cell line can be used to determine a suitable

dose range. This dose range can then be compared to the pharma-

cokinetic information for the drug of interest. The rate of recovery

from drug treatment is just as important as the IC50; as the rate

of recovery can be different between agents even if an equiva-

lently cytotoxic dose is administered to cells. Figure 1 shows the

recovery of two ovarian cancer cell lines (OVCAR8 and UPN251)

from equivalently cytotoxic doses of carboplatin and paclitaxel.

The recovery from paclitaxel is much faster than carboplatin.

The chemotherapeutic drug paclitaxel is frequently given at a

dose of 175 mg/m2 as a single agent (53, 54). Pharmacokinetic

studies for this dose show peak-plasma concentrations as high

as 10,000 ng/mL but drop off quickly after 24 h to 50 ng/mL and

below (55, 56). In the development of platinum/taxane-resistant

OVCAR8 and UPN251 ovarian cancer cells, treatment doses were

chosen trailed over the range of IC20–IC80, and were consistent

with doses used in the clinical setting. Paclitaxel doses tested for

OVCAR8 and UPN251 were from a range of 2.3–14 and 10–

100 ng/mL. Carboplatin doses tested for OVCAR8 and UPN251

were 2.3–18.5 and 0.7–2 µg/mL, respectively. The final chosen

FIGURE 1 | Recovery of OVCAR8 and UPN251 from carboplatin or

paclitaxel treatment. 1 × 104 cells were treated for 3 days with the

indicated doses of either carboplatin or paclitaxel and recovery monitored

as described in Section “Methods.”

doses of paclitaxel and carboplatin displayed an initially large

percentage cell death or growth inhibition compared to a control

grown in drug-free media. Carboplatin doses of 4 and 2 µg/mL

and paclitaxel doses of 12 and 60 ng/mL were chosen for OVCAR8

and UPN251, respectively (Figure 1). After treatment with the

selected doses and removal of the drug, the cells were able to return

to logarithmic growth ensuring the selection of resistant cell sub

populations.

In the development of platinum-resistant H69 small cell lung

cancer (SCLC) cells, treatment doses were chosen in the range of

IC10–IC40, and were consistent with doses used in the clinical set-

ting (19). Two exposure times and doses were used for cisplatin

and oxaliplatin reflecting differing pharmacokinetic phases of the

administration of platinum drugs; 2-h treatments at 1–8 µg/mL

and 4-day treatments at 0.2–1.6 µg/mL. The lowest drug concen-

tration treatments all produced 20–30% cell death and growth

arrest in H69 cells. Drug-treated cells increased in size and did

not aggregate in typical SCLC clumping morphology. Surviving

cultures were then retreated when their normal growth rate and

clumping morphology had returned, ~3–4 weeks later.

POPULATION DYNAMICS

In most selection strategies the whole population of cells remains

as one group throughout the selection, no cloning or other separa-

tion methods are used. If a pulse of drug is given,a small percentage

of cells remain, which repopulates the flask. This new population

of cells is then retreated with the next pulse (18, 19). Alternatively

a low-level of drug is present continuously, the cells adapt to grow-

ing in the presence of the drug and then the dose of drug is slowly

increased (25).

It is well known that tumors are heterogeneous (57–59). Con-

sequently, the cancer cell lines derived from tumors are also het-

erogeneous. For example, breast tumors from patients who are

BRCA1/2 carriers have been shown to be heterogeneous, where

not all cells have lost the second BRCA1/2 allele (60). Selection

with chemotherapy agents therefore often result in the isolation

of a cell population that already exists in the culture. Indeed,

this has been demonstrated for many drug-resistant models, par-

ticularly in projects, which examine cancer stem cells (CSCs).

CSCs are thought to be responsible for tumor regeneration after
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McDermott et al. Development of in vitro drug-resistant cancer cells

chemotherapy. Drug-resistant cell lines are often enriched for

markers of stem cells. The stem-cell marker CD133 was found

to be enriched in a panel of cisplatin-resistant lung cancer cell

lines, with a 5-fold increase in both A549CisR and MORCisR, and

a 12-fold increase in H460CisR cells (61).

There are other physical methods of separation available to

select different populations from a cell line such as limited dilu-

tion or cell sorting by flow cytometry. This can isolate cells which

may be more resistant to chemotherapy than other populations

within the same cell line (62). The advantage of clonal populations

as drug-resistant models for is that there is no drug treatment is

required and the resulting model is more stable. The disadvan-

tages however are that many clones must be established and there

is no guarantee that the clonal populations derived will display any

difference in drug resistance.

Clonal populations can be established by limited dilution. This

relies on the ability of the cells to grow independently of each

other, and as such may not be suitable for all cell lines. It involves

seeding cells at a very low density to result in one cell per well of a

96-well plate. Once the cells grow to confluency, they can be tested

as a clonal population. Another method to obtain clonal popula-

tions is cloning rings (62). Standard toxicity testing on the clonal

populations generated will show whether they display an inherent

resistance to the agent of interest.

A combination of drug treatment and cloning of cells has also

been used to produce resistant models. KB-8-5-11 colchicine-

resistant cells were developed from parental KB-3-1 cells by

selecting clones after three stepwise increases in colchicine drug

treatment (24). Clones 8, 5, and 11 were the successful clones

picked each round of the selection strategy.

Cloning can also be used to investigate heterogeneity within a

developed drug-resistant model. A human colon cancer cell line

(LoVo) was treated with cisplatin using a continuous exposure

ranging from 0.005 to 20.0 µg/mL over 20 months in culture (63).

At the end of the treatment, two morphologically distinct sub-

populations were observed; these were then cloned by limiting

dilution. The subclones showed different patterns of cross resis-

tance to chemotherapy agents. The first clone overexpressed the

ABC efflux transporter P-glycoprotein (P-gp) and the other clone

did not. Heterogeneity was also seen in cisplatin-resistant models

developed from a human pancreatic cancer cell line with a muta-

tion in DNA repair protein BRCA2. Fourteen cisplatin-resistant

clones were obtained. In 7 of 14 clones, the functionality of BRCA2

had been restored by secondary mutations, the remaining clones

still had a non-functional BRCA2 protein (64).

RISK-REDUCTION STRATEGIES: COMPARATIVE SELECTION

It is reasonably common to have difficulties developing resistance

or to produce drug-treated daughter cell lines which have not

increased in resistance relative to the parental cell line. Selection

strategies which do not produce drug resistance are interesting

from a clinical perspective as this is what we want to achieve for

cancer patients. Unfortunately, failures to develop drug resistance

are generally not reported in the literature.

As a risk-reduction strategy, a comparative selection strategy

should be performed, where selection of multiple cell lines or

multiple chemotherapeutic agents are performed in parallel in

FIGURE 2 | Comparative selection of drug-resistant cell lines. (A) Plan

for selection of two parent cell lines with two different drugs to produce

four drug-resistant daughter cell lines. (B) Plan for selection of one parent

cell line with two drugs at different doses or treatment intervals, producing

four drug-resistant daughter cell lines.

the laboratory. Figure 2A shows a strategy where two parental

cell lines are each treated with two chemotherapy agents, produc-

ing four different daughter cell lines. Figure 2B shows one parental

cell line being treated with two chemotherapy agents, in two differ-

ent doses or intervals producing four different daughter cell lines.

By using a comparative development strategy, it is hoped that at

least one of them will successfully produce a stable drug-resistant

model. It can be interesting to observe which strategies produced

resistance and which did not. These may be useful observations

for the clinical treatment of cancer.

An example of a comparative selection strategy used H69 SCLC

cells treated with cisplatin or oxaliplatin for two time periods, 2 h

or 4 days. The 4-day pulse selection produced more stable resis-

tance than the 2-h pulse (19) (Table 2). Had only the 2-h pulsed

treatment been tested in this model drug resistance would have

not been developed. The comparative nature of the selection also

led to the finding that oxaliplatin resistance developed faster than

cisplatin resistance in H69 cells (19).

A large study by Tegze et al. aimed to develop 40 drug-resistant

models from MCF-7 and MDA-MB-231 breast cancer cells using

doxorubicin and paclitaxel as selecting agents. They succeeded in

making 29 drug-resistant models, 10 doxorubicin and 4 paclitaxel-

resistant MCF-7 cell lines, and 6 doxorubicin and 9 paclitaxel-

resistant MDA-MB-231 cell lines. From this study it appears that

paclitaxel resistance was easier to develop in MDA-MB-231 (ER-

negative) cells and doxorubicin resistance was easier to develop in

MCF-7 (ER-positive) cells.

A study by our group (18) developed resistance to paclitaxel

and carboplatin in large cell lung cancer cell lines (H1299 and

H460). Cells at low confluence in 75cm2 flasks were exposed
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McDermott et al. Development of in vitro drug-resistant cancer cells

to 50 µg/mL carboplatin and 150 ng/mL (H1299) or 50 ng/mL

(H460) paclitaxel for 4 h. After this period, the drug was removed

and the flasks were rinsed and fed with fresh complete media. The

cells were then grown in drug-free media for 6 days, replenish-

ing the media every 2–3 days. This was repeated once a week for

10 weeks. Table 4 shows the IC50s of the platinum and taxane-

resistant cell lines to a variety of chemotherapy agents. Resistance

in the carboplatin-selected cells (1.5–2.3-fold) was considerably

less than the resistance obtained in the paclitaxel-selected cells

(2.4–4.4-fold). Selected cell lines show no obvious cross resis-

tance pattern except within families of drugs, e.g., paclitaxel and

docetaxel; carboplatin and cisplatin. The TAX-selected cells were

also found to be resistant to vincristine, which is unsurprising

since both agents affect microtubules. Both carboplatin-selected

cell lines had a modest but statistically significant increased resis-

tance to paclitaxel. The different patterns of resistance in cell lines

selected under similar conditions show the complicated nature of

Table 4 | Fold resistance of H1299 and H460 resistant variants

compared with their parental cell lines.

Chemotherapeutic

agent

H1299-cpt H1299-txl H460-cpt H460-txl

Carboplatin 2.0** 1.7*** 2.3* 0.8*

Cisplatin 1.5* 1.5 1.6 0.7

5-FU 1.0 1.8** 0.9 1.1

VP-16 1.4** 1.1 0.9 1

Vincristine 0.8* 2.3* 2.9*** 2.5

Adriamycin 0.9 1 1 0.9

Paclitaxel 1.2* 4.4*** 1.6*** 2.4***

Docetaxel 0.6 2.5*** 2.3 2.8***

*p-Value <0.05; **p-value <0.01; ***p-value <0.005.

multiple-drug resistance. For example, H1299-cpt became sensi-

tive to vincristine, while after identical drug treatment, H460-cpt

developed significant resistance to vincristine (2.9-fold). Over-

all, the low-level resistance (two- to five-fold) observed in these

selected cell lines may be more clinically relevant to study than

higher levels of resistance and this study highlights the importance

to studying mechanisms in multiple models to identify relevant

pathways.

If a selection strategy fails to develop resistance, the treatment

conditions can be altered in an attempt to produce higher levels of

resistance. If the cells are growing very well after drug treatment,

consider dose escalation. In some cases this may push the dose

used above clinically relevant levels but it will increase the chance

of resistance developing. Alternatively, the length of time the cells

are exposed to drug can be increased or a pulsed-selection strategy

could be converted to a continuous selection strategy. This may

make the model less clinically relevant but may produce resistance

that can be studied in the laboratory.

CASE STUDIES OF DRUG-RESISTANT CELL LINES

The following section presents two case studies of drug-resistant

cell lines developed in our laboratory, the reasons that selection

conditions were chosen and the drug resistance outcomes of the

developed cell lines. A case study using continuous selection is

presented for lapatinib in breast cancer. A case study using pulsed

selection is presented for temozolomide-resistant melanoma.

LAPATINIB-RESISTANT BREAST CANCER CELLS – CONTINUOUS

SELECTION

Of the published models of acquired lapatinib resistance there is

very little commonality in the procedures used to condition the

cells, in either the concentrations of lapatinib used or in the deter-

mination of resistance status (Table 5) (65–72). For instance, the

procedures used to develop models of acquired lapatinib resistance

Table 5 | Published cell line models of acquired lapatinib resistance, the method and concentration used to condition the cells and the proposed

mechanism of lapatinib resistance.

Parent cell line Conditioning method Lapatinib concentration Profiling technique Resistance mechanism Reference

BT474 Single cell cloning 5 µMa Affymetrix array Upregulation of ER signaling (65)

BT474, SKBR3 Single cell cloning 5 µMa Affymetrix array Activation of RelA (66)

SUM190 Continuous exposure (0.25–2.5 µM) Immunoblotting Overexpression of XIAP (67)

BT474 Single cell cloning 3 µMa phospho-tyrosine

immunoblotting

Overexpression of AXL (68)

HCT116 Continuous exposure 10 µMa Immunoblotting Increased expression

of MCL-1

(69)

HCC1954, BT474 Continuous exposure (0.1–1 µM) Immunoblotting Increased expression

of β1-integrin

(70)

SKBR3, MDA-MB-361,

UACC893, BT474,

HCC1954, SUM190

Continuous exposure Increasing concentration

up to 1 or 2 µM

Phospho-proteomic

profiling

Increased SRC kinase activity (71)

BT474, UACC812 Continuous exposure (0.1–1 µM) Immunoblotting Upregulation of ER signaling (72)

aDenotes greater than peak-plasma concentration (2.5 µM).
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McDermott et al. Development of in vitro drug-resistant cancer cells

included a single cell cloning technique (65, 68) fixed dose condi-

tioning (69) and dose escalation conditioning (67, 71, 72). There

was significant variation in the concentrations of lapatinib used to

condition the cells; many studies began with a low dose of lapatinib

(e.g., 100 nM) which was dose-escalated to upwards of 2 µM. Fixed

concentration conditioning was performed with concentrations

of lapatinib ranging from 3 to 10 µM. The length of conditioning

required to achieve resistance varied from study to study with the

majority of studies taking ~12 weeks to achieve resistance, whereas

other studies took up to 1 year to achieve resistance. Another varia-

tion in different models of lapatinib resistance was the definition of

lapatinib resistance. Most of the studies defined their conditioned

cell lines as resistant based on their ability to grow in the presence

of the concentration of lapatinib used to condition the cells, only

one study used an IC50 method while a number of studies did not

quantify the level of resistance. In contrast to the previously pub-

lished models of acquired lapatinib resistance, the resistant models

developed by us use a relatively low dose of lapatinib relative to

the IC50 of the resulting cell line. To our knowledge our model of

acquired lapatinib resistance, HCC1954-L are the first to show that

extended exposure to low dose lapatinib results in significant lap-

atinib resistance, with resulting lapatinib IC50 values significantly

higher than the concentration used for conditioning.

HCC1954 cells overexpress HER2 (73) and therefore represent a

cell line model of HER2-positive breast cancer. Lapatinib is a tyro-

sine kinase inhibitor that targets the intracellular domain of HER2

and EGFR and is approved for the treatment of HER2-positive

breast cancer (74, 75). HCC1954 are moderately sensitive to lap-

atinib with an IC50 of 0.43 ± 0.03 µM (Figure 3A). Lapatinib is

administered to cancer patients orally with a dose of 1000–1250 mg

given daily (76). The median peak-plasma concentration of lapa-

tinib reported in patients receiving 1200 mg lapatinib (once daily)

was 1.2 µg/mL (2.1 µM) and the median steady-state trough con-

centration was 0.3 µg/mL (0.5 µM), with a range of 0.2–0.5 µg/mL

(77). Therefore a continuous selection strategy is clinically relevant

for lapatinib. To optimize the dose of drug used for selection, a lap-

atinib dose response assay was performed in order to determine the

concentration of lapatinib which would result in 70% growth inhi-

bition over a 4-day treatment. Treatment of HCC1954 cells with

1 µM lapatinib inhibited the growth of the cells by 71.5 ± 1.2%

compared to untreated controls (p = 0.004) (Figure 3B). There-

fore a selection strategy of continuous exposure of HCC1954 to

1 µM lapatinib was initiated with the media replenished every

4 days with fresh drug. The selection strategy was conducted in

duplicate with “A” and “B” flasks as a backup in case there were

problems with one flask.

HCC1954 cells were seeded into two flasks; 1 × 106 cells per

75cm2 flask. One flask was left untreated but was passaged along-

side the treatment flask and named HCC1954-par, the cells treated

with 1 µM lapatinib were named HCC1954-L. It is important to

passage the untreated parental cells alongside the treated cells as a

control as continuous cell culture can result in alterations in cellu-

lar characteristics, including drug resistance. The morphology of

both cell lines and the sensitivity of the cell lines to lapatinib were

monitored throughout the selection. After 3 months of treatment,

the morphology of HCC1954-L was not altered (Figure 3C). For

all cytotoxicity assays the HCC1954-L cells were grown in drug-

free media for 5 days prior to testing. The lapatinib IC50 value

for the HCC1954-par cells was 0.42 ± 0.01 µM, which is simi-

lar to the original HCC1954 cells. The lapatinib IC50 value for the

HCC1954-L cells was 0.75 ± 0.07 µM (Figure 3D). This represents

1.8-fold increase in resistance to lapatinib. At this stage of the treat-

ment process the lapatinib IC50 of HCC1954-L cells had not yet

exceeded the treatment dose however they had begun to actively

proliferate in the presence of lapatinib. The concentration of lapa-

tinib was therefore increased from 1 to 1.25 µM and conditioning

continued with this concentration for a further 3 months.

After 6 months of lapatinib conditioning, the sensitivity of the

cells was again tested. Both the “A” and “B” flasks of HCC1954-

L cells developed equivalent amounts of resistance, and the “As”

were chosen for all subsequent experiments and the “Bs” frozen

as a backup. The lapatinib IC50 value for the HCC1954-par cells

was 0.42 ± 0.02 µM whereas the lapatinib IC50 for HCC1954-L

cells was 2.67 ± 0.08 µM (p = 0.01) (Figure 3E). This represents

6.1-fold increase in resistance to lapatinib. HCC1954-L cells were

deemed to be resistant to lapatinib as the lapatinib IC50 was above

the 1 µM threshold for lapatinib sensitivity (78). The resistant cells

also exhibited distinct morphological alterations compared to the

parental cell line. These differences were indicated by more distinct

colony boundaries and a flatter cell shape (Figure 3F).

In order to assess the stability of acquired resistance in the

HCC1954-L cell line, sensitivity to lapatinib was assessed after

freezing and thawing and following drug withdrawal. To establish

a reliable cell line model of lapatinib resistance the phenotype

must be stable when the cell line is frozen and re-thawed. To

assess this, frozen stocks of the HCC1954-par and HCC1954-

L cells were prepared in fetal calf serum containing 5% DMSO.

After a minimum of 48 h in liquid nitrogen the frozen stocks were

thawed and the viability of the stocks assessed by microscopy.

The cells were then passaged a minimum of 3 times before lapa-

tinib sensitivity assays were repeated (Figure 3G). The lapatinib

IC50 was 0.44 ± 0.02 µM in the parental cells while the lapatinib

IC50 in HCC1954-L cells was 2.73 ± 0.05 µM. This indicates that

the HCC1954-L cells retain their resistant phenotype following a

freeze/thaw cycle.

In order to access the long-term stability of the resistant phe-

notype, drug withdrawal assays were performed. Lapatinib was

removed from the HCC1954-L cells and the sensitivity of the cells

to lapatinib was tested at 4-week intervals for a period of 12 weeks,

the results at each interval are illustrated in (Figure 3G). Follow-

ing 12 weeks growth in the absence of lapatinib the lapatinib IC50

of the parental cells was 0.43 ± 0.05 µM while the lapatinib IC50

of HCC1954-L cells was 2.63 ± 0.16 µM. There was no significant

difference between the initial lapatinib IC50 for either the parental

or resistant cell line and the lapatinib IC50 for the cell lines after

12 weeks growth in the absence of lapatinib (Figure 3H).

Therefore, we successfully established a stable cell line of

acquired lapatinib resistance (HCC1954-L) induced by long-term

continuous treatment with sub-peak-plasma concentrations of

lapatinib. The mechanisms of acquired resistance to lapatinib are

being investigated in this model using proteomics and genomic

techniques.

Frontiers in Oncology | Pharmacology of Anti-Cancer Drugs March 2014 | Volume 4 | Article 40 | 8

http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs
http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

McDermott et al. Development of in vitro drug-resistant cancer cells

FIGURE 3 | Continuous selection of HCC1954 with lapatinib.

(A) Proliferation of HCC1954 cells following a 5-day treatment with

lapatinib. (B) HCC1954 cells treated with varying concentrations of

lapatinib over a 4-day period. Cell counts were performed using ViaCount

reagent and Guava Software and expressed relative to control untreated

cells. (C) Images of HCC1954-par and HCC1954-L cells after 3 months of

lapatinib conditioning at 100× magnification. (D) After 3 months

conditioning with 1 µM lapatinib, the proliferation of HCC1954-par and

HCC1954-L cells was measured. (E) After 6 months conditioning with

lapatinib, the proliferation of HCC1954-par and HCC1954-L was assessed.

(F) Images of HCC1954-par and HCC1954-L cells after 6 months of lapatinib

conditioning at 200× magnification. (G) Sensitivity of HCC1954-par and

HCC1954-L cells to lapatinib following a freeze-thaw cycle. Growth is

expressed relative to untreated control cells. (H) Lapatinib IC50 values for

HCC1954-par and HCC1954-L cells following 1, 2, and 3 months growth in

the absence of lapatinib. All growth rates and IC50s were calculated

following a 5-day lapatinib treatment. Growth is expressed relative to

untreated control cells. All error bars represent the standard deviation of

triplicate experiments. Student’s t -test was performed to determine

significant differences: *p < 0.05; **p < 0.01.
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McDermott et al. Development of in vitro drug-resistant cancer cells

FIGURE 4 | Pulse selection of Malme-3M and HT144 with temozolomide. (A) Selection strategy of Malme-3M and HT144, each treatment of temozolomide

was performed in duplicate. Effect of temozolomide in Malme-3M and HT144 and temozolomide “pulse selected” resistant variants. (B) Malme-TMZ(A) and

Maleme-TMZ(B) vs. Malme-3M cells (C). HT144-TMZ vs. HT144 cells. Error bars represent the standard deviation of triplicate assays.

TEMOZOLOMIDE-RESISTANT MELANOMA CELL LINES – PULSED

SELECTION

Temozolomide is frequently used to treat metastatic melanoma.

No dosing schedule of temozolomide has been clinically proven

to be more effective than a single administration of temozolomide

(79); however current treatments favor a 5-day treatment schedule

(80). We found that the IC50 concentrations of temozolomide were

in the high micromolar range in melanoma cell lines. Previous

studies in two melanoma cell lines demonstrated temozolomide

IC50 concentrations of ~800 µM (81), which is consistent with

the values observed in our cell line panel of six melanoma cell

lines (temozolomide IC50 ranged from 250 to 800 µM). However,

in the clinical setting plasma levels of temozolomide only reach

concentrations approaching 80 µM (82) The half-life of temozolo-

mide is <2 h (83), which would reduce the efficacy of the drug

in patients and may also explain the high IC50 values observed

in vitro. A pulsed selection of drug was chosen to mimic these

pharmacokinetic properties of temozolomide.

Malme-3M or HT144 melanoma cell lines were seeded at a

density of 2.5 × 104 cells in a 75 cm2 flask. The entire selection

strategy was conducted in duplicate; two flasks of each cell line

were set up for untreated control flasks and two for temozolo-

mide selection (Figure 4A). Cells were allowed to attach for 24 h

prior to treatment with chemotherapy. For Malme-3M cells, after

each treatment cells were allowed to grow until confluent, then

trypsinised and reseeded at a density of 2.5 × 104 cells per flask

for the next round of selection. For HT144 cells, cells were grown

in the flask for the 5 days of their treatment, then left to grow to

confluence. After cells recovered they were trypsinised reseeded at

2.5 × 104 cells per flask for the next round of selection.

The Malme-3M cells were pulse treated with 300 µM temozolo-

mide for 6 h and then the drug containing medium removed and

replaced with fresh drug-free medium. This single pulse treatment

was repeated six times. HT144 cells were treated for 6 h daily with

330 µM temozolomide for 5 days. After the five daily treatments

the drug was removed and replaced with fresh drug-free media.
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McDermott et al. Development of in vitro drug-resistant cancer cells

This treatment was repeated four times. This treatment schedule

was used to replicate that of the clinical setting, where temo-

zolomide is administered daily for 5 days, followed by a period

of no treatment (84). The pulse selection strategy used in these

cells allowed us to compare differences between the clinical daily

administration and the lab based pulse selection to observe if either

regimen resulted in increased levels of resistance acquired.

The IC50 for temozolomide in Malme-3M parent cells is

306 ± 29 µM. Malme-TMZ(A) and Malme-TMZ(B) display sig-

nificantly increased IC50s for temozolomide of 440 ± 21 µM

[1.44-fold increase (p = 0.004)] and 515 ± 45 µM [1.68-fold

increase (p = 0.04)] (Figure 4B). The IC50 for temozolomide

in HT144 cells is 338 ± 25 µM. In HT144-TMZ(A), the pulse-

selected variant of HT144, the IC50 increased to 490 ± 15 µM,

which represents a 1.45-fold increase in resistance to TMZ

(p = 0.002) (Figure 4C). HT144(B) did not develop significant

resistance to temozolomide, and so was not used in further studies.

During drug selection of cell lines, cells can acquire altered sen-

sitivity to other chemotherapeutic drugs. The two temozolomide-

selected cell lines from each parent cell line with the highest

levels of resistance [Malme-TMZ(B) and HT144(A)] were tested

with four drugs to examine the chemosensitivity between the

parent and the resistant cell lines (Table 6). The melanoma cell

line HT144 and the temozolomide-selected variant HT144-TMZ

display similar sensitivity to cisplatin and epirubicin whilst the

resistant cell line is significantly more sensitive to mitoxantrone

(p = 0.02). Malme-3M and the pulse-selected cell line Malme-

TMZ have similar IC50s for EPI and mitoxantrone. Malme-TMZ

is significantly more resistant to cisplatin (p = 0.001) and both

HT144-TMZ and Malme-TMZ are significantly more resistant

to docetaxel than the parent cell lines Malme-3M and HT144

(p = 0.02; p = 0.02), although the IC50 values are still in the very

low nanomolar range.

Two temozolomide-resistant cell lines [Malme-TMZ(B) and

HT144(A)] were established using two different selection meth-

ods. Duplicate selection proved useful in this selection strategy

as one of the variants HT144-TMZ(B) did not develop resis-

tance. Although the level of resistance induced was relatively low,

these two cell lines provide unique clinically relevant models to

study acquired temozolomide resistance in melanoma (85). The

temozolomide-resistant variants were cross resistant to cisplatin.

As temozolomide and cisplatin are both DNA damaging agents,

there may be common mechanisms of resistance to the DNA

damage induced by these agents.

Table 6 | Fold resistance of HT144 and Malme-3M resistant variants

compared with their parental cell lines.

Chemotherapeutic agent HT144-TMZ Malme-TMZ

Cisplatin (nM) 1.4 2.0*

Epirubicin (nM) 1.3 0.8

Mitoxantrone (nM) 0.2* 1.3

Docetaxel (nM) 1.4* 1.2*

*Indicates a p-value <0.05 as calculated by Student’s t-test.

MAINTAINING DRUG-RESISTANT CELL LINES FOR RESEARCH

Once resistance has been established with the selection strategy the

stability of the resistance needs to be determined. One important

test of the stability of the model is the recovery of the drug-resistant

phenotype from the frozen stocks. If the phenotype is lost or resis-

tance is significantly lower on freeze thaw then the model will not

be practical to use in the laboratory. If the resistance is not stable

on freeze thaw then the drug-resistant cells need to be treated for

longer, possibly with a higher dose of chemotherapeutic.

The long-term stability of resistance also needs to be examined.

Resistant cell models that have been selected by continuous expo-

sure to drug should be grown for several months to determine

if the resistance phenotype remains present. Some cell lines may

be completely stably resistant (Figure 5A) and are grown in the

absence of chemotherapeutic, such as DLKP-A or IGROVCDDP

(21, 25). Regular monitoring by cytotoxicity assay is required to

make sure that the resistance phenotype of the cell lines persists.

Alternatively, the cells can be grown continuously in

chemotherapeutic, either at the dose used in selection or a lower

maintenance dose. This may be if the cells are not stably resis-

tant on removal of the chemotherapeutic or if the researchers

wish to ensure consistency of experiments. KB-CP20 cisplatin-

resistant cells which were selected with increasing concentrations

of cisplatin up to 20 µg/mL over a period of 6 months. The

FIGURE 5 | Maintaining drug-resistant cell lines in cell culture.

(A) Stable cell lines require no drug treatment to maintain their resistant

phenotype. (B) Some cell lines are grown continually in the presence of

chemotherapy, chemotherapy needs to be removed for one subculture prior

to using for experiments. (C) Some models are repeat pulse treated after a

certain number of passages or weeks in culture once their resistant

phenotype begins to fade. (D) Some models are discarded and new cells

grown from master stocks after a certain number of passages or weeks in

culture once their resistant phenotype begins to fade.
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resistance was then maintained in media containing 5 µg/mL

cisplatin (22). KB-5-8-11 colchicine-resistant cells are also main-

tained in 100 ng/mL of colchicine (24). Resistant cell models which

are maintained in chemotherapy drug need to be grown in drug-

free media for a passage prior to conducting experiments (86).

This is so that the drug-free controls of experiments are cells

not exposed to drug, rather than cells grown in the maintenance

dose of chemotherapy. Figure 5B shows a subculture schematic

for this technique. Another approach to maintaining stability is

growing cells in drug-free media but using a pulse treatment

at regular intervals (Figure 5C). This can be used even if the

cell model was originally developed by continuous exposure. The

CEM/E25 and CEM/E1000 epirubicin-resistant variants of CCRF-

CEM leukemia cells were established by continuous exposure then

grown without drug and resistance was maintained by repeat pulse

treatment every 6 weeks with the selecting doses of epirubicin 25

and 1000 ng/mL, respectively (15, 16).

Resistant models that are selected by pulse selection are often

less stable than their continuously selected counterparts. How-

ever, IGROVCDDP is a stably resistant cell line established by

pulse selection using dose escalation (21). Pulse-selected cell lines

which lose their resistant phenotype can also be maintained by re-

treatment with the selecting dose (Figure 5C) such as K562/DNR

resistant leukemia cells (17). Alternatively, instead of repeating the

pulse treatment, resistant cells can be grown for a certain num-

ber of weeks or passages and then new stocks are defrosted of an

earlier passage with the resistant phenotype present (Figure 5D).

H69CIS200 and H69OX400 cisplatin and oxaliplatin-resistant cells

were 1.5–2-fold resistant to platinums for 5–6 weeks in drug-free

culture and then the resistance phenotype faded over the next

6–8 weeks in culture (20). This technique is also often used with

resistant models regardless of selection strategy to ensure consis-

tency, so that cells within a limited range of passage numbers are

used for all experiments.

A REPRODUCIBLE EXPERIMENT?

Many mechanisms of resistance exist for each chemotherapy drug.

The chemotherapeutic drug cisplatin has been studied in drug-

resistant cell models for many years and mechanisms of resistance

include decreased accumulation of drug, inactivation by glu-

tathione and increased DNA repair (87). These mechanisms need

not all occur in the same drug-resistant model. Over time more

common mechanisms will be identified by their occurrence in

many drug-resistant models.

A comparative selection strategy could involve parallel selec-

tions of the same parental cell line with the same chemotherapy

agent, under the same treatment conditions. Similar or differ-

ent mechanisms could develop in these independent treatments.

This is the randomness of natural selection. A study by Tegze

et al. developed multiple drug-resistant cell lines from MCF-7 and

MDA-MB-231 breast cancer cells (88). The parent cell lines were

split and new cell lines were generated in parallel by treatment

with gradually increasing concentration of doxorubicin or pacli-

taxel. The study aimed to produce 10 resistant sublines for each

agent in each parent cell line. Using a continuous treatment strat-

egy they produced 29 resistant models over an 18-month period.

There were 10 doxorubicin and 4 paclitaxel-resistant MCF-7 cell

lines and 6 doxorubicin and 9 paclitaxel-resistant MDA-MB-231

cell lines. The fold resistance values compared to the parental cell

lines show up to 46- and 28-fold resistance to doxorubicin and

paclitaxel, respectively. The cell lines turned out to be highly het-

erogeneous for the mechanisms of drug resistance present, and in

general only a few mechanisms are activated in one cell line to

achieve drug resistance. Of note, the expression of P-gp did not

correlate with resistance in the cell line models, despite the devel-

opment of models with two P-gp substrates. This suggests that

in some of the models P-gp was activated early in the selection

process and became a dominant mechanism, in others this did not

occur.

Two models of cisplatin resistance were developed from H69

SCLC cells in the same research group in successive years (19,

89). These models were developed independently rather than in

parallel. H69-CP and H69CIS200 were developed with 100 or

200 ng/mL of cisplatin, respectively. Both cell models were two-

to four-fold resistant to cisplatin, and had decreased expression

of p21 which may increase the cell’s ability to progress through

the cell cycle in the presence of DNA damage. Both the H69-

CP and H69CIS200 cells showed no decrease in cellular cisplatin

accumulation. However, the H69-CP cells have increased levels of

cellular glutathione and are cross resistant to radiation whereas

the H69CIS200 cells have neither of these changes.

The cell line IGROV-1 has been used to develop cisplatin

drug-resistant models by many research groups. IGROVCDDP

cisplatin-resistant cells have an unusual resistant phenotype; they

are cross resistant to paclitaxel as they overexpress P-gp (90). It

is unusual but not unprecedented to see a model of acquired cis-

platin resistance overexpress P-gp (63, 91–94). This most likely

represents a generalized stress response to long-term cisplatin

treatment as cisplatin is not a P-gp substrate (95). IGROVCDDP

cells do not have increased total cellular glutathione but the

way glutathione is recycled within and from outside the cell is

enhanced, increased enzyme activity of glutathione reductase and

gamma-glutamyltransferase 1 (GGT1) was present (90). In con-

trast, IGROV-1/Pt0.5 and IGROV-1/Pt1, platinum-resistant cell

lines are sensitive to P-gp substrates, have increased cellular glu-

tathione and decreased GGT1 (96) which is the reverse pattern

to that seen in the IGROVCDDP platinum/taxane-resistant cells.

However, it should be noted, that different research groups can of

course have different sub clones of a parent cell line and this can

be a factor for the differences in the resistant models produced.

These examples demonstrate that the same cell line, treated with

the same chemotherapy agent leads to the development of a het-

erogeneous range of drug-resistant models. Therefore, the devel-

opment of drug-resistant models should be regarded as a process

rather than an experiment that can be repeated in biological trip-

licate. If parallel models of the same treatment are produced the

heterogeneity between drug-resistant cell lines should be exam-

ined with interest rather than dismissed as a non-reproducible

experiment.

CONCLUSION

We have provided a detailed guide to the decision-making process

for the development and ongoing maintenance of drug-resistant

cancer cell lines. There is no one right way to make drug-resistant
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cell lines. The case studies from our laboratories highlight how we

have successfully developed models in a variety of ways for use in

research projects.

METHODS

CELL CULTURE

H1299, H460, HCC1954, Malme-3M, OVCAR8, UPN251, and

cells and their drug-resistant variants were grown in antibiotic and

chemotherapy-free RPMI (Sigma #R8758). HT144 cells and their

resistant variants were grown in antibiotic and chemotherapy-

free McCoys 5A medium (Sigma). HT144, HCC1954, Malme-

3M, OVCAR8, and UPN251 and their resistant variants were

supplemented with 10% FCS (Lonza, Belgium). H1299, H460,

and their resistant variants were supplemented with 5% FCS.

All cell lines were maintained in a humidified atmosphere with

5% CO2 at 37°C. All cultures were tested routinely and were

mycoplasma-free.

GROWTH CURVES FOR OPTIMIZATION OF SELECTION DOSES

OVCAR8 or UPN251 cells were plated in duplicate into 6-well

plates at a cell density of 1 × 104 cells/mL in 1 mL media. A con-

trol plate was set up separately with duplicate wells. On day 2

1 mL of media with drug was added to all plates excluding the

control, which received drug-free media to the same volume. On

day 5 media was changed on all plates and replaced with drug-free

media. The control plate and one drugged plate were taken down

and cell counted. Cell counts for the control were compared to the

drug treatment. A percentage cell survival was calculated in order

to see the effects of drug treatment on cell growth/survival.

Percentage cell survival

=
Average cell number of drugged cells

Average control cell number
× 100

Over subsequent days one plate for each drug dose was observed

under a light microscope to see when normal growth had returned.

When cells were deemed to have returned to confluence this plate

was cell counted to confirm recovery. Percentage cell survival will

now be above or climbing to 100%. The time taken for cells to

resume growth and return to confluence was recorded.

CYTOTOXICITY ASSAYS

To determine the cytotoxicity of chemotherapy drugs, cell

growth/viability was measured using an acid phosphatase assay;

1.5–3 × 103 cells were seeded in flat-bottomed 96-well plates and

incubated overnight prior to addition of drug. Chemotherapeu-

tics were obtained from St Vincent’s University Hospital, Dublin,

Ireland. Lapatinib was purchased from Sequoia. Temozolomide

was obtained from the National Cancer Institute. Other inhibitors

and modulators were obtained from Sigma. Drug-free controls

were included in each assay. Plates were incubated for a further 5

(HCC1954, Malme-3M and HT144) or 7 days (H1299 and H460)

at 37°C in a humidified atmosphere with 5% CO2 and cell viability

was determined using an acid phosphatase assay (97). Growth of

drug-treated cells was calculated relative to control untreated cells

in biological triplicate.

STATISTICS

All experiments were performed at minimum in triplicate. Two-

sample, two-tailed Student’s t -tests were used to determine

significant differences using p < 0.05 as a cut off.
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