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Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A

large number of RTIs is caused by viruses, often resulting in more severe disease in

infants, elderly and the immunocompromised. Upon viral infection, most individuals

experience common cold-like symptoms associated with an upper RTI. However, in

some cases a severe and sometimes life-threatening lower RTI may develop.

Reproducible and scalable in vitro culture models that accurately reflect the human

respiratory tract are needed to study interactions between respiratory viruses and the

host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture

systems have been described, but the majority of these are based on immortalized cell

lines. Although useful for studying certain aspects of viral infections, such monomorphic,

unicellular systems fall short in creating an understanding of the processes that occur at

an integrated tissue level. Novel in vitro models involving primary human airway epithelial

cells and, more recently, human airway organoids, are now in use. In this review, we

describe the evolution of in vitro cell culture systems and their characteristics in the context

of viral RTIs, starting from advances after immortalized cell cultures to more recently

developed organoid systems. Furthermore, we describe how these models are used in

studying virus-host interactions, e.g. tropism and receptor studies as well as interactions

with the innate immune system. Finally, we provide an outlook for future developments in

this field, including co-factors that mimic the microenvironment in the respiratory tract.

Keywords: respiratory viral diseases, primary airway epithelium culture, organoid culture, co-culture,

airway modeling

INTRODUCTION

Respiratory tract infections (RTIs) are a major source of morbidity and mortality in humans (1).

Almost 300 million episodes of lower RTIs (e.g. pneumoniae and bronchitis) occurred in 2015 and
about 3 million people die each year. This places RTIs amongst the leading causes of death

worldwide (2, 3). A large fraction of RTIs is caused by viruses (50 to 90%) (4). Respiratory viruses
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include human rhinovirus (HRV), influenza A and B virus (IAV

and IBV), human respiratory syncytial virus (HRSV), human

metapneumovirus (HMPV), human coronavirus (HCoV),

human parainfluenzavirus (HPIV), and human adenovirus

(HAdV). Most respiratory viruses have single-stranded RNA

genomes, with the exception of adenoviruses that have double-
stranded DNA genomes. The highest morbidity and mortality

due to RTIs is seen in infants, elderly and immunocompromised

individuals, but also healthy individuals without underlying risk

factors can be affected (5). Furthermore, RTIs have been

associated with exacerbations of asthma or chronic obstructive

pulmonary disease (COPD) (6, 7).
Recently, severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) has captured global headlines as the causative

agent in the coronavirus disease 2019 (COVID-19) pandemic

(8), highlighting the impact of respiratory viruses on global

health. As this pandemic has shown, options for prophylaxis

and treatment of viral respiratory infections are limited. For
some viruses, such as influenza virus or adenovirus, vaccines are

available but both efficacy and coverage are suboptimal. Antiviral

drugs against acute respiratory virus infections often have

limited efficacy. Therefore, development of novel and improved

antiviral drugs and vaccines remains of high priority to improve

global health.

The human respiratory tract (RT) is the primary site where
respiratory viruses enter, replicate, disseminate and cause

disease. These viruses are transmitted by aerosols and/or

droplets. RTIs in most cases start by infection of airway

epithelial cells in the upper respiratory tract (URT) (nasal

cavity, pharynx, larynx), and are associated with common

cold-like symptoms, including rhinitis, sore throat, runny nose,
and nasal congestion. During the course of infection, the lower

respiratory tract (LRT) (trachea, primary bronchi, lungs) can

become involved, causing more severe disease, such as

pneumonia or bronchitis (9). How severe lower RTIs develop

and why only some individuals are affected could be a stochastic

process related to dose and route of the inoculum. However, the

development of severe LRTIs remains a black box and is an
important topic of investigation. Many of these studies are

performed in vivo, which provides important data on the

pathogenesis of respiratory viruses [reviewed elsewhere (10–

14)] but has some downsides, such as differences between

animal or human host factors, ethical concerns and practical

challenges. In vitromodels have as advantages that they originate
from the relevant host species, express the relevant host factors,

are of less ethical concern and easier to work with than animal

models. Therefore, a reproducible and scalable in vitro culture

system that accurately represents the human RT would be

valuable to study respiratory virus infections and test new

treatments. Here we investigate the differences between

commonly used in vitro primary airway cell culture models
and how these models are used for studying respiratory virus

infections. The first part of this review describes several

characteristics of the RT, then we will review the evolution of

in vitro cell culture systems in the context of viral RTIs, starting

from advances after immortalized cell lines to recently developed

stem cell (SC)-based organoid cultures. Finally, an outlook is

provided for future developments in this field.

METHODOLOGY AND STUDY DESIGN

This systematic review was prepared in accordance with

PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-analyses) guidelines (15). A systematic literature

search, on the 21st of January of 2021, was conducted using

title, abstract, index term and author keyword fields for

respiratory viruses and human airway epithelial cells (HAEC)

or their variations. Of note, primary olfactory epithelial cells were

not included, since there are described previously (16). Embase,

Medline (Ovid), and Web of Science Core Collection databases
(Supplementary Material 1) were searched from inception until

21st January 2021. Search results were restricted to English and

excluded case-reports. Articles were imported and deduplicated

in EndNote™. Two researchers independently screened title and

abstract for study eligibility criteria (17). Consensus was achieved

after discussion upon disagreement. The electronic search was
performed in Embase, Medline and WoS (Supplementary

Material 2).

RESULTS

943 references were obtained and screened on basis of title and
abstract (Figure 1). After the first screening, studies using only

animal material, material of diseased patients, or immortalized

cell lines were excluded. In addition, studies performed with

respiratory bacteria (e.g. Heamophilus influenzae) and where

adenoviruses were used as a vector were excluded. For the second

screening full-text articles were assessed for eligibility and
divided into seven topics: pathogenesis (N=165), signal

transduction (N=93), co-cultures (N=21), zoonosis (N=11),

reviews (N=32), drug/molecule testing (N=145), and disease

(e.g. cystic fibrosis and chronic obstructive pulmonary disease)

(N=28). Studies regarding signal transduction, drug/molecule

testing and diseases such as chronic obstructive pulmonary

disease and cystic fibrosis were excluded at this stage (n=504).
Finally, 151 studies were selected for this systematic review. To

provide sufficient background information we also included 69

additional papers based on relevant content for this review,

resulting in a final selection of 220 papers.

DISCUSSION

The Respiratory Tract
The RT can be divided into separate sections, either based on

physiology (URT versus LRT, Figure 2A) or the type of
respiratory epithelium (Figure 2B). The URT includes the

nasal cavity, mouth, larynx and pharynx (throat), and

beginning of the trachea (18). In the nasal cavity inspired air is
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warmed and humidified before it travels down the RT.

Additionally, the nasal cavity houses the olfactory receptors

that bind molecules resulting in impulses to the brain that
enable smell. The nasal cavities drain into the nasopharynx

that is in turn attached to the trachea (19). The trachea

connects the throat to the LRT, starting at the primary

bronchial branches (20, 21). The two bronchial branches

bifurcate further into smaller tubes called the bronchi and

bronchioles, which end in the alveoli; tiny air sacs facilitating

gas exchange (22, 23). The entire RT is covered by epithelium
and it is estimated that an adult of 176 cm or an infant of 60 cm

have a lung epithelial surface of 78 m2 or 4 m2, respectively (24).

The airway epithelium has a crucial barrier and immune

functions. The mucus covering the airway epithelium is the

first barrier that respiratory viruses have to pass to reach the
airway epithelial cells. The airway epithelium itself has essential

inflammatory, immune and regenerative capacities to combat

these viruses.

The airway epithelium is composed of several cell types held

together by tight junctions and adherens junctions that form a

barrier against invading pathogens. The nasal cavity is lined with

two distinct kinds of epithelium: the olfactory epithelium (1-2%
of the nasal epithelium) and the respiratory epithelium (>98% of

the nasal epithelium) (19). The neurons in the olfactory

FIGURE 1 | PRISMA flow diagram of the study selection process.
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epithelium in the nose are directly connected to the central
nervous system via the olfactory nerve. Viruses that infect the

olfactory epithelium can use this nerve as a shortcut to reach the

central nervous system (25). The epithelial layer in the nasal

atrium consists of multi-layered keratinized squamous

epithelium and further down the nose this becomes multi-row

cylindrical epithelium. Many respiratory epithelial cells are also
ciliated, facilitating mucus transport towards the pharynx and

trachea (19). From the trachea downwards, the RT is lined with

ciliated pseudostratified columnar epithelium (20). In the

bronchioles, the epithelium gradually changes from

pseudostratified into simple cuboidal and in the alveolar ducts

and alveoli there is simple squamous epithelium (mainly type

alveolar type I cells) (20).
Ciliated cells account for 50% to 80% of the airway epithelial

cells, and have 200-300 motile cilia on their surface to displace

mucus, enabling muco-ciliary clearance (26). The cells producing

mucus are goblet cells, comprising around 9% of the respiratory

epithelial cells (27). Next to goblet cells there are club cells; cuboidal

non-ciliated non-mucous secretory cells. Club cells secrete
extracellular matrix components, and can serve as progenitor cells

for themselves and for ciliated cells (28). These cells are not very

abundant in the URT, but in the terminal bronchioles account for

approximately 11-22% of the cells (28). Epithelial and mucus-

producing cells are supported by airway basal cells. Whereas the

epithelial and mucus-producing cells are terminally differentiated
and cannot renew, basal cells possess stem-cell like properties (29,

30). Basal cells occupy 31% of the respiratory epithelial cell

population, the density of basal cells decreases when descending

into the small airways (31). Another important cell type of the
airways is the pulmonary neuroendocrine cell, comprising 1 out of

2500 epithelial cells from the trachea onto the alveolar ducts (32),

forming the lung self-renewing SC niche relevant in airway

epithelial regeneration (33). The alveolar epithelium consists

mostly of two cell types, alveolar type I and type II cells (ATI and

ATII). ATI are very thin, squamous cells, accounting for over 90%
of the surface area in the lungs and provide an efficient barrier for

air exchange (34). About 7% of the surface area comprises ATII,

which are smaller and cuboidal, and function mostly in the

production and uptake of lung surfactant (35). ATIIs can

differentiate into ATI (36). In addition to ATI and ATII, also

immune cells, like alveolar macrophages, are present in the alveoli.

Besides a barrier function, respiratory epithelial cells have
inherent innate immunity functions. They recognize respiratory

viruses via pattern recognition receptors, eventually leading to

the production of cytokines and chemokines that render the cells

and their neighboring cells in an antiviral state (37). The bridge

between this innate response and adaptive immunity is formed

by dendritic cells (DCs). There are tissue-resident DCs, that form
an integrated network within the respiratory epithelium. Upon

activation, for instance by a virus infection, they can travel to the

lymph nodes to initiate an adaptive immune response. There are

also migratory DCs that can be attracted to the site of infection

and aid here in the local immune response. Besides DCs, natural

killer cells, innate lymphoid cells, T cells and B cells orchestrate
the immune response in the respiratory epithelium (38).

Eventually, all elements contribute to an effective integrated

immune response.

A B

FIGURE 2 | Composition of the respiratory tract. (A) Division between the upper and lower respiratory tract. (B) Schematic representation of epithelial layer in the

different parts of the respiratory tract.
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In Vitro Models
Multiple in vitro respiratory cell culture systems have been

developed to study the interaction between the different airway
cell types and respiratory viruses. To date, the majority of these

models is based on immortalized cell lines. Although useful in

the study of direct viral infection and replication mechanisms at

a cellular and molecular level, such monomorphic and

unicellular systems fall short in creating an understanding of

the processes that occur at an integrated tissue level (39, 40).

We need more advanced models to better understand infection
dynamics in relation to intrinsic cellular resistance mechanisms,

including the innate immune response, and other factors such as

microbiome and immune cells. New in vitro models have been

proposed and used for some time, especially involving the use of

primary HAEC. HAEC are derived from surgical material or

brushings (nose or throat) that are subsequently cultured in the
laboratory. More recently, 3D-cultures such as airway organoids

(AO), formed from SCs, have been developed and hold promise

as a useful tool to study host-pathogen interactions. However,

this technique is still in its infancy, laborious and expensive. To

perform in-depth studies into interactions between the host

airway and respiratory viruses, the ultimate goal is to create a

reproducible, scalable, feasible and economic in vitro culture
system that faithfully recapitulates the architecture of the RT as

well as the dynamics of infection.

Primary Respiratory Epithelial Cells
HAEC are obtained from human respiratory tissue, which can

originate from different anatomical sites of the RT (41).

Respiratory tissue is now obtained in different ways: during
lung transplantation, during tissue resection in cancer patients,

during other surgical procedures (e.g. turbinoplasty/-ectomy or

nasal polypectomy) or from cadaveric explants (41). In addition,

nasal and bronchial brushings, which are less invasive, can be

performed to obtain HAEC (42). HAEC from healthy donors

are now commercially available (43). Additionally, material

from, for instance, COPD patients and/or smokers is also
available (44, 45). Acquiring HAEC from various donors

allows us to study and compare the RT of both healthy and

diseased individuals.

Undifferentiated Primary Respiratory Epithelial Cells
Primary undifferentiated HAEC (HAECun) are relatively easy to

culture, but can only be passaged a few times. After obtaining
tissue, the primary airway epithelial cells are directly isolated and

cultured. For the isolation of primary airway epithelial cells from

lung transplants or biopsies, the tissue is cut into smaller pieces

and then dissociated via the addition of a protease-containing

digestion cocktail, followed by generation of uniform single-cell

suspensions (46, 47). Tissue obtained from brushings can be

cultured directly (47). After isolation, HAEC can be used in this
undifferentiated form for experiments. In addition to normal

culture flasks or plates, HAEC can also be seeded on a collagen-

coated semi-permeable membrane (transwell) (48). In this

transwell system, medium is present on both the apical and the

basolateral side. When a 100% confluent monolayer has formed

to separate the apical and basolateral compartments, the

HAECun can be used for experiments. These HAECun are not

polarized and these cultures do not have ciliated cells or goblet

cells, and therefore lack important characteristics of the airways.

Differentiated Primary Respiratory Epithelial Cells
Although more challenging to culture, differentiated HAEC

(HAECdif) represent the RT more faithfully than their

undifferentiated counterparts. To differentiate primary
respiratory epithelial cells in the transwell system, medium is

removed from the apical compartment after the confluent

monolayer has formed, creating an air-liquid interface (ALI).

This, in combination with specific growth factors, induces

differentiation of these cells over a timeframe of 3-4 weeks

(48). Eventually, a polarized, pseudostratified respiratory
epithelium is formed, containing basal cells, ciliated cells, and

goblet cells or club cells (depending on the anatomical location)

(48, 49). These HAECdif resemble the human RT anatomically

(50, 51) but a continuous airflow, blood flow, and the presence of

immune cells are still lacking.

Considerations for Use of Primary Cells
Comparing studies using primary HAEC is difficult, because of

differences in donor variability (1), anatomic source of the cells
(2), culture methods (e.g. medium and growth factors) (3) and

the use of undifferentiated versus differentiated cells

(4) (Figure 3).

1. Variability in culturability, morphology and phenotype

between primary HAEC obtained from different donors has

been described. This donor variability can depend on
multiple factors, like age, gender, smoking history, or

obesity (52–56). Variation in infection and replication

levels of viruses between donors was regularly observed

(57–60). Explanations could be differences in: receptor

presence or distribution, cytokine responses, donors and

environmental factors (61, 62). It is dependent on the

research question how important these dissimilarities are.
2. In addition to donor variability, the source of the cells

(ranging from nose to alveoli) can make comparison of

studies difficult (63, 64), because of variations in

susceptibility to viral infections and virus-host interactions

(9). The preferential anatomical site should be determined by

the research question (e.g. study URT or LRT) and
comparing cells of multiple regions of the RT for

susceptibility, virus replication and host responses.

3. The importance of culture medium is highlighted in a HRSV

infection study, where two different media for differentiation of

pediatric HAEC (nasal) were used: PneumaCultTM and

PromocellTM. The former led to an overall greater total number

of cells, but the proportion of ciliated and goblet cells was similar.
The replication kinetics of HRSVwas similar in both cultures, but

in the culture with PneumoCultTM more ciliated cells were

infected. HRSV infection of the PneumoCultTM cultures led to

a higher IFNl secretion, which could be due to the increased

infection of ciliated cells (65).
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4. Several studies describe different expression patterns of

cellular receptors that can mediate virus entry, resulting in

varying infection percentages or different immune response
between HAECun and HAECdif (66–69).

HAECun can be passaged approximately three times prior to

differentiation, after which loss of epithelial integrity, differential

gene expression, or senescence occurs (70–72). This restricts the

number of experiments that can be performed. That is why

immortalized variants of HAEC have been created. Jonsdottir
and colleagues (2019) described that insertion of the Rho-

associated protein kinase (ROCK) inhibitor Y-27632 via a

lentiviral vector increased the longevity of the primary

respiratory epithelial cells (73). Alternatively, exogenous

induction of human telomerase reverse transcriptase (hTERT)

can be used to prolong primary cell life (74). Immortalization

resolves the issue of the restricted number of experiments, but it
remains unknown if all the characteristics of the respiratory

epithelial cells remain the same. And, even in these immortalized

variants, senescence can occur after a few passages (75, 76).

Genetic engineering of HAEC is challenging and may

compromise translational aspects of the model.

In conclusion, primary HAEC can be extracted from all parts
of the airways and differentiated into a pseudostratified

monolayer resembling the in vivo situation. Although several

variables and parameters must be considered, primary HAEC are

a promising culture system to study RTIs.

Stem Cell-Based Models
SC-based models have the potential to overcome the problems
associated with the limited lifespan of primary HAEC. SCs can be

used to make organoids, which are three dimensional cultures

that can self-organize and renew (77). Organoid culture is a

novel and innovative technology and was first described in 2009

with organoids from the gut (78). In 2012, the technique to

culture AO was developed (79). Until now, human AO are

mostly made from SCs obtained from adult lungs. Adults tissues

are more accessible than embryonic SCs or induced pluripotent

(iPSCs) and have less ethical restraints. Nevertheless, AO from

embryonic SCs are also used (80, 81). Although most studies
describe AO obtained from the lung, AO can bemade from almost

all parts of the RT, and are thus a suitable alternative to primary

HAEC (82). Additionally, genetic modifications are also more

feasible in AO than in primary HAEC.

Different SCs can be used to generate AO. First, embryonic

SCs obtained from the inner cell mass of an early staged embryo

have the potential to form every cell of the human body (83).
However, the use of these cells remains ethically controversial.

Second, iPSCs can also differentiate into almost every cell type of

the human body (84). To obtain these iPSCs, somatic cells (for

example skin cells) are reprogrammed to the progenitor state by

addition of several transcription factors. However, specific

factors, including growth factors and cytokines, are needed for
differentiation into respiratory epithelial cells (85), which has so

far not been successful. The challenges to find the optimal factors

to differentiate these iPSCs into airway epithelial cells can be

overcome by using organ-specific adult SCs. These cells can

differentiate into the cell types of the respective organ (86). In

this case, airway epithelial SCs can be isolated from tissue or
URT brushings (87). The isolated basal cells can subsequently be

used for the formation of 3D undifferentiated AO, using Matrigel

and medium with specific growth factors. These AO, cultured

either in 3D in matrigel or on transwell filters at ALI, can then be

differentiated into cultures that represent the cells of the RT, such

as basal cells, goblet cells, ciliated cells or alveolar cells (81, 87–

92) (Figure 4A). In a differentiated spheroid AO, the basal cells
are on the outside of the sphere, the goblet cells excrete their

mucus into the lumen while the cilia move the mucus around

(see Figure 4B). Similar to primary cell cultures, there are

indications that culture medium influences organoid

morphology and behavior, which is something that has to be

studied in more detail (92, 93).
AO appear to be a promising model mimicking the human

RT and once established can be maintained for a long period of

FIGURE 3 | Considerations for using primary cells: differences in donor variability (1), anatomic source of the cells (2), culture methods (e.g. medium and growth

factors) (3) and the use of undifferentiated versus differentiated cells (4).
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time. Limited studies have been performed with AO and

respiratory viruses so far due to the novelty of the technique.

However, the studies that have been performed show great

promise for studying virus-host interaction and drug screening

studies in this model.

Studying Respiratory Virus Infections
To understand the pathogenesis of respiratory virus infections, it

is important to study (1) tropism, (2) receptor usage, (3) immune

response, (4) cytopathic effects and damage, and (5) tissue

regeneration after clearance. Primary cell culture models are

crucial in these studies, because viruses rapidly adapt to culture
in immortalized cell lines (81, 94, 95). In this second part of the

review, we summarize how these properties of respiratory viruses

have been investigated in light of the advantages of using primary

HAEC and AO (Table 1).

Receptor Studies
One of the mechanisms by which viruses enter a host cell is
receptor-mediated entry; the appropriate receptor needs to be

present on the cell for the virus to enter. Immortalized cell lines

are often used to identify such a cellular receptor, for example by

genomic- and interactome- based approaches (141, 142). Primary

HAEC mimic the natural targets cells of respiratory viruses better

than continuous cell lines and are thus important for receptor

identification, as illustrated in the following examples.

For most HCoVs, receptors were initially identified in cell

lines, followed by confirmation and verification of these

receptors in primary HAEC (58, 66, 91, 105–107, 143–148).

An example of the importance of using primary HAEC was seen
in the search for a model for HCoV-HKU1. This virus only

replicates in primary differentiated tracheobronchial epithelial

cells. Through studies in these cells, the HCoV-HKU1 receptor

(O-acetylated sialic acid) was ultimately identified (108, 149).

Differential binding of avian and human influenza viruses to

their receptors was investigated in primary HAECdif (bronchial),

which express both a-2,3- and a-2,6-linked oligosaccharides.
Infections with avian and human influenza viruses confirmed

that viruses with avian origin preferably bind to a-2,3-linked
oligosaccharides, whereas viruses from human origin bind to a-
2,6-linked oligosaccharides (133). For most HRV subtypes their

receptor was identified in immortalized cell lines and validated in

HAEC, except for HRV-C (96–99, 150–153). For HRV-C the
receptor was found in primary differentiated bronchial epithelial

cells and in ex vivo organ transplants, since this HRV subtype does

not replicate in continuous cell lines (101, 154).

Many HRSV receptor candidates have been proposed in

literature, but arguably the relevant in vivo receptor has not yet

A

B

FIGURE 4 | Sources of stem cells and culture methods. Several sources for stem cells are shown: embryonic stem cells, induced pluripotent stem cells (iPSC) and

organ-derived or nasal brushing-derived. (A) Shows a Transwell system on which primary cells or stem-cell based cells can be cultured, (B) shows an airway

organoid sphere with cilia and mucus on the inside.
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been identified. Ciliated epithelial cells are the main target cell of

HRSV (155), therefore primary HAECdif are the most suitable
model to perform receptor studies. CXC3R1, insulin-like growth

factor-1 (IGFR1) and nucleolin have been identified as potential

cellular receptors for HRSV. CXC3R1 would probably not have

been found if it were not for primary HAEC, since this receptor is

absent (unless transfected) on immortalized cell lines (119, 120).

The other two receptors have been confirmed and validated in
primary HAEC (121, 156). Although closely related to HRSV, the

proposed receptors for HMPV are not the same as for HRSV, but

studies with primary respiratory epithelial cells from different

locations in the RT have proposed integrins and heparin sulfate

as receptors (126, 127, 157, 158).

Lastly, using primary HAECdif (tracheobronchial), it was

confirmed that HPIV-3 uses a-2,6-linked sialic acid residues
and HPIV-1 uses a-2,3-linked sialic acid residues as cellular

receptors (133, 134). Primary HAEC have also been used to

identify or verify the receptors for HAdV (138, 159).

All the above-mentioned examples clearly illustrate that

HAEC are important for identifying the cellular entry receptor

for respiratory viruses. Although initially the receptor is often

found in cell lines, primary cell models are essential in
confirming and validating this receptor and these results

translate better to the in vivo situation.

Tropism
Regarding viral tropism, in vivo models and ex vivo culture

models provide valuable information. However, it has to be kept

in mind that in in vivo studies the animal is often not the natural

host of the virus, introducing a possible bias. Human post-
mortem material from either healthy or infected individuals is

also useful for binding studies, but this material is not always

available. Cell lines are immortalized and often express unique

gene expression patterns that are not representative of in vivo cell

types. Primary airway models can overcome these hurdles and

are a thus powerful tool to investigate viral tropism, since most
cell types from the RT are represented in these models.

In the SARS-CoV-2 pandemic, differentiated AO (AOdif) and

primary HAEC rapidly helped elucidate that SARS-CoV-2

mainly infects ciliated cells, club cells and ATII, but not goblet

TABLE 1 | Summary table of the studies on respiratory viruses performed in primary respiratory epithelial cells and stem cell-based models.

Virus

family

Characteristics (receptor, tropism, innate immune response) Cell culture model References

Rhinovirus

Receptor Major group: ICAM-1Minor group: LDL-RHRV-C CDHR3 HAECun/dif (bronchial and tracheal) (96–101)

Tropism Ciliated epithelial cells HAECdif (bronchial) (101)

Cytokines TNF-a, IL-6, IL-8, and IP-10, IL-17C, type I IFN, type III IFN, CCL5, IL-1a, IL-1b,

IL-1Ra, CXCL10

HAECdif (bronchial) (102–104)

Coronavirus

Receptor HCoV-229E: CD13HCoV-HKU1: O-acetylated sialic acidSARS-CoV/SARS-CoV-2:

ACE2, SXLMERS-CoV: DPP4

HAECdif (bronchial)Stem cell-based

alveolospheres

(58, 66, 91,

105–108)

Tropism Sars-CoV/SARS-CoV-2: ciliated epithelial cells, type III pneumocytes, club cellsMERS-

CoV/HcoV-229: non-ciliated epithelial cellsHCoV-HKU1: Type I pneumocytes

HAECun/dif (bronchial)AOATIATIIStem cell-

based alveolospheres

(57, 88–91,

105, 107, 109–

111)

Cytokines Type I IFN, type III IFN, CCL20, IL-33, CXCL5, CXCL6, CXCL8, CXCL20, IL-6, CXCL2,

CXCL3, CXCL10, CXCL11, IL-17, IL-18, IL-1b, CCL4, CCL5, IL-8, IL-1a, IP-10, MIP-1b

HAECun/dif (bronchial)AOATIATIIStem cell-

based alveolospheres

(90, 91, 110–

114)

Influenza virus

Receptor Avian influenza viruses: a-2,3-linked oligosaccharidesHuman influenza viruses: a-2,6-

linked oligosaccharides

HAECun/difAO (93, 115)

Tropism Ciliated cells, sometimes basal cells HAECun/dif (nasal, bronchial, tracheobronchial)

AO

(93, 115)

Cytokines IL-1b, IL-6, IP-10, CCL2, CCL5, CXCL11, and IL-8, IL-1a, CXCL10, type I IFN, type III

IFN

HAECun/dif (nasal, bronchial, tracheobronchial) (116–118)

Pneumovirus

Receptor HRSV: CXCR3, IGFR1, nucleolin, HMPV: heparan sulfate HAECdif (nasal and bronchial) (119–121)

Tropism Ciliated epithelial cells, type II pneumocytes, sometimes goblet cells and basal cells HAECdif (nasal, tracheobronchial, bronchiolar)

AO

(87, 122–125)

Cytokines IL-6, IL-8, RANTES, type I IFN, type III IFN, CXCL-1, IP10, TFN-a, IL-10, CXCL-8,

TRAIL, CXCL1

Primary (un)differentiated nasal and small

airway epithelial cellshTERT-NECsAirway

organoids

(126–132)

Parainfluenza virus

Receptor HPIV-1: a-2,3-linked sialic acid residuesHPIV-3: a-2,6-linked sialic acid residues HAECdif (tracheobronchial) (133–135)

Tropism Ciliated epithelial cells HAECdif (tracheobronchial) (134, 136)

Cytokines CXCL10 and CXCL11 HAECdif (tracheobronchial) (137)

Adenovirus

Receptor HAdV-B type 14: Desmoglein 2HAdV-c type 5: CAR HAECdif (bronchial) (138)

Tropism Lung parenchyma AO (139)

Cytokines Meyer-Berg 2020 Stem cell research & therapy HAECdif (bronchial) (140)

HAECun, undifferentiated human airway epithelial cells; HAECdif, differentiated human airway epithelial cells; ATI, type I alveolar cells; ATII, type II alveolar cells; AO, airway organoids.

Rijsbergen et al. Respiratory Virus Infections In Vitro

Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 6830028

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


cells (88–91, 109, 110). For other coronaviruses, similar models

were used to determine their respective tropism, for instance

HCoV-229E and MERS-CoV infect non-ciliated cells and

HCoV-HKU1 predominantly infects ATII (105, 107, 160, 161).

Multiple studies have been performed with influenza viruses in

HAEC or AO. It was found that, for example, seasonal H1N1 was
able to infect ciliated cells, goblet cells and alveolar cells, whereas

pandemic H1N1 was also able to infect club cells (89, 93, 115).

HRV is a common cause of respiratory infections in humans and

both HRV-A and HRV-B can be cultured in conventional cell

models, while this is not the case for HRV-C. However, by using

3D Matrigel cultures with primary HAECdif HRV-C can be
propagated (159). For all three HRV subtypes the tropism

could be determined in primary HAECdif (bronchial): HRV-A

and HRV-B infect basal cells and HRV-C infects ciliated

epithelial cells (101, 162). It was also confirmed that HRV can

replicate in cells from both the URT (adenoids) and LRT

(bronchus) (163). Clinical characteristics of HRV are also
recapitulated in primary airway models. For instance, HRV-B

infections are associated with less severe infections and studies in

primary HAECdif (nasal and bronchial) reported that HRV-B

replicates slower and leads to less cytotoxicity than HRV-A and

HRV-C (164, 165). For both HRSV and HMPV it was confirmed

in HAECdif and AOdif mainly targets the ciliated epithelial cells

(122, 123, 128, 166–168). One study showed that basal cells could
also be infected by HRSV after epithelial injury, using

commercially obtained primary HAECdif (bronchial) (124).

In conclusion, with primary airway cultures or SC-based

cultures it is possible to culture viruses that are difficult to

culture in immortalized cell lines and these models can provide

reliable information on the viral tropism.

Disease Modelling
Studying pathogenesis is challenging in vitro, both in continuous

and primary cell lines. A single or limited number of cell types

are present in in vitro cultures, not resembling a full organism. As

alternative, cytopathic effect (CPE) can be studied. CPE in
primary HAECdif often resembles the natural situation more

closely compared to continuous cells. HRSV offers a good

example: in continuous cell lines it forms big syncytia (hence

the name), but in primary HAECHRSV forms little to no syncytia,

which is in line with observations in vivo (both animal models and

humans) (48, 122, 129, 168–170). A clinical observation in HRSV
disease is neutrophil inflammation, which is involved in severe

HRSV disease. This clinical phenomenon has been mimicked in

HRSV-infected primary HAECdif (nasal) that were co-cultured

with neutrophils (171). AO have significantly improved disease

modelling opportunities. HRSV, HMPV and HPIV have been

investigated in AOdif: and for example for HRSV epithelial cell

sloughing was shown, which was absent in HPIV infections. These
observations both fit with clinical observations. Other hallmarks of

HRSV and HMPV disease, such as infection of ciliated epithelial

cells and mucus production were also recapitulated in AO and in

primary HAEC (80, 87, 125, 155, 172). These hallmarks are

impossible to mimic in 2D cell lines and thus highlight the

usefulness of 3D AO to study respiratory virus pathogenesis.

Innate Immune Responses
When a virus enters a cell, this cell will directly mount an innate

immune response, both in the infected cell and in surrounding
cells. This usually includes the production of several cytokines

and chemokines to attract more immune cells and activate the

adaptive immune system. Studying the innate immune system in

primary HAEC has as an advantage over continuous cell lines,

because they potentially produce more clinically relevant

cytokines that would also be produced by the natural target
cells. For instance, for SARS-CoV it was described that ATII are

less susceptible than ATI, which was linked to a robust innate

immune response (161). This pronounced innate immune

response was not found in primary HAECdif (bronchial,

chemically differentiated) after MERS-CoV, SARS-CoV or

HCoV-229E infection, indicating immune evasion (173). It
appears that each corona-virus induces specific innate immune

responses, with few cytokines and ISGs overlapping (90, 91, 110,

112–114). In response to influenza virus infection, similar

cytokines, mainly IL-1b, IL-6 and IL-8, were produced in

HAECdif from different parts of the RT (114, 116–118). For

HRSV and HMPV infections it has also been shown that similar

cytokines, predominantly type I and/or type III IFN, are
produced in HAECdif (nasal, bronchial and small airway) (123,

126–132, 168).

Different subtypes of HPIV are associated with certain clinical

observations: HPIV1 can stay undetected for days, whereas

HPIV2 is associated with mild disease and HPIV3 with more

severe respiratory disease. These clinical observations have been
linked to cytokine profiles that were found in primary HAECdif

(tracheobronchial). It was shown that for HPIV1 there was no

early innate immune response, whereas for HPIV2 innate

cytokines were produced at early time points and for HPIV3

cytokines increased overtime (61).

It was observed that HRV induced an innate immune

response in 3D matrigel cultures with primary HAECdif that
inhibited viral replication, but that this was only short-lived

because a second peak of viral replication was measured. This

correlated with the production of the cytokines TNF-a, IL-6, Il-8,
and IP-10. Based on these results, the authors postulated that the

second peak appeared due to the production of new virus, after the

eclipse caused by the innate immune system (102). Similar
replication kinetics and cytokines were seen in other studies,

including type I and type III IFN (103, 104, 174, 175). In one

study it was shown that upon HRV infection IL-17C was produced

in the basolateral compartment and induced CXLC1, which is a

neutrophil attractant andmay contribute to exacerbations of lower

airway disease (103).

To summarize, many studies underline the importance of
using primary HAEC and AO when studying innate immune

responses. Although these models seem to be a good proxy for

clinically relevant cytokines in vivo, studies directly comparing

the innate cytokine responses between continuous cell lines and

primary cell models are lacking. Nevertheless, complex cell

systems that mimic the in vivo target cells of viruses probably
model the antiviral innate immune response better than

cell lines.
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Other Applications of Primary Respiratory

Epithelial Cells
Primary HAEC can mimic host factors related to lifestyle, such as

smoking history and obesity. Smoking history might predispose

to more severe SARS-CoV-2 disease, possibly to the upregulation

of the ACE2 receptor, which was found in formalin-fixed

paraffin-embedded human lung tissues and in brushings of the

airway epithelium (176–178). This difference was not observed in
primary HAECdif (bronchial), but the number of donors was

limited (179). Obesity is related to more severe influenza

symptoms, which has been shown in primary ATII, where cells

from obese donors were more susceptible to a pandemic IAV

than non-obese donors (52).

Primary HAEC are also useful for studying stability of viruses
under environmental conditions. For example, primary HAECdif

(bronchial) were used to study the impact of relative humidity on

the stability of a pandemic influenza A virus in aerosols and

droplets. Aerosols and droplets were created and supplemented

with extracellular matrix material harvested from the apical

surface of the HAEC and then the amount of virus was

determined in MDKC cells (180). None of the experimental
humidity conditions affected the stability of IAV H1N1 when

aerosols and droplets were supplemented with extracellular

matrix, but without supplementation, a humidity-dependent

decay of virus infectivity was observed (180). This provided

evidence that extracellular matrix can protect influenza viruses

from decay and thereby promote spreading (181, 182).
Primary HAECdif have also been proposed as a screening

model for evaluating and monitoring the infectivity,

pathogenicity and antigenicity of virus variants, for instance

during an outbreak. In the current SARS-CoV-2 pandemic

many new, and supposedly more infectious, variants are

arising. Information on these variants is important, so that

interventions can be tailored. Using primary HAEC, it was
found that SARS-CoV-2 variant (D614G) replicates better than

the original wild-type strain in the nasal and proximal airways,

which was not observed in VeroE6 cells. Increased replication in

the URT might lead to more transmission (183). During

influenza seasons of 2013-2014 and 2015-2016 the vaccine

effectiveness against the circulating influenza strains was
reduced. The reason for this was a reduction in sustained

multi-cycle replication. This was found in primary HAECdif

(nasal), but not in MDCK cells (182). These important data

regarding novel virus variants would not have been available

without primary airway models and are important for managing

pandemics and developing interventions.

In this section, we illustrated that primary cell models may
serve as an authentic model for in vitro respiratory viral

pathogenesis studies, recapitulating viral infection in the host.

They are useful for identifying viral receptors, determining viral

tropism, mimicking disease and assessing innate immune

responses in respiratory epithelial cells. Additionally, some

viruses that are difficult to culture can be propagated in
primary HAEC and often not in cell lines (184). Although

continuous cell lines can give seminal insights into virus-host

interactions, they also render selective pressure on viruses,

leading to culture adaptations. One of the advantages of

continuous cell lines is the possibility for genetic modification,

which is thus far impossible in primary respiratory cell cultures.

This hurdle can be overcome in the future by using AO derived

from human SCs, which could be engineered to express desired

host features.

Co-Cultures
As described above, in vitro primary cell models can be used to

investigate different aspects of virus-host interactions. However,

still a big part of the micro-environment of the cells is not
reflected in these models. (1) The lungs fill up with air and deflate

during breathing, creating an airflow and stretching of the

epithelium. (2) To supply the lungs with sufficient nutrients

and to take up incoming oxygen, endothelial blood vessels are

connected to the respiratory epithelial cells. (3) The airways are

also normally colonized with all different kinds of micro-
organisms, referred to as the microbiome. (4) Also, several

types of immune cells are present to fight potential pathogens.

These four features are usually not recapitulated in HAEs nor

AOs, but are important for an integrated in vitro airway model.

Endothelial Cells
Endothelial blood vessels are connected to the airway epithelial

cells in vivo and therefore important to also include in an in vitro

airway model. Co-cultures with endothelium have been

performed, with primary HAEC placed on a chip and

microvascular endothelial cells on the opposite side of the

porous membrane, with a fluid flow underneath (185). This
small airway-on-a-chip model recapitulates tissue-tissue

interactions, physicochemical microenvironments, and vascular

perfusion of the RT (185, 186). Unfortunately, these models are

costly and often not compatible with a biosafety level (BSL)-II or

BSL-III laboratory environment required for performing

pathogenic virus infections. A way to mimic air flow has been

addressed by applying mechanical forces to the airway-on-a-chip
model, recreating a breathing movement (187). In another study,

primary HAEC were cultured at the apical side of transwell filters

and primary microvascular endothelial cells at the basolateral

side to create an alveolar-capillary system. This system was used

to study influenza virus and staphylococcus aureus (SA) co-

infections (188). Thus, although progress is being made, the use
of transwell filters and airway-on-a-chip models to model the

epithelial-endothelial barrier to study respiratory virus

pathogenesis is still limited.

Microbiome
Next to co-cultures with endothelial cells, co-culture models with

bacteria and/or viruses to mimic co-infections or the

microbiome are being developed. One option is an infection

with a bacterium preceding viral infection. In HAECdif (alveolar),

co-cultured with primary microvascular endothelial cells, it was

found that methicillin-resistant SA (MRSA) dysregulated the

host immune response and decreased the barrier function (188).
Another option is a viral infection preceding an infection with a

bacterium, for instance initial IAV infection resulted in increased
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replication of S. pneumonia in primary HAECdif (bronchial). In

contrast, in primary HAEC it was then found that pre-exposure

to HRV reduced the viral titers of subsequent influenza virus

exposure, which was supported by clinical data (189). Co-

culturing cells with bacteria poses a challenge, since these

micro-organisms replicate fast and rapidly overgrow the
respiratory epithelial cells, often leading to cell death. In some

of these studies, bacteria were inactivated to overcome this

problem, but it is questionable if this still mimics the real-life

situation since several features of the bacteria are lost (190).

However, it has been shown that inactivated bacteria can

influence respiratory virus infections. For instance, UV-
inactivated nontypable Heamophilus influenzae (NTHI)

enhanced the susceptibility of human bronchial epithelial cells

to HPIV, likely due to upregulation of ICAM-1, a cellular

receptor for HPIV (191, 192). Another way around the toxicity

problem could be only co-culturing bacteria for a short time.

Obviously, this does not mimic the microbiome or a co-infection
(193–196). Nonetheless, this still allowed investigation of

bacterial adherence to the (infected) primary HAEC or

transmigration of bacteria. Alternatively, co-cultures could be

regularly washed. Using this method researchers were able to

culture NTHI with commercially available primary HAEC for 10

days (197). Combining co-cultures of bacteria and AO have, to

our knowledge, not been described yet, but lessons can be learned
from co-cultures of bacteria and intestinal organoids or skin

organoids (197, 198).

It is important to study the effect of bacteria and viruses on

the innate immune state of the HAEC. Certain innate immune

profiles influence the outcome of viral infections, for instance for

HRSV. It was described, in humans, that neutrophilic
inflammation at the time of viral challenge predisposed

individuals to symptomatic HRSV infection (199). These data

suggest that co-cultures with, for instance, neutrophils might be

required to fully mimic the microenvironment of the RT. In

conclusion, although there is only limited data available on this

topic, more studies are being performed and we are confident it is

feasible to create an in vitro airway model combined with
the microbiome.

Immune Cells
Another important feature of the airways is the (intra-epithelial)

presence of immune cells that are often involved in the defense

against respiratory virus infections. Co-cultures of neutrophils

with primary HAECun (trachea) that were infected with HPIV
were already performed in the 1990s (200, 201). These studies

showed enhanced adhesion of neutrophils to HPIV-infected

cells. This has later been shown in AO infected with HRSV,

where it was even possible to visualize the preferential neutrophil

movement to the infected AO. Co-cultures of primary HAEC

(nasal or bronchial) with DCs or T cells have also been described,

either with virus present prior to adding the cells, or after. In
these studies, researchers investigated both the effect on the

immune responses as well as viral replication (87, 202, 203).

They showed that the presence of DCs or T cells enhanced

antiviral and inflammatory responses and inhibited viral

replication. A triple co-culture has also been described, in

which primary HAECdif (bronchial) were co-cultured with

monocyte-derived DCs (moDCs) and macrophages (204).

Here, the moDCs were infected with HRSV and added apically

to a layer of HAEC in a transwell system. Uninfected moDCs

were simultaneously added to the basolateral membrane of

the insert. This led to the transmission of HRSV to the
HAEC, but not to the moDCs located basolaterally. However,

when macrophages were added to the apical surface of this co-

culture, the basolateral moDCs were infected too, indicating

some type of trans-epithelial transport mechanism. This

study shows the importance of having multiple factors in a

culture to understand the infection process (205). All in all,
combining primary HAECdif with endothelial cells, airflow, the

microbiome and immune cells would be an ideal model to mimic

our RT.

CONCLUSION AND FUTURE DIRECTIONS

We need scalable, feasible, affordable and reproducible in vitro

models that adequately reflect the complexity of our RT and the

cascade of events that occur during viral infections. We
illustrated in this review that primary HAEC and AO are

promising models for the RT and for studying respiratory viral

pathogenesis. Since the field of primary epithelial cell models and

AO is rapidly progressing, future applications of these models are

endless. Currently these models are used for testing and

developing effective treatments for SARS-CoV-2 (206).
Another potential future application of primary HAEC is using

species-specific cells to study the zoonotic potential of viruses.

With these models it is possible to test the infectivity of the

viruses isolated from the natural hosts in primary human

respiratory epithelial cells and vice versa (207–210).

Furthermore, primary HAEC and AO can be used for drug

screening studies, to test the potential of a drug, small molecule
or antibody to inhibit virus replication in the context of a more

representative tissue environment. There are many papers

describing drug studies performed in HAEC (211). In the

future, the use of AO for drug screening studies can be of great

value as well (212).

The ultimate goal is to design a model that reflects the
respiratory environment in all critical aspects to understand

respiratory virus infections and host interaction in detail.

Therefore, the usage of self-organized AO models would be

preferable over the use of primary HAEC, either in 2D at ALI

or 3D. Although initially more expensive and laborious to set up,

such AO cultures can be maintained for long periods and are
expected to generate the most reproducible results. However,

primary HAEC are still a good model to use, especially for rapid

screening of inter-individual variation of different donors in

response to respiratory virus infections, or fast initial

drug screening.

A state-of-the-art development is the lung-on-a-chip model.

This model allows co-culture of primary respiratory epithelial
cells, for instance primary HAEC or AO, with endothelial cells

and mimics breathing by using an airflow and stretching. This

model might recapitulate the human airways most faithfully, but
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there are still many challenges to be overcome before this can be

used widely. This model is expensive, and requires specific

expertise and equipment. One of the biggest hurdles is using

the lung-on-a-chip model in a BSL-II or higher laboratory

environment. However, the first study using a lung-on-a-chip

model in combination with a respiratory virus (Influenza A) has
been published recently showing the potential of this

model (213).

In conclusion, primary HAEC are better suited for

investigating basic virus-host interactions, such as receptor

use and tropism of a respiratory virus than cell lines. However,

for investigating the more complex interplay between virus,
target cells and immune responses, AO appear to be more

suitable. Further improving this model by introducing

additional system factors, such endothelium and airflow (as

has been done for lung-on-a-chip models), commensal

bacteria and immune cells are required to even more closely

mimic the micro-environment present in the RT. This culture
system will help us understand viral respiratory infections and

host responses, and to develop effective therapies to cure

these infections.
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