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Abstract: Due to the increasing interest in direct restoration, there is a need to address the short-
comings of these restorations, mainly by increasing the longevity of complex direct restorations.
The present study aimed to evaluate the tensile strength differences in the complex restoration of
posterior teeth with dentin replacement constructed by fiber and non-fiber materials. The samples
were extracted from the mandibular permanent-molar and prepared using a complex cavity. The
cavity was subsequently restored with the centripetal incremental technique using a nano-fill com-
posite and different base materials, namely fiber dentin replacement, non-fiber dentin replacement,
and flowable composite. The universal testing machine was used to consider the tensile strength
and the fracture patterns were assessed using stereomicroscopy, followed by Scanning Electron
Microscopy (SEM) examination. The data were statistically analyzed using the one-way ANOVA
test. No significant differences were noted in the tensile strength of the three base materials. By using
stereomicroscopy and SEM, the adhesive fracture patterns were observed more clearly in the cavities
with fiber-based dentin replacement, whereas mixed fracture patterns were evident in cavities with
non-fiber dentin replacement and flowable composite bases. The results indicated that the addition
of fiber in dentin replacement did not affect the tensile strength in the complex restoration. Therefore,
dentin replacement of both fiber and non-fiber materials is applicable as a base material for complex
restoration of the posterior tooth.

Keywords: composite restoration; dental cavity preparation; tensile strength

1. Introduction

Extensive loss of tooth structure requires repeated replacement restoration to function
again and ensure a long-lasting effect on the oral cavity [1–4]. Dental restoration can
be classified as direct or indirect. Currently, direct restoration is more desirable due to
its shorter procedures, minimal invasion, aesthetics, biocompatibility, improvement of
mechanical properties, and longevity, while indirect restoration requires additional tissue
removal, multiple visits, and higher costs [3,5–9].

Direct composite resin restorations exhibit certain limitations, such as resistance to
fracture and polymerization shrinkage [8–14]. However, the mechanical properties and
longevity of composite resin restorations are affected by their composition and viscos-
ity [7,8,15,16]. Composite resin restorations, notably in posterior teeth, must consider
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mechanical properties, such as hardness, compressive strength, flexural strength, wear
resistance, and tensile strength, which resembles the ability of natural teeth to withstand
large masticatory forces. Accordingly, they are resistant to fracture [15,17]. Moreover,
the fracture resistance of composite resin restoration decreases mainly in the complex
cavity. Therefore, direct posterior restoration with a complex cavity requires materials
that can improve the mechanical properties of composite resins, one of which is dentin
replacement [8,10,16,18,19].

Dentin replacement is a base material that can be applied to the dental cavity and
is followed by the application of the composite resin. This material possesses excellent
adhesive properties towards dentin and self-leveling, which optimize the marginal integrity
and adaptation of restorative materials [20–22]. In addition, this material can also function
as a stress breaker with its low modulus of elasticity [23,24]. Currently, dentin replacement
is being developed with the addition of fiber to increase its resistance to fractures and
strengthen restorations, notably in teeth with complex cavities [8,25–27].

The mechanical properties of the restorative materials can be determined by assessing
their tensile strength. Tensile strength is used to evaluate the material’s ability to experience
plastic deformity when a force is applied [15]. Therefore, the present study aimed to
investigate the tensile strength differences in the complex restoration of the posterior tooth
with dentin replacement made from fiber and non-fiber materials.

2. Materials and Methods
2.1. Teeth Preparation

A total of 36 extracted mandibular permanent-molar samples were used in this study,
which fulfilled the following criteria: intact crown; no fractures; free of caries; sufficiently
wide occlusal surface; and an extraction period not longer than six months. The extracted
teeth were cleaned to remove the soft tissue and calculus, then were subsequently rinsed
and stored in saline prior to treatment. The teeth were prepared using a high-speed
handpiece (Panamax NSK, Tochigi, Japan) and diamond bur (Dentsply Maillefer, Bal-
laigues, Switzerland) with the following dimensions: 6.5 ± 0.5 mm in the cervico-occlusal;
9.5 ± 0.5 mm in the mesiodistal; and 4.0 ± 0.5 mm in the bucco-lingual (Figure 1).
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mechanical properties, such as hardness, compressive strength, flexural strength, wear
resistance, and tensile strength, which resembles the ability of natural teeth to withstand
large masticatory forces. Accordingly, they are resistant to fracture [15,17]. Moreover,
the fracture resistance of composite resin restoration decreases mainly in the complex
cavity. Therefore, direct posterior restoration with a complex cavity requires materials
that can improve the mechanical properties of composite resins, one of which is dentin
replacement [8,10,16,18,19].

Dentin replacement is a base material that can be applied to the dental cavity and
is followed by the application of the composite resin. This material possesses excellent
adhesive properties towards dentin and self-leveling, which optimize the marginal integrity
and adaptation of restorative materials [20–22]. In addition, this material can also function
as a stress breaker with its low modulus of elasticity [23,24]. Currently, dentin replacement
is being developed with the addition of fiber to increase its resistance to fractures and
strengthen restorations, notably in teeth with complex cavities [8,25–27].

The mechanical properties of the restorative materials can be determined by assessing
their tensile strength. Tensile strength is used to evaluate the material’s ability to experience
plastic deformity when a force is applied [15]. Therefore, the present study aimed to
investigate the tensile strength differences in the complex restoration of the posterior tooth
with dentin replacement made from fiber and non-fiber materials.

2. Materials and Methods
2.1. Teeth Preparation

A total of 36 extracted mandibular permanent-molar samples were used in this study,
which fulfilled the following criteria: intact crown; no fractures; free of caries; sufficiently
wide occlusal surface; and an extraction period not longer than six months. The extracted
teeth were cleaned to remove the soft tissue and calculus, then were subsequently rinsed
and stored in saline prior to treatment. The teeth were prepared using a high-speed
handpiece (Panamax NSK, Tochigi, Japan) and diamond bur (Dentsply Maillefer, Bal-
laigues, Switzerland) with the following dimensions: 6.5 ± 0.5 mm in the cervico-occlusal;
9.5 ± 0.5 mm in the mesiodistal; and 4.0 ± 0.5 mm in the bucco-lingual (Figure 1).
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2.2. Teeth Restoration

All samples were restored with a total etch adhesive system (Prime and Bond, Dentsply
Detrey GmbH, Konstanz, Germany) according to the manufacturer’s instructions. Sub-
sequently, the samples were divided into three complex restoration groups according to
the type of restoration materials as follows: (I) complex restoration with fiber dentin re-
placement (EverX Posterior, GC CORPORATION, Tokyo, Japan) and packable nano-fill
composites (Palfique LX 5, Tokuyama, Japan); (II) complex restoration with non-fiber dentin
replacement (Surefil SDR, Dentsply, Milford, DE, USA) and packable nano-fill composites;
(III) complex restoration with flowable composites (Filtek Z350XT, 3M ESPE, St. Paul, MN,
USA) and packable nano-fill composites. Following the application of the adhesive, the
nano-fill composite was applied using the centripetal technique to form the surface of the
buccal cavity and form a marginal ridge, followed by the application of dentin replacement
with a thickness of 4 mm. Finally, the application of 2 mm of composite resin (Palfique Bulk
Flow, Tokuyama, Japan) was performed. All restored samples were immersed in artificial
saliva for 24 h and incubated at 37 ◦C prior to tensile strength analysis.

2.3. Tensile Strength Analysis

The tensile strength of composite resin was measured using Universal Testing Machine
(UTM; TISY Co., Ltd., Taichung, Taiwan). The maximum load used was 200 kgf with a pull
speed of 1.0 mm/min.

2.4. Fracture Pattern Evaluation

The fracture pattern of the sample was observed using a stereomicroscope (SFX 33
LED Portable, Inverness-shire, UK) and followed by Scanning Electron Microscopy (SEM;
EVO MA 10, Zeiss, Cambridge, UK).

2.5. Statistical Analysis

The SPSS software with ANOVA test function (Version 17.0, SPSS Inc., Chicago, IL,
USA) was adopted in the present study. The significance level was set at α = 0.05. All
values reported indicate mean ± standard deviation.

3. Results

In this study, tensile strength and fracture pattern were the dependent variables, while
fiber dentin replacement, non-fiber dentine replacement, and flowable composite were
independent variables. Based on the test of homogeneity of variances obtained p-value
(0.927) > 0.05, which indicates the data in this study is homogeneous. Furthermore, the
normality test with Shapiro–Wilk obtained p-value (0.065) > 0.05, suggesting that the data
were normally distributed.

3.1. Sample Distribution

Figure 2 presents the distribution of the samples based on the crown surface area.
Statistical analysis for the measurement of the extensive surface area indicated a p value of
(0.679) > 0.05, suggesting no significant differences in the mean value of extensive surface
area among the three groups.
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3.2. Tensile Strength Analysis

Table 1 expresses the descriptive statistics table of tensile strength in fiber dentin
replacement, non-fiber dentin replacement, and flowable composite group, while the box
plot is shown in Figure 3.

Table 1. Descriptive statistics table of tensile strength in each group.

Descriptives
Tensile Strength (MPa)

N Mean Std.
Deviation

Std.
Error

95% Confidence Interval for
Mean Minimum Maximum

Lower Bound Upper Bound
Fiber Dentin
Replacement 12 24.47 3.12 0.90 22.48 26.45 20.39 32.36

Non-Fiber
Dentin

Replacement
12 22.13 2.98 0.86 20.23 24.02 18.96 29.70

Flowable
Composite 12 22.10 4.00 1.15 19.55 24.64 12.60 28.62

Total 36 22.89 3.49 0.58 21.71 24.08 12.60 32.36
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Figure 3. Box plot graphical representation of ANOVA result for tensile strength fiber dentin replace-
ment, non-fiber dentin replacement, and flowable composite.

Statistical analysis of the tensile strength indicated a F (2,33) = 1.916, p (0.163) > 0.05,
suggesting the absence of significant differences in the tensile strength among the three
groups. However, the fiber dentin replacement group exhibited the highest average tensile
strength than those noted for the non-fiber dentin replacement and flowable composite
groups, with a value of 24.47 MPa.

3.3. Fracture Pattern Evaluation

Figure 4 indicates various sample fracture patterns observed using stereomicroscopy.
The adhesive fractures occur when the restoration separates from the tooth cavity and
only one surface (in restoration or tooth) retains the bulk of the adhesive (Figure 4a); the
adhesive, which is stuck on both surfaces is termed a cohesive fracture (Figure 4b); and the
mixed fractures consist of adhesive and cohesive fractures (Figure 4c).
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Figure 4. Fracture patterns under stereomicroscopes: (a) Adhesive, indicated by yellow square;
(b) Cohesive, indicated by red square; (c) Mixed.

Figure 5 displays various sample fracture patterns detected using SEM. Figure 5a
indicates the adhesive fracture with the restoration and the adhesive part detached from
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the tooth, while some of the adhesive material was still retained on the tooth surface. The
other part was released with the restoration as shown in Figure 5b, and the combination of
the two fracture patterns, (both adhesive and cohesive) is shown in Figure 5c.
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Figure 6 illustrates various fracture patterns following quantification of the sample
group. The adhesive fractures were the most common pattern in the fiber dentin replace-
ment group, however, cohesive fractures only occurred in this group, while mixed fractures
were more common in both the non-fiber replacement group and the flowable composite
groups. The chi-square test designated a p value of (0.174) > 0.05, indicating the absence of
significant relationship between restorations using fiber or non-fiber materials to fracture
patterns of teeth.
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flowable composite group.

4. Discussion

Composite resin is currently the first choice for tooth restoration due to its aesthetic
appearance and reduced financial cost. However, the procedure consists of several stages
and requires sensitive techniques [28–30]. Posterior teeth are synonymous with more
extensive tooth decay. In these cases, the application of dentin replacement as a base is
often recommended due to its optimal marginal adaptability. Dentin replacement has been
developed with the addition of fiber to improve its mechanical properties [25,31–33].
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The results of the present study indicated that the fiber dentin replacement group
exhibited higher tensile strength compared with that of the non-fiber dentin replace-
ment and flowable composite groups, although the difference was not significant. Fiber
dentin replacement contains fibers, such as barium glass, glass fiber, bisphenol A-glycidyl
methacrylate resin, triethyleneglycol dimethacrylate, silicon dioxide, polymethyl methacry-
late (PMMA), and a photoinitiator. The content of glass fiber filler in dentin replacement
can increase the material’s ability towards tensile loads. Following the application of a high
tensile load to the tooth structure, the fiber undergoes a modification effect by absorbing
and spreading the tensile load on the tooth surface [34,35]. A previous study reported
relevant results to the findings of the current study, indicating that the fracture toughness
and flexural strength of fiber dentin replacement were improved compared with those
noted in the flowable composite resins [10,25]. This was due to the ability of the glass fiber
to prevent cracks, while the PMMA could absorb and distribute the force from the polymer
matrix to the glass fiber [10]. Polyethylene fiber ribbons found in dentin replacement
aid the strengthening of tooth restoration by increasing the modulus of the elasticity and
preventing fractures [34].

Non-fiber dentin replacement is a posterior bulk-fill composite resin containing a
polymerization modulator, which is the main structure of SDR®. This polymerization
modulator can reduce volumetric shrinkage by approximately 20% and polymerization
force by 80%. Finally, it improves its mechanical properties [32,36,37].

Flowable composites are nanocomposite resins consisting of 82% nanoparticle fillers
and nanofillers, in which the nanoparticles constituting the silica are categorized as non-
agglomerated and non-aggregated, with 20 nm and 4–11 nm zirconia fillers. These particles
enhance the mechanical and physical properties of the nanocomposite resin [32,34,37,38].
In contrast to the current study, a previous study that compared the flowable composites
and the non-fiber dentin replacement in the mesio-occlusodistal (MOD) Class II cavities
of molar teeth concluded that the tensile strength of the flowable composite resins was
lower when compared with that of the non-fiber dentin replacement [39]. The differences
in these results are probably associated with the adhesive system used in the study. The
adhesive system plays a crucial role in maintaining the bond between the cavity wall
and the restoration material. In the present study, all groups used an etch-and-rinse
system that produced improved interlocking strength to increase the resistance of the
fractures [15,32,40]. The research study conducted by Kumagai on molar teeth with class II
MOD cavities indicated higher tensile strength in non-fiber dentin replacement compared
with the flowable composites [41]. The results of that study may differ since conventional
incremental applications were used, while in the present study, the application techniques
used were centripetal-incremental. Centripetal-incremental approaches exhibit improved
marginal adaptation and lower shrinkage polymerization, which can in turn enhance the
mechanical properties of the restoration [37,42].

The difference in mechanical properties occurs due to the composite restoration ma-
terial having different organic content. The small filler size and higher nanofiller volume
can improve the mechanical properties of composite resins, such as tensile strength, com-
pressive strength, and fracture resistance [34]. A previous study indicated that the tensile
strength obtained in the non-fiber dentin replacement was higher than that noted in
other composite resins due to differences in the composition of the polymer matrix and
filler size [37].

Based on the fracture pattern observations noted in the present study, the most com-
mon dentin fiber replacement pattern was the adhesive pattern, which indicated optimal
mechanical properties. High tensile strength indicated that the fiber dentin replacement
ability was not deformed when a tensile force was applied. Bondable reinforcement fibers
such as polyethylene fibers and glass fibers can increase the fracture resistance of the
tooth structure. Therefore, when a tensile force is applied, a fracture occurs between the
restoration and the tooth, which indicates that the fracture is more affected by the bonding
ability of the adhesive material [37].
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The use of fiber dentin replacement as a sub-structure under conventional composites
has certain advantages, such as significantly increased strength of the restoration and
the ability to prevent spread cracks and alter the fracture pattern [8]. In case a fracture
is restored, the fracture direction will change and approach the coronal direction of the
tooth [29,38].

The most common fracture in the non-fiber dentin replacement and flowable compos-
ites groups was a mixed pattern fracture since the material was less able to withstand cracks
and plastic deformation under tensile pressure. An additional study demonstrated that the
most frequent fracture pattern in the non-fiber dentin replacement was the adhesive frac-
ture pattern in premolars with class II MOD cavities, which was not in line with the results
reported in the current study and may be affected by differences in cavity extension [40].
The present study used non-fiber dentin replacement and flowable composites in complex
cavities so that the tooth structure that received a load distribution was diminished. Non-
fiber dentin replacement possesses a low elastic modulus so that when a force is applied,
the load will be transferred on to the underlying structure [43].

The cohesive fracture pattern only occurs in the fiber dentin replacement group since,
in the non-fiber dentin replacement and flowable composite groups, all the cohesive fracture
patterns that occurred were accompanied by fractures on the tooth structure and were
consequently grouped into mixed fracture patterns [43].

Thermocycling is a combination of hydraulic and thermal degradation that simu-
lates extreme temperature changes in the oral cavity [44]. The thermocycling method is
carried out to simulate the same conditions as those of the composite resin restoration,
which is affected by the oral cavity [45]. In the present study, thermocycling was not
performed. Therefore, the effects of the thermal stress on these three restoration groups
were unidentified.

Based on the present study, the results indicated that the addition of fiber to dentin
replacement did not show a significant increase in tensile strength compared with non-fiber
dentin replacement. Accordingly, dentin replacement of both fiber and non-fiber material
can be used as an alternative base material for the complex restoration of the posterior
tooth. However, the limitations of the current study include: the actual condition of the
oral cavity cannot be simulated; the tooth size of the sample is not all the same; and the
absence of some tests such as compressive strength and flexural strength, which would
also complement the mechanical properties of the material under study, and be able to
simulate all the forces acting on the tooth. Furthermore, an additional study with a larger
cohort is required that can be applied to various types of cavities in order to strengthen the
present results.

5. Conclusions

The statistical test results for the measurement of the extensive surface area and tensile
strength indicated no significant differences between fiber dentin replacement, non-fiber
dentin replacement, and flowable composite. The samples were observed using stere-
omicroscopy and SEM, which indicated adhesive, cohesive, and mixed fracture patterns.
Following quantification, the highest value of the fracture pattern corresponded to an
adhesive pattern, while in the non-fiber dentin replacement flowable composite group the
highest value of the fracture pattern corresponded to a mixed pattern. Therefore, dentin
replacement, irrespective of its formation by a fiber material, is useful as the base material
for the complex restoration of the posterior tooth.
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