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Abstract. Sixteen formalin-fixed foetal livers were scanned in vitro using a new 

system for estimating volume from a sequence of multiplanar 2D ultrasound images. 

Three different scan techniques were used (radial, parallel and slanted) and four 

volume estimation algorithms (ellipsoid, planimetry, tetrahedral and ray tracing). 

Actual liver volumes were measured by water displacement. Twelve of the sixteen 

livers also received x-ray computed tomography (CT) and magnetic resonance (MR) 

scans and the volumes were calculated using voxel counting and planimetry. The 

percentage accuracy (mean ± SD) was 5.3  4.7%, −3.1  9.6% and −0.03  9.7% for 

ultrasound (radial scans, ray volumes), MR and CT (voxel counting) respectively. The 

new system may be useful for accurately estimating foetal liver volume in utero. 
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1. Introduction 

 

The volume of a foetal organ can be accurately measured using any tomographic 

imaging modality such as computed tomography (CT) and magnetic resonance (MR) 

imaging. For instance, MR has been used to estimate foetal liver, lung and brain 

volume in foetuses in the third trimester (Mansfield et al 1990, Stehling et al 1990, 

Roberts et al 1994, Baker et al 1994, 1995). However, for safety reasons, MR is not 

used to scan foetuses in the first trimester (Saunders 1991), and is too expensive and 

time consuming for generalized obstetric use beyond the first trimester. CT is never 

used to scan foetuses because of the well-known risks of x-radiation. Therefore, 

ultrasound is the modality of choice in obstetrics. Ultrasound is routinely used to 

estimate foetal dimensions, for example head diameter, abdominal circumference and 

femur length, from which the total foetal volume is inferred. 

 

The ratio of foetal liver volume to whole-body foetal volume may be important in 

indicating intrauterine growth retardation. This paper describes the use of a 3D 

ultrasound system, based on an electromagnetic localizer, for measuring foetal liver 

volume. Details of the system have been previously described (Hughes et al 1996). 

The purpose of the experiment described here was to assess the accuracy of 

estimating foetal liver volume using 3D ultrasound (US) compared with CT and MR. 

Three different US scan orientations were used (radial, parallel and slanted) to 

simulate how foetal livers might be scanned in utero. Four representative volume 

estimation algorithms were assessed—the ellipsoid, planimetry, tetrahedral and ray 
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tracing methods. Voxel counting and planimetry were used to estimate CT and MR 

liver volumes. 

 

Voxel counting was not carried out on the ultrasound images for three main reasons. 

Firstly, ultrasound images tend to be much noisier than either CT or MR images and 

so there are likely to be a significant number of pixels below the count threshold 

within the margins of the organ. Secondly, as regions of interest (ROIs) have to be 

drawn to separate the liver from the background before the volume can be estimated 

by voxel counting, why not outline the edge more carefully and calculate the volume 

directly from the ROIs? Thirdly, some means would have to be devised for dealing 

with irregularly shaped voxels. 

 

2. Materials and methods 

 

Briefly, the system comprises a video capture card (Win/TV, Hauppauge Computer 

Works, Inc., Hauppauge, NY, USA), placed inside an IBM compatible 486 personal 

computer (PC). Captured images are stored on hard disc along with information on 

the position and orientation of the ultrasound probe acquired using an electromagnetic 

localization device (3Space Fastrak, Polhemus Inc., Colchester, VT, USA). 

 

Sixteen cadaveric foetal livers (8–38 ml) were placed on a Perspex plinth in a tank of 

distilled water. The livers had intact capsules and were fixed in 10% formalin saline. 

As the livers were denser than water they could be held in place under their own 

weight. An Acuson 128XP/3 ultrasound scanner (Acuson Corp., Mountain View, CA, 

USA) with a 5 MHz curvilinear transducer was used to scan the livers. The transducer 

was held in a gantry running across the top of the tank and between 15 and 20 images, 

oriented radially, parallel and slanted at 30 to the vertical, were taken through each 

liver. A 324  224 image matrix was used with a pixel size of 0.2 × 0.2 mm and 7-bit 

resolution (pixel range 0–255 in steps of 2). For the parallel scans, the mean slice 

separation was around 3 mm (calculated retrospectively). This is comparable to the 

actual slice thickness in the focal region— estimated at between 3 and 6 mm using the 

Cardiff resolution test object (Gammex-RMI Ltd, Nottingham, UK). After 

acquisition, the images (figure 1(a)) were transferred from the PC to a Titan graphics 

supercomputer (Kubota Pacific Inc., Santa Clara, CA, USA) via a local area network 

(LAN). The edges of the livers were outlined on the computer monitor using a mouse, 

and the ROI points transformed into the 3D coordinate system of the Polhemus 

localization device. 

 

The ROI points were connected into a triangle mesh (figure 1(b)) using a closest 

neighbour algorithm (Hughes and Brueton 1994). This involves designating a point 

on the first ROI as the first vertex of the first triangle. The point closest to this vertex 

on the next ROI becomes the second vertex of the first triangle. The process is 

repeated, alternating between each set of adjacent ROI points, until the whole surface 

is filled with triangles. The two end ROIs are filled by connecting the outline points to 

the ROI centroids. Ultrasound liver volumes were calculated using the ellipsoid, 

planimetry, tetrahedral and ray tracing methods. The actual volume of the livers was 

measured by water displacement. The accuracy (mean error ± SD) of the 

displacement technique was assessed by measuring the volume of seven accurately 

machined Perspex rods (3–73 ml) and was found to be 0.86 ± 0.65 ml. 

 



 3 

To calculate the ellipsoid volume, the long axis (c) of each liver was found by 

calculating the distance between the centroids of the first and last ROIs. The ROI of 

maximum area was found and the two axes (ab) of an ellipse of equivalent area 

calculated. 
 

 

 
 

 

 
 

 

Figure 1. (a) US image of foetal liver. (b) Surface of a foetal liver reconstructed from multiplanar 

ROIs. 

 

The volume of the liver was assumed to be equivalent to an ellipsoid of volume 

       ⁄ . The planimetry volume was calculated using the method of Watanabe 

(1982). This involves multiplying the area of each ROI by a local slice thickness 

(a) 

(b) 
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which takes into account the angle between the image normals and the central axis of 

the organ (defined by the vectors connecting adjacent ROI centroids). 

 

For the tetrahedral method, the centroid of the whole organ was calculated by 

calculating the mean of all the vertex x, y and z coordinates respectively. Tetrahedra 

were constructed by connecting each set of triangle vertices to the organ centroid. The 

volume of each tetrahedron was calculated from the scalar triple product of three of 

the edge vectors having a common vertex (Kreyszig 1993). The ray volume was 

calculated by passing a regular grid of rays through the surface and calculating the 

intercepts between triangles and rays. The volume of each element was calculated as 

the length between intercepts multiplied by the area of each grid element. The 

planimetry, tetrahedral and ray algorithms were tested on a computer-generated 

ellipsoid with axes in the ratio 60:30:15, with 20 ROIs and 30 points in each ROI 

(similar to the livers). A 30 × 30 grid was chosen for the RTA. The accuracy for the 

planimetry, tetrahedral and ray methods on this ellipsoid was −1.1%, −1.4% and 

−1.6% respectively. 

 

Twelve of the sixteen livers were placed on a Perspex sheet and scanned on a Siemens 

Somaton DRH CT scanner (Siemens AG, Erlangen, Germany). A slice thickness and 

separation of 2 mm was used with a pixel size of 0.5 × 0.5 mm. Fifty-five slices were 

acquired in total. The 12 livers were also scanned on a Siemens Impact Magneton MR 

scanner (1 T magnet and 15 mT gradient) as a 256 × 256 × 128 volume with pixel 

size of 0.97 × 0.97 × 1.25 mm (slice separation). Only 12 of the 16 livers were MR 

scanned due to limitations in fitting all the livers into the scan field at the same time 

(only one scan session was available). The same 12 livers were also CT scanned, but 

of these only 11 could be analysed as one liver fell partially outside the field of view. 

 

The CT and MR images were transferred to the Titan computer and the edges outlined 

using a mouse. Two sets of outlines were produced. One set followed the visible edge 

of the liver as closely as possible (for the planimetry volumes), and the other was 

traced a little way out to include all liver pixels not visible in the standard grey-level 

window. A display window was chosen with a central value close to the mean CT or 

MR pixel value of the livers, with a width sufficient to display most of the pixels. For 

example, for CT, the mean pixel value was about 1070 ± 6 and the display window 

1000 ± 400.  

 

The CT and MR planimetry volumes were calculated by multiplying the area of each 

ROI by the scan thickness and summing over the whole volume. For voxel counting, 

a threshold value midway between the average value of the background pixels and the 

average value of the object pixels was used, as suggested by Kennedy et al (1989). 

Software was developed for counting the number of pixels above a given threshold 

value within a ROI. The volume of the livers was calculated by multiplying the total 

voxel count by the voxel volume (0.97 mm3 for MR and 0.5 mm
3
 for CT). 

 

For graphical purposes, the radial scan technique was arbitrarily chosen for 

comparing the ultrasound volume estimation algorithms, and ray volume algorithm 

arbitrarily selected to compare scan techniques. The radial ray ultrasound volumes 

were then compared with MR and CT planimetry and voxel count volumes. Scatter 

and Bland–Altman (Bland and Altman 1986) plots were used to assess the agreement 

between methods. 
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Figure 2. (a) Calculated ellipsoid (el), planimetry (pla), tetrahedral (tet), ray trace (ray) volumes versus 

measured volume (by water displacement) for radial US liver scans. The line of identity is shown. (b) 

Bland–Altman plot of the average and difference of the measured and calculated volumes. The error 

bars represent the 95% limits of agreement (mean difference ± two standard deviations), for each 

method designated by the first letter of the volume method. 

 

 

3. Results 

 

All four of the ultrasound volume algorithms produced values close to the line of 
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identity (figure 2(a)), but tended to slightly overestimate volume (figure 2(b)). The 

95% limits of agreement are about twice as wide for the ellipsoid method, although 

the ellipsoid method has the smallest mean error. Table 1 shows the mean and 

standard deviation of the absolute and percentage error for the four volume algorithms 

and three scan techniques. 

 

The radial and parallel scan techniques are very similar with much the same mean 

difference and limits of agreement. However, the slanted scans tended to 

underestimate volume with slightly wider limits of agreement compared with the 

other two methods (figure 3). 

 
Table 1. Mean and standard deviation of the absolute (ml) and percentage error for the four volume 

estimation algorithms for each ultrasound scan technique on the 16 livers. 

 
 

Method 

Radial Parallel Slanted 

abs. error % error abs. error % error abs. error % error 

Ellipsoid 0.5  ±  2.0 2.9  ±  8.7 0.4  ±  1.9 1.8  ±  7.6 −0.4  ±  1.8 −1.5  ±  7.2 

Planimetry 1.2  ±  0.8 6.5  ±  5.2 0.9  ±  0.9 4.5  ±  4.5 −0.5  ±  1.0 −2.5  ±  5.9 

Tetrahedral 1.5  ±  1.1 7.7  ±  5.4 1.7  ±  1.3 8.6  ±  5.6   0.0  ±  1.5    0.2  ±  6.6 

Ray tracing 1.0  ±  0.8 5.3  ±  4.7 0.9  ±  0.9 4.7  ±  4.4 −0.7  ±  1.0 −3.1  ±  5.6 

 
 

Table 2. Mean and standard deviation of the absolute (ml) and percentage error for voxel count and 

planimetry volumes for 11 CT and 12 MR livers. 

 

 
Modality Method abs. error % error 

CT Voxel counting −0.3  ±  1.4 −0.0  ±  9.7 

MR −0.7  ±  1.4 −3.1  ±  9.6 

CT Planimetry −3.6  ±  2.1 −18.9  ±  8.7 

MR −2.9  ±  1.8 −15.7  ±  8.6 

 

 

The accuracy of the US radial ray volumes is slightly lower than for CT and MR 

voxel count volumes, although the precision is slightly better (figure 4). The CT and 

MR volumes have a very similar mean difference and limits of agreement. Table 2 

shows the mean and standard deviation of the absolute and percentage errors for the 

CT and MR voxel count and planimetry volumes. The variances of the MR and CT 

volumes are very similar. The MR and CT planimetry volumes on average 

significantly underestimate volume. 

 

4. Discussion 

 

The results show that under ideal conditions of scanning foetal livers against a high-

contrast uniformly low-level background, the accuracy of the 3D US system is lower 

than CT and MR, although the precision is significantly better (p < 0.01). This is 

corroborated by Gopal et al (1992) who obtained an in vitro standard deviation of 

2.27% for US and 8.01% for MR. It is interesting to note that the precision of CT and 

MR are very similar even although the MR voxels (0.97 mm
3
) are about twice the 

volume of the CT voxels (0.5 mm
3
). 

 



 7 

 
 

 
 

Figure 3. (a) Plot of the ray trace volumes versus scan technique. The line of identity is shown. (b) 

Bland–Altman plot. Each limit of agreement is designated by the first letter of the scan technique. 

 

In comparison, the US voxels are about 0.12 mm
3
 (0.2 × 0.2 × 3 mm) in volume, 

which may account for the slightly better US precision. The MR and CT results could 

perhaps be improved by increasing the image resolution. However, it should be borne 

in mind that CT and MR tend to be used to acquire a section through the whole body 

rather than a limited region, requiring a lower resolution and therefore a larger pixel 

size.  
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Figure 4. (a) US radial ray volumes and CT and MR pixel count volumes versus displacement volume. 

(b) The 95% ranges are shown for the three imaging modalities (designated by their first letter). 

 

Ultrasound tends to be used to scan a limited region, enabling higher-resolution 

images to be acquired. In general, the overall accuracy will be mostly dependent on 

the ratio between the pixel and object dimensions and on slice thickness and 

separation. 

 

A number of other factors influence the overall error, for example a difference 
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between the velocity of sound in the foetal livers and the assumed value for soft tissue 

(1540 m s
−1

) will result in distance and refraction errors. Propagation velocity is a 

function of temperature and the fixing process (Bamber and Hill 1979a, b). At ~22 

C, the temperature at which our experiments were conducted, the data of Bamber and 

Hill suggest a propagation velocity of about 1590 m s
−1

 in fresh foetal livers, which 

would lead to a 3.2% underestimate of volume. According to Bamber and Hill, 

formalin fixation results in a decrease in propagation velocity of the order of 1% 

which would result in an overestimate of volume of 1%.  No data on the propagation 

velocity in fresh and fixed human foetal livers are reported in the literature, and so 

more work in this area would be useful. However, the figures quoted above suggest 

that the effects of temperature and fixation are likely to be small and tend to cancel at 

temperatures below body temperature. Errors in delineating the margins of liver are 

likely to be greater. 

 

The results show that the planimetry, tetrahedral and ray volume estimation 

algorithms are equally as good, although perhaps, as expected, the variance of the 

ellipsoid method is greater than the other three methods. There is little difference 

between scan techniques, though the slanted scans have greater variance and on 

average tend to underestimate volume. This may be due to blurring of the edge at 

shallower incident angles, leading to increased uncertainty in the true position of the 

edge. 

 

The CT and MR planimetry volumes significantly overestimate volume because the 

edge spread function has the effect of extending margins beyond their true position. 

Hence volume measurements are dependent on window settings (Koehler et al 1979, 

Baxter and Sorenson 1981, Harris et al 1993). The CT and MR planimetry results 

demonstrate that the optimal window for viewing is not usually the best for measuring 

volume. 

 

The system described in this paper could be useful for imaging other organs, for 

example foetal lungs (D’Arcy et al 1996), neonate brain ventricles, prostate glands 

etc, and has the potential to complement dedicated 3D scanners (for example the 

Kretztechnik Combison530). In a dedicated system, the transducer is contained in a 

housing and is mechanically swept through an angle to image a wedge-shaped volume 

of interest. While the system is not as compact as dedicated 3D ultrasound machines, 

it does have other advantages such as being able to collect data over an extended area 

beyond the range of an all-in-one 3D probe. Our system has flexibility in optimizing 

the incidence angle of the image plane with respect to the surface of the structure 

being scanned. Images could in principle be acquired from multiple directions 

enabling reconstruction of an organ that cannot be viewed from a single scanning 

window. Another advantage is that the receiver can easily be attached to an 

intracavity probe (say for imaging the cervix or prostate). In general, 3D US systems 

are fast enough to enable whole organs to be scanned within a single breath-hold 

competing with helical CT and echo-planar MR. 

 

Although this in vitro study demonstrates that US volume measurements are 

comparable with MR and CT, more work needs to be done on assessing in vivo errors. 

Tissue layers interposed between the transducer and organ of interest are known to 

produce significant image distortion due to velocity and refraction errors. In some 

cases, these distortions may need removing before accurate in vivo volume 
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measurements can be carried out, for example by the technique proposed by 

Carpenter et al (1995). However, the biggest difference in moving from in vitro to in 

vivo will be that the surrounding background will no longer be uniformly low level 

and so the margin of the foetal liver will not be so clearly defined with such high 

contrast. This will result in greater variability in the apparent position of the edge. 
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