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Abstract
Prostate cancer (PCa) is one of the most common causes of male cancer-related death in

Western nations. The cellular response to androgens is mediated via the androgen receptor

(AR), a ligand-inducible transcription factor whose dysregulation plays a key role during PCa

development and progression following androgen deprivation therapy, the current

mainstay systemic treatment for advanced PCa. Thus, a better understanding of AR signaling

and new strategies to abrogate AR activity are essential for improved therapeutic

intervention. Consequently, a large number of experimental cell culture models have been

established to facilitate in vitro investigations into the role of AR signaling in PCa

development and progression. These different model systems mimic distinct stages of this

heterogeneous disease and exhibit differences with respect to AR expression/status and

androgen responsiveness. Technological advances have facilitated the development of

in vitro systems that more closely reflect the physiological setting, for example via the use of

three-dimensional coculture to study the interaction of prostate epithelial cells with the

stroma, endothelium, immune system and tissue matrix environment. This review provides

an overview of the most commonly used in vitro cell models currently available to study AR

signaling with particular focus on their use in addressing key questions relating to the

development and progression of PCa. It is hoped that the continued development of in vitro

models will provide more biologically relevant platforms for mechanistic studies, drug

discovery and design ensuring a more rapid transfer of knowledge from the laboratory to

the clinic.
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Introduction
Prostate cancer (PCa) is the most commonly diagnosed

cancer in men and second leading cause of male cancer

death in Western societies (Siegel et al. 2012). Since the

androgen dependence of PCa was discovered, intensive

efforts have focused on better understanding of androgen

receptor (AR) signaling with our current knowledge being

largely derived from experimental cell culture and animal
models. In vitro cell cultures have the advantage of being

relatively cheap and typically have a high replicative

capacity ensuring sufficient material for long-term use.

By contrast animal models, although expensive, more

closely recapitulate the in vivo paracrine and endocrine

environment of human PCa and also permit investiga-

tion of stromal–epithelial interactions, angiogenesis
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and metastasis. However, recently developed three-

dimensional (3D) coculture systems now permit

investigation of such processes in vitro.

A number of different in vitro and in vivo models have

been established to aid studies into prostatic disorders

such as benign prostatic hyperplasia (BPH) and various

stages of PCa, including castration-resistant (CR) and

metastatic disease. Each model system displays its own

characteristics regarding androgen responsiveness and AR

expression making it often difficult to select the most

appropriate model system for a particular question. This

review summarizes in vitro cell models currently available

to study AR signaling with particular focus on their use in

addressing key questions relating to the development and

progression of PCa. It is beyond the scope of the current

review to discuss in vivo models, which have been

reviewed recently elsewhere (Hensley & Kyprianou 2012,

McNamara et al. 2012, Toivanen et al. 2012).
The AR

Androgens play a critical role in the development of the

male phenotype during sexual differentiation but also in
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Figure 1

Classic androgen receptor (AR) genomic activity via androgen. Androgens

derive predominantly from the testis (90–95%) but also to a lesser extent

from the adrenal glands (5–10%) and mediate their effects via binding to the

AR. Testicular testosterone (T) and adrenal DHEA or androstenedione are

converted locally in the prostate into bioactive DHT by the enzymes

5a-reductase 1 and 2. In the classic mode of AR genomic activity, androgen

binding to the AR induces a conformational change that leads to the

http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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the development and progression of PCa (Sampson et al.

2007, Green et al. 2012, Yadav & Heemers 2012).

Androgenic action in the prostate is primarily mediated

by dihydrotestosterone (DHT), which derives predomi-

nantly from the reduction of testicular testosterone but

also adrenal dihydroepiandrosterone (DHEA) catalyzed by

locally produced 5a-reductase enzymes (Wilson 1996,

Mohler et al. 2004). The cellular response to androgens is

mediated via the AR, a ligand-inducible transcription

factor that comprises a C-terminal ligand-binding domain

(LBD), a highly conserved DNA-binding domain, a hinge

region and N-terminal transactivation domain (Brinkmann

2011, Bennett et al. 2012, Green et al. 2012). Upon ligand

binding, cytosolic AR undergoes conformational changes,

including interaction of the N- and C-terminal domains

and dissociation from heat shock proteins, enabling the

AR to interact with coregulatory molecules such as ARA70

and importin-a, which facilitate nuclear translocation and

dimerization (Fig. 1; Rahman et al. 2004, Schaufele et al.

2005, Cutress et al. 2008). In the nucleus, AR binds to the

promoters of androgen-regulated genes (ARGs), such as

prostate-specific antigen (PSA) and recruits various coacti-

vators and RNA polymerase II to induce transcription
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dissociation of chaperone and heat shock proteins (HSP40, HSP90) and its

subsequent interaction with coregulatory molecules and importin-a, which

facilitate nuclear translocation of AR–ligand complexes. In the nucleus, the

AR undergoes phosphorylation and dimerization, which permits chromatin

binding to androgen-responsive elements (ARE) within androgen-regulated

target genes. The AR recruits a variety of coactivators (ARA70, SRC-1, -3, and

CBP/p300) and RNA polymerase II (Pol II) to induce gene transcription.
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(Veldscholte et al. 1992, Smith & Toft 1993, Truss & Beato

1993, Tsai & O’Malley 1994). This classic genomic mode of

AR action promotes the transcription of a variety of genes

encoding proteins necessary for the development, growth

and maintenance of the normal prostate. A comprehen-

sive list of androgen-regulated target genes has been

recently published (Lamont & Tindall 2010). The AR can

also act via less well-understood nongenomic mechanisms

through reciprocal cross talk with numerous signaling

molecules at the plasma membrane. These nongenomic

AR actions have been recently reviewed in detail elsewhere

(Thomas 2012, Nyquist & Dehm 2013).
The role of the AR in PCa

Inhibiting AR signaling remains one of the most common

and effective systemic methods to treat PCa (Miyamoto

et al. 2004). However, many patients relapse and succumb

to CR-PCa within 3 years (Molina & Belldegrun 2011).

Despite low circulating androgen levels, AR signaling is
Ligand-dependent mechanisms

Ligand-independent mechanisms

Indirect AR mechanisms

• Aberrant androgen synthesis (e.g. adrenal gland T bypass)
  (LNCaP, LAPC-4, VCaP, 22Rv1)

• Intracrine tumoral de novo androgen synthesis (LNCaP, DuCaP,
   VCaP, 22Rv1)

• Androgen uptake/transport (LNCaP, 22Rv1)

• AR gene amplification (VCaP, LNCaP-AI, LNCaP-ARhi, PC346Flu1)

• Cytokines and growth factors (e.g. interleukins, IGF) (LNCaP,
   LAPC-4, MDA-PCa-2b)

• Transcription factors (e.g. STAT3, NF-κB) (LNCaP, ARCaP, 22Rv1)

• Co regulator recruitment (all AR + PCa cell lines)

• AR splice variants (22Rv1, VCaP)

• AR mutation (mutant: LNCaP, MDA-PCa 2a / 2b, 22Rv1, E006AA;
   wildtype: PC346C, VCaP, DuCaP, LAPC-3, LAPC-4)

• TMPRSS2:ETS gene fusions (VCaP, LNCaP, DuCaP)

• Prostate cancer stem cells (LNCaP, LAPC-4, C4-2)

• Epigenetic changes (LNCaP, LNCaP AI)

Figure 2

In vitro cell models exhibiting characteristics of androgen receptor

(AR)-dependent and AR-independent mechanisms that promote prostate

cancer (PCa) progression to castration-resistance. Several pathways have

been identified by which PCa cells can overcome androgen depletion and

thereby facilitate tumor progression to CR-PCa and can be divided into:

i) ligand-dependent mechanisms, which promote AR activation despite

castrate levels of androgens; ii) ligand-independent mechanisms, which

http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0401 Printed in Great Britain
frequently reactivated in CR-PCa and plays a key role in

disease progression (Chen et al. 2004). Several mechanisms

have been identified by which AR reactivation can occur,

including AR hypersensitivity, promiscuous/constitutive

AR activation via cross talk with other signaling pathways

or alternative splicing, elevated tumoral androgen pro-

duction/uptake and altered recruitment/expression of AR

coregulators (Fig. 2 and Table 1; Dehm et al. 2008,

Steinkamp et al. 2009, Wegiel et al. 2010, Hu et al. 2011,

Lamont & Tindall 2011, Reis 2011, Green et al. 2012,

Sampson et al. 2012).

PCa and CR-PCa remain largely dependent on the AR

for growth (Chen et al. 2004). Thus, targeting AR signaling

is considered one of the most promising therapeutic

approaches and supported by the findings of phase III

clinical trials that AR targeting can improve survival of

patients with metastatic CR-PCa (Kim & Ryan 2012).

A number of agents have been developed that inhibit

androgen signaling either by directly targeting the AR or

by intervening with androgen synthesis (Schweizer &
Progression to CR-PCa

Activation

AR

DHT

A
R

A
R

facilitate AR activation by nonandrogenic factors and/or altering the

intrinsic behavior/sensitivity of AR; and iii) indirect mechanisms that act

downstream of AR activation (e.g. chromatin remodeling via histone

deacetylases, re-emergence of tumors via CSCs and AR-dependent

expression of oncogenic ETS transcription factors). Cell lines that

have been used to study these different mechanisms are indicated.
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Antonarakis 2012). For example, enzalutamide

(MDV3100) directly binds to the AR, thereby preventing

its nuclear translocation and coactivator recruitment to

the ligand–receptor complex. By contrast, abiraterone

acetate suppresses extragonadal androgen synthesis via

blockade of the enzyme CYP17. These agents demonstrate

high clinical potential. Nonetheless this remains an

intense area of active research with several new AR

antagonists and novel approaches under development,

including antisense technology to inhibit AR expression

(Cheng et al. 2006, Snoek et al. 2009, Desiniotis et al. 2010,

Mohler et al. 2012). The most commonly used and

pipeline AR-targeting agents have been comprehensively

reviewed recently (Schweizer & Antonarakis 2012).
Cell lines established directly from PCa
patient tissues

The first human prostatic tumor epithelial cell lines to be

spontaneously established were LNCaP, PC3 and DU145,

which were derived from PCa lymph node, bone and brain

metastases respectively and remain the most commonly

used PCa cell lines (Table 2; Bosland et al. 1996). Of these

three cell lines, only LNCaP expresses significant levels of

AR and consequently is the most widely used ARC cell

line. DU145 and PC3 cells are generally considered to be

ARK and thus commonly used as ARK controls or to study

androgen signaling by ectopic AR overexpression.

Although LNCaPs are androgen responsive and produce

PSA, it should be noted that they express a mutated AR

(T877A), which results in altered AR signaling

(Veldscholte et al. 1990). Recently, exome sequencing of

LNCaP cells revealed significant genetic variation and a

degree of genetic instability that should be considered

when working with this cell line (Spans et al. 2012). In

addition, AR signaling and androgen responsiveness of

LNCaPs appear to be sensitive to serial passaging and

culture conditions (Karan et al. 2001, Sieh et al. 2012). For

example, when grown in 3D hydrogels with Arg-Gly-Asp

(RGD) motifs (common recognition sites in extracellular

matrix (ECM) proteins), LNCaP cells formed tumor-like

structures and exhibited different kinetics of androgen-

induced AR turnover and AR nuclear translocation with

higher basal expression levels of ARGs, a finding also

observed upon culture of LNCaPs on bone ECM (Robbins

et al. 1996, Sieh et al. 2012). Thus, LNCaP cells may be

particularly amenable for studies investigating the impact

of tumor cell–ECM interactions on AR signaling.

For many years, LNCaP was the only cell line available

for in vitro studies of AR signaling. Several additional
Published by Bioscientifica Ltd.

Downloaded from Bioscientifica.com at 08/23/2022 05:07:38AM
via free access

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-12-0401


Table 2 Origins, characteristics and culture conditions of prostate epithelial cell lines.

Name Origin Characteristics References

Benign cell lines
BPH-1 Immortalized with SV40 ARK Hayward et al. (1995)
PWR-1E Immortalized with human

papilloma virus 18
ARC, androgen responsive, express PSA,

nontumorigenic in nude mice
Bello et al. (1997)

RC-165N/hTERT Immortalized with human telo-
merase reverse transcriptase

ARC, androgen responsive, express PSA,
nontumorigenic in nude mice

Kim et al. (2007)

RWPE1 Immortalized with SV40 ARC, androgen responsive, express PSA,
nontumorigenic in nude mice

Webber et al. (2001)

ARC PCa cell lines
ARCaP Ascites fluid of the same patient

as MDA PCa cells
Low levels of AR and PSA, growth inhibited

by androgens
Zhau et al. (1996)

DUCaP Brain metastasis Wild-type AR, androgen sensitive Lee et al. (2001)
E006AA Primary PCa from an African-

American patient with hormone
naı̈ve localized PCa

Mutated AR, do not express PSA, insensitive
to androgens

Koochekpour et al. (2004)
and D’Antonio et al.
(2010)

LAPC Locally advanced or metastatic PCa Wild-type AR, express PSA, different sublines
available

Klein et al. (1997) and
Craft et al. (1999)

LNCaP Lymph node metastasis Mutated AR, produce PSA, androgen
responsive

Horoszewicz et al. (1980)

MDA PCa cells Bone metastasis Mutated AR, produce PSA, less responsive
to androgens

Navone et al. (1997)

PC346 Transurethral resection of localized
advanced PCa

Wild-type AR, different sublines available Marques et al. (2006)

22Rv1 Primary PCa Mutated AR, low levels of AR and PSA Sramkoski et al. (1999)
and Attardi et al. (2004)

VCaP Bone metastasis Wild-type AR, androgen sensitive Korenchuk et al. (2001)
ARK PCa cell lines
DU145 Brain metastasis ARK, do not respond to androgens Stone et al. (1978)
PC3 Bone metastasis ARK, do not respond to androgens Kaighn et al. (1979)

E
n
d
o
cr
in
e
-R
e
la
te
d
C
a
n
ce
r

Review N Sampson et al. Androgen receptor signaling in
prostate cancer

20 :2 R53
ARC PCa cell lines have now been established, including

MDA PCa 2a and 2b, which were derived from a bone

metastasis of a patient with PCa (Navone et al. 1997).

Like LNCaP cells, MDA PCa cells also express AR and PSA

but are less responsive to androgens and the agonist

effects of nonandrogens (e.g. estrogens and pro-

gesterone) possibly due to the additional L701H

mutation in the AR LBD (Tables 1 and 2; Navone et al.

1997, Zhao et al. 1999). By virtue of their androgen

dependence, LNCaP and MDA PCa ARC cell lines are

useful models to investigate mechanisms underlying CR.

In addition, these cell lines have been employed to

investigate the efficacy of novel therapeutic compounds,

such as the histone deacetylase inhibitor valproic acid

and the GH-releasing hormone antagonist MZ-J-7-138

(Chou et al. 2011, Stangelberger et al. 2012). Interest-

ingly, ARCaP cells, which were established from ascites

fluid of the same patient as MDA PCa cells, form tumors

with high incidence when injected s.c. or orthotopically

into intact or castrated male nude mice (Zhau et al.

1996). Moreover, unlike MDA PCa cells, ARCaPs express

low levels of AR and PSA, are highly metastatic and
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0401 Printed in Great Britain
growth was inhibited by androgens due to G1 cell

cycle arrest and AR-dependent regulation of c-Myc,

Skp2, and p27Kip (Zhau et al. 1996, Chung et al. 1997,

Chuu et al. 2011).

E006AA is one of the few cell lines established from

primary PCa and originates from an African–American

patient with hormone naı̈ve localized PCa (Table 2;

Koochekpour et al. 2004). A stromal cell line (S006AA)

established in parallel from the same patient material

further extends the experimental value of E006AA by

enabling autologous epithelial–stromal interactions to be

studied in vitro. E006AA cells express a mutated AR

(harboring an S599G mutation in the AR DBD) but do

not express PSA and display loss of AR-dependent

growth suppression with cell growth insensitive to AR

knockdown, androgens and antiandrogens (D’Antonio

et al. 2010). This has important clinical implications

since patients with PCa tumors harboring such AR loss-

of-functionmutationswillnotbenefit fromhormoneoranti-

AR therapies despite AR protein expression. Thus, E006AA

cells represent an interesting in vitro model for dominant

negative AR loss-of-function in hormone-naı̈ve PCa.
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LNCaP cell line variants representing CR-PCa

Progression to CR-PCa is a major clinical problem and

subsequent treatment is mainly palliative. Several in vitro

model systems have been developed to study mechanisms

underlying the development of CR, including a panel of

LNCaP variants. These sublines differ widely in the

method of their establishment and culture conditions

(summarized in Table 3) but can be largely divided into

those established by long-term culture in androgen-

deprived media vs those established after in vivo passage

through athymic nude mice. In addition, some sublines

have been established by coculture with other cell types.

We observed that many of these variants (including the

LNCaPabl subline generated in our laboratory) are less

sensitive to apoptosis-inducing agents compared with

parental LNCaP cells (Culig et al. 1999, Pfeil et al. 2004).

We and others have used these sublines to gain an insight

into molecular mechanisms underlying CR-PCa and

demonstrate in proof-of-principle studies of the potential

clinical efficacy of AR targeting in CR-PCa (Desiniotis et al.

2010, McCourt et al. 2012).

AR overexpression is a common phenomenon in

CR-PCa that is mimicked in two LNCaP sublines,

LNCaP-ARmo and LNCaP-ARhi, which stably overexpress

AR at levels 2–4 and 4–6 times higher than parental

LNCaPs respectively (Waltering et al. 2009). These sublines

were recently used to demonstrate that AR overexpression

sensitizes receptor binding to chromatin, thus, providing

an explanation as to how AR signaling can be reactivated

in CR-PCa (Urbanucci et al. 2012).
Cell lines established from xeno-
transplanted tumors

A number of cell lines have been established from human

PCa tissue first heterotransplanted into immune-deficient

host animals. For example, VCaP and DuCaP cell lines

were established respectively from metastatic bone and

brain lesions of the same patient with CR-PCa via

xenografting into Scid mice and later harvested for

in vitro culture (Table 2). Both VCaP and DuCaP cells are

androgen-sensitive and express higher levels of wild-type

AR than LNCaP cells (Korenchuk et al. 2001, Lee et al.

2001, Marques et al. 2006, Waltering et al. 2009).

In addition, these cell lines also harbor a TMPRSS2:ERG

gene fusion and thus are frequently used to investigate the

functional significance of the genetic rearrangement

involving ERG, a member of the ETS family of transcrip-

tion factors, which is the most common genetic aberration
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0401 Printed in Great Britain
in PCa identified to date (Fig. 2; Tomlins et al. 2008, Paulo

et al. 2012). In addition to wild-type AR, VCaPs also

express several alternatively spliced AR isoforms in

response to castration or androgen deprivation with one

variant lacking the LBD (Dehm et al. 2008, Watson et al.

2010), which like other recently identified AR variants

appears to act as a constitutively active, ligand-indepen-

dent transcription factor to support AR reactivation in

CR-PCa (Fig. 2; Dehm & Tindall 2011). Moreover, given

their upregulation of AR and numerous enzymes involved

in the metabolism of adrenal steroids following androgen

deprivation, DuCaPs may represent an ideal in vitro model

system to study intratumoral de novo androgen synthesis, a

key mechanism underlying progression to CR-PCa (Fig. 2;

Locke et al. 2008, Pfeiffer et al. 2011).

The LAPC cell lines were established from eight

different patients with locally advanced or metastatic

PCa following subcutaneous implantation into Scid mice

in the presence of Matrigel (Table 2). Established tumors

were then grown and serially passaged in vitro as eight

distinct cell lines, which have been described in detail

(Klein et al. 1997). Whilst LAPC-3 and LAPC-4 cells both

express wild-type AR and PSA, the latter also expresses

high levels of HER-2/neu receptor tyrosine kinase and

consequently has been used to study ligand-independent

AR activation (Craft et al. 1999). LAPC cells are important

tools to investigate wild-type AR and have proved

particularly useful in comparing drug efficacy (such as

the antiandrogen abiraterone acetate and small molecule

1(3-(2-chlorophenoxy)propyl)-1H-indole-3-carbonitrile

(CPIC)) with cell lines expressing mutated ARs (Cherian

et al. 2012, Li et al. 2012a).

The PC346 panel of cell lines, which originate from a

transurethral resection of localized advanced PCa, also

represents an interesting model system to study AR

signaling in different stages of PCa (Marques et al. 2006).

Xenografts (PC346P) were established from primary tumor

tissue subcutaneously implanted into male athymic mice

from which the wild-type AR expressing and androgen-

dependent cell line PC346C was established. Three CR

PC346C sublines were generated following long-term

culture in steroid-stripped medium alone (PC346DCC) or

supplemented with the antiandrogen flutamide

(PC346Flu1 and PC346Flu2). Unlike their parental

counterparts, PC346DCC cells express low levels of AR

and do not produce PSA. By contrast, both PC346Flu cell

lines express high levels of AR and produce PSA. However,

whilst PC346Flu1 expresses wild-type AR, PC346Flu2

expresses a T877A-mutated AR and PC346DCC expresses

AR with a novel K311R mutation, although no difference
Published by Bioscientifica Ltd.
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in AR transactivation was observed (Tables 1 and 2;

Marques et al. 2005). The distinct growth and androgen-

sensitivity properties of these CR-PCa sublines have been

exploited to characterize the AR transcriptional response

and identify AR bypass pathways during progression to

CR-PCa revealing that the AR regulates different

functional groups of genes at different stages of PCa

progression (Marques et al. 2010, 2011).

22Rv1 is an androgen-responsive cell line derived

from primary PCa that was xenografted and serially

propagated in mice after castration-induced regression and

relapse of the parental, androgen-dependent CWR22 xeno-

graft (Sramkoski et al. 1999). Compared with LNCaPs, 22Rv1

cells secrete low levels of PSA and express lower levels of AR,

which also harbors a rare H874Y mutation (Table 2; Attardi

et al. 2004). In addition, 22Rv1 cells harbor two AR forms, a

larger one expressing three zinc finger motifs due to dupli-

cation of exon 3 and a C-terminally truncated, constitutively

active form, both of which have been functionally investi-

gated by a number of groups (Dehm et al. 2008, Guo et al.

2009, Marcias et al. 2010, Watson et al. 2010, Dehm& Tindall

2011). Consequently, 22Rv1 has become a valuable model

system to study AR function, the efficacy of existing drugs

and to design novel anti-AR therapies that also target

nontruncated regions of AR (Laschak et al. 2012, Li et al.

2012b). However, these cells produce high titers of the

human retrovirus xenotropic murine leukemia virus-related

virus, which has implications not only for handling and

biosafety but also should be considered when interpreting

experimental results (Knouf et al. 2009).
PCa stem/progenitor cells

In recent years the concept of a small population of tumor

cells that gives rise to the entire tumor has been

increasingly explored as a potential explanation for

phenomena such as cancer therapy resistance, tumor

recurrence and metastasis (Oldridge et al. 2012, Yu et al.

2012). These putative cancer stem cells (CSCs) are broadly

functionally defined as cells within a tumor that: i) possess

self-renewal capabilities and ii) can give rise to the

heterogeneous lineages of cancer cells that comprise the

tumor. Subpopulations of tumor cells with such CSC

characteristics have been identified in PCa and other solid

malignancies (Oldridge et al. 2012, Yu et al. 2012).

However, the notion of CSCs remains controversial largely

due to differences in experimental systems used to

determine their self-renewal capacity and uncertainty

regarding their cellular origin. For example, PCa stem

cells (PCSCs)/progenitor cells could potentially arise from
Published by Bioscientifica Ltd.
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ARC luminal differentiated cells (which constitute the

major cell type within PCa) or ARK basal cells. Although

experimental data suggest that PCSCs can derive from

either of these cell types, prevailing evidence supports the

basal cell-of-origin theory in PCa whereby a small

proportion of transformed ARK basal stem cells can still

differentiate but form abnormal ARC luminal tumor

masses (Oldridge et al. 2012, Yu et al. 2012). In particular,

cells that display functional characteristics of PCSCs/pro-

genitor cells express markers typically associated with

normal prostate stem cells, e.g. CD44, CD133 and

integrins. Notably, CD44 is also enriched in CSCs from

tumors other than the prostate, including colon, breast

and ovary. Given the low to nondetectable expression of

AR in CD44C PCa cells, such basal cell-derived PCSCs/PCa

progenitor cells would be expected to form a resistant core

after androgen ablation therapy, a notion consistent with

the frequent recurrence of PCa (Oldridge et al. 2012, Wang

et al. 2012, Yu et al. 2012). Interestingly however, recent

data indicate that CD44 may itself be subject to

androgenic regulation, raising the possibility that AR

regulation of putative stem cell markers may contribute

to malignant transformation (Marcinkiewicz et al. 2012).

Thus, there is an urgent need to better understand PCSC

biology and develop therapeutic strategies to deplete the

PCSC pool in PCa. Whilst it is generally preferable to

isolate PCSCs from primary cancer cells rather than PCa

cell lines, tissue availability is often a limiting factor.

Interestingly, several established PCa cell lines such as

LNCaP, LAPC-4 and C4-2 may also contain CD44C PCSCs

(Miki & Rhim 2008, Lee et al. 2013). Further studies are

required to determine whether established PCa cell lines

contain bona fide PCSCs and to assess the functional

contribution of AR signaling on PCSC behavior.
Benign prostate epithelial cell lines

In contrast to the abundance of PCa cell lines, there

are relatively few cell lines derived from benign

prostatic epithelium suitable for investigating AR

signaling. This is primarily due to difficulties in in vitro

immortalization and the terminally differentiated nature

of the androgen-dependent luminal epithelium such that

primary epithelial cultures predominantly exhibit an

androgen-independent but proliferative basal/intermedi-

ate phenotype (Untergasser et al. 2005, Niranjan et al.

2012). Nonetheless, there are currently three main ARC

normal prostate epithelial cell lines PWR-1E, RWPE1 and

RC-165N/hTERT, which were immortalized using SV40,

human papilloma virus 18 or human telomerase reverse
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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transcriptase respectively (Webber et al. 1996a, Bello et al.

1997, Kim et al. 2007). These cell lines are androgen

responsive, express AR and PSA but do not form tumors

when injected into nude mice (Table 2). This latter

characteristic has been exploited to investigate the role

of putative oncogenes and carcinogens on tumorigenesis

indicating the suitability of these cell lines as potential

model systems to study processes of oncogenic trans-

formation (Kim et al. 2010, Rhim et al. 2011). It should

be noted however that the process of immortalization

itself can result in genetic alterations and/or mutation

(Stepanenko & Kavsan 2012). To date, these cell lines have

predominantly been used to compare gene expression

levels and drug efficacy with PCa cell lines (Kim et al. 2007,

Deep et al. 2008, Mishra et al. 2010).

A current limitation of primary and some immorta-

lized prostatic epithelial cell lines is their low expression of

AR and gradual loss of androgen-responsive differentiation

phenotype after serial passage of parental cells (Berthon

et al. 1997). AR promoter methylation was excluded as a

possible mechanism for the lack of AR expression in

primary prostate cell cultures (Grant et al. 1996, Tekur et al.

2001). Rather, it appears that the androgen-responsive

phenotype of human prostatic epithelial cells is depen-

dent on their correct differentiation, which can be

maintained via 3D coculture with stroma and/or ECM

(see Section 3D in vitro cell culture models to study AR

signaling in PCa; Lang et al. 2001). As an alternative

strategy to overcome some of these limitations, a new

subline (termed BPH-1-AR) stably expressing AR was

recently generated from BPH-1 cells (Yu et al. 2009). The

parental BPH-1 cell line is a nontransformed ARK human

prostatic epithelial cell line immortalized with SV40 large

T antigen and displays a luminal epithelial cytokeratin

profile (Table 2; Hayward et al. 1995). The new subline

BPH-1-AR, which is androgen responsive, was used to

functionally evaluate novel nonsteroidal AR modulators

demonstrating its potential suitability as a screening tool

for drug discovery (Yu et al. 2009).
Benign and carcinoma-associated prostate
stromal cells

The critical role of stromal cells in PCa development and

progression was first demonstrated in stromal–epithelial

recombination experiments in which nontumorigenic

prostatic epithelial cells formed tumors when combined

with carcinoma-associated stromal cells but not with

benign fibroblasts (Hayward et al. 2001, Cunha et al.

2002, 2003). This stromal reaction is an early feature
Published by Bioscientifica Ltd.

Downloaded from Bioscientifica.com at 08/23/2022 05:07:38AM
via free access

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-12-0401


E
n
d
o
cr
in
e
-R
e
la
te
d
C
a
n
ce
r

Review N Sampson et al. Androgen receptor signaling in
prostate cancer

20 :2 R58
common to many malignant epithelial neoplasms

initiated via the action of cancer cell-derived secreted

factors, in particular transforming growth factor b1, that

modify the surrounding stroma generating a micro-

environment which in turn further supports tumor

growth and progression (Barclay et al. 2005, Ao et al.

2007, Verona et al. 2007, Sampson et al. 2011). The tumor-

associated ‘reactive’ stroma is characterized in particular

by activation of fibroblasts but also by recruitment of

inflammatory cells, ECM remodeling and enhanced

angiogenesis. The inductive properties of reactive stroma

are primarily due to the mitogenic secretome of activated

fibroblasts, also termed myofibroblasts (Barron & Rowley

2012, Sampson et al. 2012).

Recombination experiments also demonstrated that

stromal AR is required for the inductive properties of

reactive stroma in PCa. For example, nontumorigenic

prostate epithelial cells only formed tumors in the

presence of functional mesenchymal AR (Cunha et al.

2004, Ricke et al. 2006). However, the role of stromal AR on

PCa development and progression appears to be complex

since on the one hand, stromal AR signaling is down-

regulated in clinical PCa, whereas stromal AR has also been

shown to suppress prostate tumorigenesis (Karlou et al.

2010). The underlying reason for these apparent conflict-

ing findings remains unclear, although it may be noted

that the transcriptome of stromal AR remains poorly

studied, at least in part because only a subpopulation of

stromal cells expresses AR, which additionally appear to

require paracrine-acting epithelial signals (Lang et al.

2001, Cano et al. 2007, Berry et al. 2011). In general,

most immortalized stromal cell lines express only low or

undetectable levels of AR (Peehl 2005, Kogan et al. 2006).

Consequently, most studies analyzing the role of stromal

AR in prostate development and carcinogenesis have

utilized mouse urogenital sinus mesenchyme (Shaw et al.

2006, Cunha 2008). Clearly, further investigations into

the role and functional contribution of stromal AR on

prostate carcinogenesis are needed. In this respect, the

immortalized human prostatic myofibroblast cell line

WPMY-1, which is derived from the same prostatic tissue

material as RWPE1 cell line (Webber et al. 1999), was

recently used to determine the stromal androgenic

transcriptional response by generating a subline

(WPMY-AR), which expresses wild-type AR at levels

comparable with LNCaP cells and is responsive to DHT

(Tanner et al. 2011). In addition to WPMY-1 cells, other

studies of prostatic stromal AR have largely employed

primary human normal or carcinoma-associated prostatic

fibroblasts, which can be readily isolated from biopsy
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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specimens of patients undergoing radical prostatectomy

(Cano et al. 2007, Berry et al. 2011, Sampson et al. 2011).
3D in vitro cell culture models to study AR
signaling in PCa

Studies using isolated cell lines in 2D culture offer a simple

reductionist approach to study cell behavior and have

significantly increased our understanding of molecular

pathways involved in PCa development and progression.

However, a recent study reported that in vitro 2D cultured

cell lines exhibit a significantly divergent profile of

AR-regulated genes compared with xenografts and

human PCa tissue. For example, the AR-promoter binding

profile of LNCaP, VCaP and 22Rv1 cell lines demonstrated

only a 3% overlap with CR-PCa tissue (Sharma et al.

2013). This suggests that the AR transcriptome in tissue is

distinct from that in cultured cell lines, a finding with

potential significant implications for preclinical studies

of novel AR-targeting agents. Thus, model systems that

more closely reflect the physiological setting of PCa

are required for improved translational research and pre-

clinical drug screening.

Along these lines, a comprehensive panel of primary

and nontransformed prostate epithelial cells as well as

commonly used PCa cell lines cultured under 3D

conditions has been developed (Harma et al. 2010). The

gene expression and metabolic profiles of these 3D

cultured cell lines have been characterized together with

their cellular morphogenic properties as an initial step

toward evaluating their usefulness as preclinical screening

platforms (Harma et al. 2010). It will be interesting to

analyze such 3D culture systems to determine whether

they more closely recapitulate the AR transcription profile

of human tissue than 2D cultured cell lines. However, it

may not be sufficient to simply culture epithelial cells

under 3D conditions. For example, prostate epithelial cells

grown in Matrigel form acinus-like spheroids and show an

intermediate (ARK) phenotype in monolayer cultures but

differentiate when cocultured with fibroblasts into a more

luminal phenotype becoming polarized and ARC (Lang

et al. 2006). Moreover, LNCaP cells cultured together with

normal prostate fibroblasts on microcarrier beads under

microgravity-simulated conditions respond to inductive

androgenic signals with respect to growth and differen-

tiation like that observed in vivo (Zhau et al. 1997).

Similarly, LNCaP cells grown in rotary wall vessels under

fluid rotation spontaneously form 3D organoids (Wang

et al. 2005). Interestingly however, the androgen respon-

siveness of LNCaP cells grown under these conditions
Published by Bioscientifica Ltd.
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becomes dependent on prostate stromal cells (Zhau et al.

1997, Wang et al. 2005). Moreover, a hyaluronic

acid-based bilayer hydrogel system supported not only

tumoroid formation of LNCaP cells, but also stimulated

reciprocal interactions with the tumor-associated stroma

(Xu et al. 2012). Collectively, these studies indicate that

reciprocal interactions between the epithelium, stroma

and ECM are critical for epithelial differentiation and both

stromal and epithelial androgen responsiveness in vitro.

Such 3D coculture model systems are not restricted to

investigating stromal–epithelial interactions but have also

been used for long-term analysis of PCa cell interactions

with immune cells, providing an in vitro platform for rapid

immunotherapy development (Florczyk et al. 2012). In

addition, PCa cells and human osteoblasts interacted

within a tissue-engineered bone construct in a manner

consistent with in vivo observations of PCa metastasis

indicating the suitability of this model to study

mechanisms of PCa metastasis (Sieh et al. 2010).
Conclusions

PCa remains one of the most common causes of male

cancer-related death in Western nations. The essential role

of AR signaling in normal prostate tissue homeostasis and

its dysregulation in PCa development forms the basis of

androgen deprivation therapy, the current mainstay

systemic treatment for advanced PCa. Recognition that

AR reactivation is a key mechanism in the progression to

CR disease has led to intensive efforts to discern

underlying molecular pathways and design novel thera-

peutic strategies. Consequently, a number of new in vitro

human cell models have been developed, which mimic

different stages and aspects of this heterogeneous disease,

for example, with respect to androgen responsiveness and

AR status. Although recent studies indicate that cancer

cells cultured in physiologically relevant, 3D matrices can

recapture many essential features of native tumor tissues,

by definition these remain in vitro cell models and do not

recapitulate all aspects of human PCa. However, the utility

of these models is demonstrated by our continued

increasing knowledge regarding molecular mechanisms

underlying the development and progression of PCa.

Future advances in molecular, cellular and bioengineering

technologies will support the continued development of

in vitro models, which in combination with in vivo

approaches will provide more biologically relevant plat-

forms for mechanistic studies, drug discovery and design

ensuring a more rapid transfer of knowledge from the

laboratory to the clinic.
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