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In vitro neural networks minimise 
variational free energy
Takuya Isomura  1 & Karl Friston  2

In this work, we address the neuronal encoding problem from a Bayesian perspective. Specifically, 
we ask whether neuronal responses in an in vitro neuronal network are consistent with ideal Bayesian 

observer responses under the free energy principle. In brief, we stimulated an in vitro cortical cell culture 

with stimulus trains that had a known statistical structure. We then asked whether recorded neuronal 

responses were consistent with variational message passing based upon free energy minimisation 

(i.e., evidence maximisation). Effectively, this required us to solve two problems: first, we had to 
formulate the Bayes-optimal encoding of the causes or sources of sensory stimulation, and then show 

that these idealised responses could account for observed electrophysiological responses. We describe 

a simulation of an optimal neural network (i.e., the ideal Bayesian neural code) and then consider the 

mapping from idealised in silico responses to recorded in vitro responses. Our objective was to find 
evidence for functional specialisation and segregation in the in vitro neural network that reproduced 

in silico learning via free energy minimisation. Finally, we combined the in vitro and in silico results 

to characterise learning in terms of trajectories in a variational information plane of accuracy and 

complexity.

Making inferences about the causes of sensory inputs is one of the most remarkable and essential abilities of ani-
mals1–3. A famous example of this capability is the cocktail party effect — a partygoer can distinguish an individu-
al’s voice from the noise of a crowd4,5. The ability to recognise the cause of particular sensations has been modelled 
as blind source separation6–11. More generally, inferring the (hidden) causes of (observed) sensations constitutes 
a problem of Bayesian inference12,13. In this setting, it is assumed that sensory inputs are generated by mixtures of 
hidden causes or sources. The aim is then to invert the mapping from causes to consequences and thereby infer 
the hidden sources — and learn the mapping — using some form of inference. Here, we formalise inference in 
terms of approximate Bayesian inference; namely the minimisation of variational free energy13. This minimisa-
tion corresponds to maximising Bayesian model evidence and represents a fundamental form of (unsupervised) 
learning that may be operating in the brain14,15.

Interestingly, inference about hidden variables — based on observed data — is a ubiquitous problem in neuro-
science: researchers use exactly the same strategy to analyse neuronal (and behavioural) data. Common examples 
here are general linear models (GLM) and dynamic causal models (DCM) of functional magnetic resonance 
imaging (fMRI) and electrophysiological time series16. These forward or generative models suppose that the sig-
nals are generated by hidden (neuronal) dynamics. The inversion of these generative models allows one to infer 
the hidden variables and learn the model parameters — in the same way that a creature infers the hidden state 
of its world based on sensory information. In this work, we call on both instances of inference; namely, we try to 
infer how neurons make inferences. Specifically, we ask how neurons infer the causes of their inputs.

To establish an ideal Bayesian encoding of the hidden causes of sensory stimulation, it is necessary to establish 
a mapping between idealised (Bayesian) responses (i.e., the sufficient statistics of posterior beliefs about hidden 
causes) and neuronal responses recorded electrophysiologically. In brain imaging, one would usually use some 
form of statistical parametric mapping (SPM) or multivariate analysis to identify neuronal populations respond-
ing in a way that is consistent with normative principles. Generally, this implies some form of functional special-
isation and segregation17,18. We use the same approach here, to establish a segregation of functionally specialised 
responses. In other words, we looked for evidence for differential responses to hidden causes of stimuli that 
emerge, in an experience dependent fashion, over time. However, in our empirical setup, we were not looking at 
an in vivo brain but an in vitro neuronal network of cultured cortical cells. These cultures are known to perform 
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various adaptation and learning tasks19–28 and offer the key advantages of low experimental noise and the oppor-
tunity for invasive manipulations. In brief, we analysed in vitro neuronal network preparations, in which neurons 
receive external sensory stimulations and progressively change their responses to represent the hidden sources or 
causes generating patterns of stimuli, in a manner consistent with Bayesian inference29.

In what follows, we briefly review idealised responses in terms of belief updating under a generative model. 
We then turn to the analysis of empirical data from cultured cortical cells, looking for evidence of functionally 
specialised responses due to learning. These empirical responses are then reproduced in silico using Bayesian 
belief updating. Finally, we consider how the synthetic and empirical responses can be combined to characterise 
real neuronal responses in terms of inference and learning, via free energy minimisation. In short, we tested the 
hypothesis that in vitro neuronal networks show an inherent capacity for self-organising, self-evidencing, free 
energy minimising behaviour.

Bayesian inference and learning
Bayesian source separation by neuronal networks. In our empirical setup, stimuli were generated 
stochastically by delivering a train of impulses every second to 32 stimulation sites that were randomly selected 
from an 8 × 8 grid of electrodes of a culturing device (see Methods). The stimuli were generated from two binary 
sources (s1 and s2) and applied probabilistically to two pools of electrodes. One source preferentially excited one 
pool of electrodes, while the other stimulated a second pool. This stimulation setup speaks to a simple generative 
process, in which there are two hidden states causing sensory inputs, which can either be active or inactive dur-
ing each (one second) stimulation epoch. The corresponding likelihood of the implicit generative model can be 
summarised in a simple likelihood matrix A, whose elements correspond to the probability (75% or 25%) of any 
electrode receiving a stimulus, conditioned on whether the source was present on each trial. With an appropriate 
generative model, an ideal Bayesian observer should be able to learn and infer the best explanation for this multi-
dimensional sensory input, in terms of the presence or absence of two independent sources.

We hypothesised that this sort of process entails changes in synaptic connectivity among the cultured neurons 
that enables one or more specialised neurons to respond selectively to the presence of a particular source. On this 
view, specialised neurons ‘see’ all inputs vicariously, via connections with other neurons. Crucially, these selective 
responses emerge despite the fact that no particular input pattern is ever repeated. The emergence of specialised 
neurons therefore depends upon learning the likelihood of a particular pattern, given the presence of a particular 
source; i.e., encoding the A matrix in terms of synaptic connections. This learning underwrites selective responses 
that effectively encode the presence or absence of a source. This inference resolves the blind source separation 
(i.e., the cocktail party) problem formulated, in this instance, in terms of discrete states. To model this source 
separation, we used a Markov decision process (MDP) model and a biologically plausible gradient descent on 
variational free energy — as a proxy for log model evidence (i.e., an evidence or marginal likelihood bound). See 
Fig. 1 for a schematic illustration of how this sort of neuronal (variational) message passing follows from Bayesian 
inference. For a more complete treatment, please see30,31 and Methods.

The generative (Markov decision process) model. Generative models of discrete outcomes are usually 
described in terms of a likelihood A matrix mapping from hidden states of the world and outcomes or sensory 
input. In addition, they are usually equipped with a probability transition matrix that affords empirical priors on 
the dynamics of the generating or source process. In the setup described in this paper, the dynamics were very 
simple. This allows us to focus on inference about the sources currently responsible for generating sensory stim-
ulation. In subsequent work, we will use exactly the same formalism to model sequential stimuli with structured 
transition probabilities; however, here we consider only one time step for each trial, which means we can ignore 
the transition probabilities B.

The hidden states of this model correspond to a factor (with two levels: present or absent) for every source. 
In this case, there were two sources leading to (2 × 2=) 4 hidden states. Given the state of the world delivering 
stimuli (i.e., the stimulation settings), the elements of the likelihood matrix now specify the probability that any 
particular electrode would receive an input. These were initially set to a low confidence prior using a Dirichlet 
parameterisation and initial (concentration) counts of one (i.e., as if the network had only seen one instance of 
an outcome). A standard Bayesian belief update scheme — variational message passing — was used to update 
posterior beliefs about sources over successive epochs (see Figs 1 and 2) and the likelihood a source would gen-
erate a stimulus. In other words, the simulated neural network learned the likelihood mapping and inferred the 
presence or absence of sources in an experience-dependent fashion. In general, posterior beliefs are encoded by 
the sufficient statistics or parameters of approximate posterior distributions that are associated with neuronal 
activity and connectivity. Neurobiology plausible process theories of this kind of evidence accumulation mean 
that we can treat the sufficient statistics (i.e., posterior expectations) about the presence or absence of sources as 
an idealised neuronal response, engendered by experience-dependent plasticity. Please see30,32 for details about 
the belief updating and learning respectively that was used in this paper.

During evidence accumulation over stimulation epochs, the parameters of the likelihood model are accumu-
lated (as Dirichlet concentration parameters); thereby enabling the model to learn which electrodes were likely 
to be excited by the sources that they were implicitly inferring — and therefore increase the accuracy of posterior 
beliefs about the sources currently in play.

In this sort of scheme, within-epoch responses are due to a fast gradient descent on variational free energy 
that combines sensory evidence with prior beliefs entailed by the form of the generative model (see Fig. 2). The 
between-epoch dynamics correspond to learning the probability with which hidden sources excite any particular 
electrode. In short, one can simulate ideal responses in terms of the sufficient statistics of the posterior beliefs 
about the current stimulation pattern (expectations about hidden states) and the contingencies of stimulation 
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(posterior expectations about the likelihood parameter). The key question now is whether these simulated 
responses — and accompanying decreases in free energy — are evident in empirical neuronal responses.

Results
Overview. In our experimental setup, cell cultures comprised excitatory and inhibitory neurons and glial 
cells. The cultured neurons were connected in a self-organising manner. During training, the neurons received 
external sensory stimulations that were generated from two binary sources (Fig. 3A). In this study, we considered 
learning in the in vitro network as the process of changing neural responses to sensory stimulation in an experi-
ence-dependent manner, as defined in our previous study29.

The empirical responses were summarised in terms of the electrode responses that showed the most signifi-
cant functional specialisation. We assumed that the deviation of neuronal firing rates from their mean activity is 
proportional to the difference between the posterior and (uninformative or flat) prior expectations about each of 
the sources. This is a (thermodynamically) efficient form of neural code because any neuron or population that 
has not learnt to recognise a hidden state or source will not deviate from prior expectations — and can have a 
mean firing rate of zero.

Having identified functionally selective empirical responses, we simulated exactly the same sort of recognition 
process or learning in silico, using the above free energy minimising scheme (see Fig. 2). This allowed us to track 
learning in terms of (simulated) changes in connectivity — using the same stimuli as in the empirical study. These 
connection strengths correspond to the parameters of the likelihood model (i.e., the A matrix) and enabled us to 
track the accuracy and complexity of inferences about sources based upon the empirical responses (see below).

Figure 1. This schematic summarises the conceptual moves that provide a neuronal process theory for Bayesian 
belief updating with neuronal dynamics (please see Methods for a more technical and complete description). 
First, we start with Bayes rule, which says that the joint probability of some causes (hidden states in the world: 
sτ) and their consequences (observable outcomes: oτ) is the same as the probability of causes given outcomes 
times the probability of outcomes, which is the same as the probability of the outcomes given their causes times 
the probability of the causes: i.e., = | = |τ τ τ τ τ τ τ τP s o P s o P o P o s P s( , ) ( ) ( ) ( ) ( ). The second step involves taking the 
logarithm of these probabilistic relationships and dispensing with the probability over outcomes (because it 
does not change with the posterior probability of the hidden states we want to infer). Note, at this point, we have 
replaced the posterior probability with its approximate, free energy minimising, form: ≈τ τ τQ s P s o( ) ( ). The 
second step involves rewriting the logarithmic form in terms of the sufficient statistics or parameters of the 
probability distributions. For discrete state-space models, these are simply expectations (denoted by boldface). 
Here, we have used an empirical prior; namely, the probability of the current state given the previous state of 
affairs. The probability transition matrix — entailed by this empirical prior — is denoted by (B), while the 
likelihood matrix is denoted by (A). The fourth move is to write down a differential equation, whose solution is 
the posterior expectation in the middle panel (expressed as a log expectation). Effectively, this involves 
introducing a new variable that we will associate with voltage or depolarisation vτ, which corresponds to the log 
expectation of causes (sτ). Finally, we introduce an auxiliary variable called prediction error ετ that is simply the 
difference between the current log posterior and the prior and likelihood messages. This can be associated with 
presynaptic drive (from error units) that changes transmembrane potential or voltage (in principal cells); such 
that the posterior expectation we require is a sigmoid (i.e., activation) function of depolarisation. In other 
words, expectations can be treated as neuronal firing rate. In summary, starting from Bayes rule and applying a 
series of simple transformations, we arrive at a neuronally plausible set of differential equations that can be 
interpreted in terms of neuronal dynamics.
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In what follows, we first describe the emergence of functional specialisation in the empirical data. We then 
reproduce this learning in silico. By matching the time courses of learning, we used the parameters of the genera-
tive model from the simulations to assess the empirical free energy associated with neuronal responses (summa-
rised by the most significant electrode). We were hoping to see a progressive decrease in free energy. Furthermore, 
we were able to decompose the free energy into its constituent parts; namely, accuracy and complexity. We antic-
ipated that accuracy would increase as learning proceeded, enabling an increase in the complexity or confidence 
term. To visualise this, we borrowed a construct from the information bottleneck approach; namely an informa-
tion plane33–35.

Estimation of posterior belief based on empirical responses. We first illustrate the emergence of 
functional specialisation in an exemplar dataset (Fig. 3B,C). These data were obtained over 100 sessions, each 
of which included 256 stimulation epochs with 1-s intervals based on the above protocol. We used a general 
linear model (GLM) to characterise the responses observed at each electrode. This GLM comprised explanatory 
variables (i.e., regressors) using the known sources active in each trial to model the emergence of a differen-
tial response to one or the other source. This provides an unbiased estimate of the neuronal encoding of each 
source after removing influences from the other source and electrode stimulations (i.e., sensory stimulation, 
from the point of view of the neuron). This modelling ensures that functional specialisation cannot be explained 
by responses evoked by stimulation per se (that are, on average, greater for one source than another). The left 
panel in Fig. 3B shows the emergence of functional specialisation in terms of the responses at the most significant 
electrode. The neurons sampled by this electrode become progressively more sensitive to the presence of the first 
source. To illustrate response selectivity, the responses are shown in red for epochs wherein the first source was 
present and in cyan for epochs when it was absent.

The explanatory variables in the GLM comprised the interaction between time and the presence of the first 
source, where time was modelled with a mixture of temporal basis functions (based on a discrete cosine trans-
form with eight components). The best mixture corresponds to the predicted responses shown as solid lines in 
Fig. 3B. These predicted responses exclude confounding or nuisance effects; namely, the stimulation delivered to 
the in vitro neural network and a discrete cosine transform with 32 components (modelling non-specific drifts in 
average activity). In short, this GLM enabled the separation of source-specific responses from responses induced 
by stimulation and fluctuations in the mean response over time. We also observed that the pattern of functional 
specialisation was distributed but dominated by a small number of electrodes (the right panel in Fig. 3B).

The same analysis was applied to quantify the functional specialisation for the second source and the predicted 
specialisation is shown in Fig. 3C. This suggests that selectivity in the neurons surrounding these electrodes — 
for the first and second sources — was circumscribed. One might imagine that other parts of the in vitro neural 
network may have shown selective responses to other patterns of stimuli, or may have indeed shown secondary 
learning effects at different rates.

The time course of functional specialisation was robust to the choice of neuronal data features. Using the 
results from 23 cultures, we compared the time course of specialisation obtained using the above procedure 
(Fig. 4A) with those obtained using alternative data features (Fig. 4B,C) and found that the results were very simi-
lar. In Fig. 4B, we used the average response over electrodes, whose F value exceeded a threshold of 80. In Fig. 4C, 

Figure 2. This figure illustrates the variational message passing we used to simulate idealised neuronal 
responses. This sort of scheme optimises sufficient statistics that encode posterior beliefs about the hidden 
causes of sensory data. The upper part of this figure uses a graphical model to illustrate how stimuli are 
generated, while the lower parts of this figure illustrates variational message passing within a neural network — 
using a Forney factor graph description60,61 based upon the formulation in31. In our setup, we know the hidden 
states generating observed stimuli — and we have empirical recordings of the sufficient statistics that encode 
beliefs (or expectations) about these hidden states. Please see30 for a detailed description of variational message 
passing — and accompanying learning32 — in this context. A more general treatment of message passing on 
factor graphs, as a metaphor neuronal processing, can be found in31.
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Figure 3. Estimation of blind source separation of functional specialisation from empirical responses. (A) 
Schematic images of hidden sources, stimuli (sensory inputs), and cultured neurons on a microelectrode array 
dish. Two sequences of independent binary sources generate 32 sensory stimuli through the likelihood mapping 
(A). The 32 stimulated sites are randomly selected in advance from an 8 × 8 grid of electrodes. Half (1, …, 
16) of the electrodes are stimulated under source 1, with a probability of 3/4, or source 2, with a probability of 
1/4. Whereas, the remaining (17, …, 32) electrodes are stimulated under source 1, with a probability of 1/4, or 
source 2, with a probability of 3/4. (B) Left: The emergence of functional specialisation at the most significant 
electrode, which became sensitive to the presence of the first source. The red dots correspond to epoch-specific 
responses when the first source is present, while the cyan dots show the response in the absence of the first 
source. The red and cyan lines represent the predicted responses; namely, the response associated with the 
explanatory variables after removal of the effects of stimulation and time. Right: The underlying functional 
segregation as a statistical parametric map (SPM) of the F statistic. This underscores the spatial segregation of 
functionally specialised responses, when testing for the emergence of selectivity (treating stimulation, non-
specific fluctuations, and the other source as confounding effects). The colour scale is arbitrary. Lighter grey 
colour denotes a more significant effect. (C) The analysis presented in these panels is exactly the same as that 
shown in (A); however, in this case, the explanatory variables modelled an emerging selectivity for the second 
source.
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the empirical responses were summarised in terms of the principal canonical variate that best explained the 
emergence of selective responses to each source, in terms of a linear mixture of firing rates. This provided more a 
sensitive analysis than the corresponding univariate analysis. The canonical variates analysis (CVA) uses the same 
general linear model that replaces the responses at each electrode with a multivariate response over all electrodes. 
Finally, specialisation was then compared to the estimates obtained using randomised (surrogate) source trains 
(Fig. 4D–F). This nonparametric (null) analysis ensures that the emergence of specialised responses cannot be 
explained by any confounds or correlations in the data. In summary, we observed the emergence of functional 
specialisation for both hidden sources, which indicates that in vitro neuronal networks can perform blind source 
separation. Furthermore, this specialisation is robust to the choice of data features and is not an artefact of para-
metric modelling assumptions.

Simulation of belief updates and learning in the Bayes optimal encoder. To establish that the 
functional specialisation observed above conforms to Bayesian learning (i.e., the free energy principle), we sim-
ulated learning under ideal Bayesian assumptions (Fig. 5). This scheme corresponds to evidence accumulation 
under the hidden Markov model (described in Fig. 2) with state transitions B modelled by an identity matrix. 
The hidden states were inferred based on the same stimuli used in the empirical experiment. In the variational 
updating scheme, learning is modelled as updates to the parameters of the generative model. In this study, the 

Figure 4. Average responses over culture populations. This figure illustrates the statistical robustness of the 
procedures used to estimate functional specialisation. Each panel shows the mean differential responses in 
the presence (red line) and absence (cyan) of the first source, for each session averaged over 23 samples (i.e., 
cultures). The shaded area indicates the standard deviation over samples. (A) Responses obtained based on 
activity at an electrode with the maximum F value, corresponding to the (single culture) result in Fig. 3A. (B) 
Responses obtained using a within-culture average over unit activities at electrodes whose F value exceeded 
80. Here, we first calculated an average response over electrodes within a culture, and then calculated an 
average over cultures. (C) Responses obtained using a standard canonical variate analysis (CVA) with the GLM 
described in the main text. This shows the emergence of functional specialisation in terms of the first canonical 
variate (i.e. pattern over electrodes) that becomes specialised for the first source. This canonical variate 
represents a linear mixture of firing rates from all electrodes, averaged over each epoch. Panels (D–F) are the 
same as panels (A–C), but using surrogate (randomised) source signals. The comparison of the upper and lower 
panels illustrates the emergence of functional specialisation when, and only when, the true sources were used.
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posterior expectation of the likelihood matrix A was updated via minimisation of variational free energy (see Eq. 
(8) in Methods). Effectively, this is a form of unsupervised learning that allows the in silico network to predict or 
explain the patterns of stimuli in terms of two independent sources or causes. This form of learning is known vari-
ously as blind deconvolution or manifold learning. For computational expediency, we simulated learning over 512 
epochs. Figure 5 illustrates the emergence of specialised responses in terms of firing rates encoding the presence 
and absence of the first source (Fig. 5A), the time frequency profile of induced responses (Fig. 5B) and underlying 
local field potential (Fig. 5C). These simulated neurophysiological responses are based on the process theory 
summarised in Fig. 1 (and explained in detail in30). The resulting emergence of selective responses (i.e., learn-
ing) is shown in Fig. 5D using the same GLM analysis and format of Fig. 3; namely, the analysis of the empirical 
data. Similar results were obtained for the units encoding the presence of the other source. The correspondence 
between the empirical and synthetic responses is self-evident.

The above analyses show that Bayes optimal encoding of the causes of sensory stimulation provides a qualita-
tive account of observed electrophysiological responses. In what follows, we quantify the empirical responses in 
terms of the inference and learning, by matching the time course of synthetic and empirical learning. This allowed 
us to interpret the empirical responses in terms of posterior beliefs about hidden sources.

Integrating empirical and synthetic results. In this final section, we quantify the progressive reduc-
tion in variational free energy, during the emergence of functional specialisation in the cell culture (Fig. 6). This 
characterisation combines the results presented in the previous two sections to evaluate the free energy (and its 
components) entailed by the empirical responses. In detail, the time course of learning was quantified using the 

Figure 5. Synthetic responses of the simulated Bayes optimal encoder. (A) Simulated firing rates for the first 
128 epochs, focusing on units encoding the absence (top) and presence (bottom) of the first source. (B) The 
equivalent responses averaged over all neurons after band-pass filtering (white lines). These simulated local field 
potentials are shown on a background image of induced responses following a time frequency analysis (see30 for 
details). (C) A more detailed representation of the simulated local field potentials of the units shown in panel 
(A). These field potentials are the band-pass filtered firing rates of the unit encoding the posterior expectation 
of one source (purple line) and its absence (yellow line). (D) The resulting emergence of selective responses, 
plotted in the same format used in Fig. 3, where red and cyan lines express responses in the presence and 
absence of the first source, respectively.
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appropriate mixture of temporal basis functions from the analyses of empirical and synthetic responses. The 
corresponding learning curves were matched, in a least squares sense, by regressing the empirical learning on the 
synthetic learning curves (see Fig. 6D). For a selected series of 512 equally spaced empirical epochs, the corre-
sponding point in learning was identified in the simulations. The parameters of the generative model A were then 
used to evaluate the variational free energy using the stimulation pattern ot and the empirical posterior expec-
tations: st. These empirical expectations were derived in a straightforward way by assuming that the predicted 
specialisation (i.e., red lines in Fig. 3) corresponded to a posterior expectation of one. With these expectations, we 
can now evaluate the empirical free energy for each epoch t: defined as follows (please see Methods for details):

≡ − | + +

= − ⋅ ⋅ + ⋅ ≥ −

� ���������� �����������
� ��������������� ���������������
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Here, Q(st) and Q(A) denote approximate posterior distributions over hidden states encoded by neuronal 
activity and elements of the likelihood matrix encoded by synaptic connectivity, respectively. The free energy has 
been expressed here in terms of accuracy and complexity; namely, the expected log likelihood of sensory outcomes 
and the Kullback-Leibler divergence between posterior and prior beliefs. The inequality indicates that variational 
free energy is an upper bound on negative log evidence or marginal likelihood P(ot) of sensory outcomes at any 
particular time. Note that in the second line, complexity of matrix A is omitted because it is determined by the 
simulation and does not change the results in this section.

The resulting fluctuations in free energy are shown in Fig. 6A. The blue line corresponds to the free energy 
based upon the predicted neuronal encoding (i.e., calculated based on data in Fig. 3 using the above equation). 
To make the emergence of functional specialisation or learning easier to visualise, we plotted the same data after 
the free energy was smoothed using a time window of 32 epochs (the red line in Fig. 6A). This average suppresses 
epoch to epoch fluctuations due to the different patterns of stimulation that the neurons find more or less easy to 

Figure 6. Empirical free energy minimisation. (A) The resulting fluctuations in free energy. The blue line 
corresponds to the free energy based upon the neuronal encoding (the lines in Fig. 3) and the red line shows the 
average over 32 successive epochs. (B) Trajectories of free energy components after smoothing. (C) Variational 
information plane. (D) Trajectories of learning curves obtained from empirical (solid line) and simulated 
(dashed line) data.
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recognise — in terms of the sources that caused them. The horizontal lines show the free energy at the beginning 
of the session and the same value after subtracting three nats (i.e., natural units). This allows a quantitative inter-
pretation of the free energy. This is because a free energy difference of about three corresponds to strong evidence 
for the presence of a source; i.e., a log odds ratio of exp(3) = 20 to 1. Note that by the end of the session, nearly 
every pattern of stimulation is recognised in terms of its underlying sources, in virtue of having a relatively low 
free energy, or high model evidence.

Figure 6B decomposes the components of free energy into the negative log likelihood (inaccuracy), negative 
log prior, and negative entropy (complexity). It can be seen that the accuracy (i.e., the log likelihood) increases 
dramatically as learning proceeds — and evidence has accumulated about the causes of stimulation. This is 
accompanied by a smaller increase in complexity or a decrease in entropy, as inferences about the sources become 
more confident. We anticipated that accuracy would increase as learning proceeded, enabling an increase in 
the complexity or confidence term. To visualise this, we borrowed a construct from the information bottleneck 
approach; namely, an information plane30. However, in this application we plot accuracy against complexity in a 
variational information plane. Note that, under flat or uninformative priors, complexity corresponds to the neg-
ative entropy of free energy (i.e., negentropy). This means we can associate negative accuracy (inaccuracy) with 
energy and complexity with negentropy.

Figure 6C shows the evolution of accuracy and complexity in a variational information plane as functional 
specialisation emerges. This shows that as learning progresses, accuracy increases markedly with an accompany-
ing increase in complexity. However, there is an interesting exception to this trend; it appears as if the complexity 
falls at later training periods. Anecdotally, the network appears to first maximise accuracy (with an accompanying 
complexity cost) and then tries to find a less complex explanation. This is reminiscent of the behaviour of deep 
learning schemes described in33–35. We confirmed that this tendency was conserved over 23 recording samples 
(Fig. 7A). In almost half of the cultures, complexity falls after an initial increase. Complexity, in this context, 
corresponds to the divergence between posterior and prior beliefs and can be thought of as the degrees of free-
dom used in providing an accurate explanation for observed data. In summary, while the accuracy increased 
progressively over the training period, the complexity increased initially and then either levelled off or fell. This 
is consistent with Ockham’s (and the free energy) principle, in the sense that this behaviour can be interpreted as 
trying to find a simpler explanation for observed outcomes. Moreover, this tendency was robust to the choice of 
data features (Fig. 7B,C). Finally, these systematic trajectories in the information plane disappeared when decom-
posing the free energy obtained using randomised (surrogate) source trains (Fig. 7D).

Discussion
In this study, we have demonstrated that in vitro neuronal cell cultures can recognise and learn statistical regu-
larities in the patterns of their stimulation — to the extent they can be regarded as performing blind source sepa-
ration or perceptual inference on the causes of their input. According to normative variational principles for the 
brain12,36–38, neural encoding entails the inference and representation of information in the external world; i.e., the 
hidden sources or causes of sensory consequences. We therefore tried to infer the neural code that underwrites 
this representation. Formally, this is a meta-Bayesian problem; in the sense that we are trying to make inferences 
about empirical neuronal recordings that are generated by a process of Bayesian inference. We simulated an ideal 
Bayesian neural network and then considered the mapping from idealised responses (i.e., the ideal neural code) 
to recorded neuronal activity. We found clear evidence for learning and inference via the emergence of func-
tional specialisation in the empirical data. Furthermore, this specialisation was robust to the choice of neuronal 
data features and mirrored simulated (idealised) specialisation. By establishing a mapping of the in vitro and in 
silico responses, we were able to evaluate the posterior ‘beliefs’ about hidden sources associated with empirical 
responses — and demonstrate a significant reduction in free energy over the course of the training.

We adopted a generative model of discrete sensory outcomes described in terms of a likelihood A matrix, 
mapping hidden causes in the external world to the observable outcomes, as in the cocktail party problem4,5 and 
blind source separation6–11. This simple setup allowed us to characterise neuronal responses encoding the sources 
responsible for generating sensory stimulation. Usually these (hidden Markov or Markov process) models are 
equipped with a probability transition matrix B that corresponds to empirical priors on structured sequences. 
In subsequent work, we will use the same formalism introduced in this paper to model sequential stimuli with 
structured transition probabilities. In principle, this should provide a full meta-Bayesian approach in which the 
neuronal encoding model is itself inverted using Bayesian procedures.

Neurobiologically, our Bayesian inference and learning processes describe neuronal activity and synaptic plas-
ticity, respectively (see Eqs (7) and (8) in Methods). In this setting, the softmax function used to evaluate the pos-
terior expectation of hidden states, given its logarithmic form, might correspond to a nonlinear activation (i.e., 
voltage-firing) function. It is known that the mean firing rate function of spiking neuron models has the analytic 
form of a softmax function39. Because action potentials are discrete events (i.e., unfold on a temporal scale of 
few milliseconds), the use of the discrete time model seems justified from a coarse graining perspective. At the 
single neuron level, responses to sensory stimulation may fluctuate following activity dependent plasticity due 
to spontaneous neuronal activity prior to stimulation. Our analyses assume that fluctuations in synaptic efficacy 
have converged to some systematic (nonequilibrium) steady-state; thereby allowing us to characterize changes 
in response properties following the onset of exogenous stimulation. As noted by one of our reviewers, there 
may be interesting factors associated with the preparation of the featured networks (e.g., time elapsed before the 
stimulation protocol) that, in principle, could affect learning. This speaks to the possibility of using the analyses 
described above to characterize the initial state of the network in terms of its propensity to minimise free energy. 
Moreover, our learning rule corresponds exactly to a Hebbian rule of associative plasticity, where observations 
and the posterior-expectation-coding neurons correspond to pre and postsynaptic neurons, respectively. This 
sort of Hebbian plasticity is physiologically implemented as spike-timing dependent plasticity (STDP)40–43. These 



www.nature.com/scientificreports/

1 0SCIENTIFIC REPORTS |         (2018) 8:16926  | DOI:10.1038/s41598-018-35221-w

form observations speak to the biological plausibility of the variational message passing scheme used to simulate 
neural responses in this paper. Although several biologically plausible blind source separation methods in the 
continuous state space have been developed44–48, to our knowledge, this is the first attempt to explain neuronal 
blind source separation using a biologically plausible learning algorithm in the discrete (binary) state space.

Although the emergence of the neuronal responses, selective to a specific stimulation site or stimulation pat-
tern (i.e., selectivity to a specific sensory input), has been reported using in vitro neural networks19,25,49, a novelty 
of our experimental design is that it enables one to ask whether neural networks can infer the hidden sources or 
causes of stimuli. The latter (source separation) is more difficult than the former (pattern separation); because 
the neural network receives randomly mixed sensory stimuli — and therefore needs to learn the inverse of the 
mapping from hidden sources to stimuli, in order to exhibit a selectivity to a specific source. This inversion is 
exactly the same as that entailed by Bayesian inference (i.e., inverting a generative model, which maps from causes 
to sensory consequences). In short, our experimental setup allows one to assess the evidence for functional spe-
cialisation in terms of sources, as opposed to stimuli. Our previous study found that pharmacological blocking of 
N-methyl-D-aspartic acid (NMDA) receptors using 2-Amino-5-phosphonopentanoic acid (APV) dramatically 
inhibited the functional specialisation of neuronal responses observed in neural cultures without drugs29. This 
result suggests that NMDA-receptor dependent long-term synaptic plasticity in glutamatergic synapses under-
writes functional specialisation of this kind. Moreover, based on a similar in vitro experimental setup, it has been 
found that enhancing neurogenesis facilitates the pattern separation capability of hippocampal neural networks50. 
Although neurogenesis is not observed in the cortical cultures, one can imagine that new born neurons in hip-
pocampus may contribute to structure or manifold learning from a Bayesian perspective.

Figure 7. Variational information plane analysis. (A) Trajectories of accuracy, complexity (negentropy), and 
free energy as a function of time or learning. These trajectories were based on the responses at the electrode 
with the maximum value of the F statistic. Each coloured line corresponds to a different culture. The colour 
indicates the time course. The black lines report the average over 23 cultures. The rightmost panel shows the 
corresponding trajectories in the information plane by plotting complexity against accuracy. Panels (B,C) have 
the same format as panel (A), but different data features were used to evaluate free energy; namely, responses 
obtained using a within-culture average over electrodes whose F value exceeded a threshold (B) or responses 
obtained using a canonical variate analysis (C). Panel (D) is the same as the information plane in panel (A), 
but using surrogate (i.e. randomise) sources. These null results suggest that accuracy actually fell over time to a 
small extent with learning.
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Furthermore, our results suggest that in vitro neuronal networks can perform Bayesian inference and learn-
ing under the sorts of generative models assumed in our MDP simulations. It is interesting to consider how real 
neurons actually encode information; for example, synaptic plasticity (i.e., learning) is modulated by the various 
neurotransmitters (such as GABA) and neuromodulators (such as dopamine and noradrenaline)51–53; please see 
also54 for a possible relationship between neuromodulations of STDP and the free-energy principle. This implies 
the existence of a mapping between the variables in the MDP scheme and the concentrations of these neurotrans-
mitters. In the subsequent work, we will touch on this issue by asking how alterations in the level of neurotrans-
mitters and neuromodulators influence Bayesian inference and learning evinced by in vitro neural networks.

Blind source separation is a fundamental operation in perceptual inference, in the sense that most natural 
sensory inputs are superpositions of several hidden causes. A similar spike-timing dependent synaptic plasticity 
observed in in vitro neural networks41 occurs in the in vivo cortex55. This suggests that their self-organising pro-
cesses are governed by a common rule that is consistent with Bayesian inference and learning. One can therefore 
imagine that the same sort of functional specialisation observed in this study may also emerge in the in vivo brain.

In summary, we have characterised the neural code in terms of (approximate) Bayesian inference by map-
ping empirical neuronal responses to inference about the hidden causes of observed sensory inputs. Using this 
scheme, we were able to demonstrate meaningful reductions in variational free energy in in vitro neural networks. 
Moreover, we observed that the ensuing functional specialisation show some characteristics that are consistent 
with Ockham’s principle; namely, a progressive increase in accuracy, with an accompanying complexity cost, 
followed by a simplification of the encoding — and subsequent reduction in complexity. This is similar to a phe-
nomenon observed in a recent deep learning study33–35. These results highlight the utility of inference as a basis 
for understanding the neural code and the function of neural networks.

Methods
Cell culture. The dataset used for this study was originally used in the previous study of neuronal blind source 
separation, and detailed methods can be found in29. All spike number data can be downloaded from http://neu-
ron.t.u-tokyo.ac.jp. All animal experiments were performed with the approval of the animal experiment ethics 
committee at the University of Tokyo (approval number C-12-02, KA-14-2) and according to the University of 
Tokyo guidelines for the care and use of laboratory animals.

Briefly, the cerebral cortex of 19-day-old embryos (E19) was obtained from pregnant Wistar rats (Charles 
River Laboratories, Japan) and dissociated into single cells by treatment with 2.5% Trypsin (Life Technologies) 
followed by mechanical pipetting. A half million (5 × 105) dissociated cortical cells (a mixture of neurons and 
glial cells) were seeded on the centre of microelectrode array (MEA) dishes and cultivated in the CO2 incubator. 
See19,56 for the detail about MEA. We used data from 23 cultures for analysis. These cultures were recorded in the 
age of 18–83 days in vitro. During this stage, the spontaneous firing patterns of neurons reach a developmentally 
stable period57,58.

Electrophysiology. Electrophysiological experiments were conducted using an MEA system (NF 
Corporation, Japan). An MEA dish comprises 8 × 8 microelectrodes embedded on its centre, deployed on a grid 
with 250-µm microelectrodes separation. These microelectrodes are dual-use for recording and stimulation, 
enabling extracellular recordings of evoked spikes (early response) from multiple sites immediately following 
electrical stimulations. 14-hour recordings were acquired at a 25 kHz sampling frequency and band-pass filtered 
between 100–2000 Hz. A biphasic pulse of amplitude 1 V and 0.2 ms duration was used as a stimulation input. 
This stimulation pulse is known to efficiently induce activity-dependent synaptic plasticity19,29. All recordings and 
stimulation were conducted in a CO2 incubator.

Generative process. We prepared two sequences of hidden sources and applied their stochastic mixtures to neu-
ral networks over 32 electrodes. Half (16) of the electrodes were stimulated under source 1, with a probability of 
3/4, or source 2, with a probability of 1/4. Conversely, the remaining (16) electrodes were stimulated under source 
1, with a probability of 1/4, or source 2, with a probability of 3/4. The 32 stimulated electrodes were randomly 
selected in advance and fixed over training.

In terms of the MDP scheme30, this corresponds to the likelihood mapping A from two hidden sources or 
states = ⊗s s s1 2 to 32 observations = ⊗ ⊗o o o1 32 (see also Fig. 2). Each source and observation takes val-
ues of zero or one ∈ ∈s s o( , {0, 1}, {0, 1})i1 2  for each trial. The probability of s follows a uniform (categorical) 
distribution =P s P s P s( ) ( ) ( )1 2  where = =P s P s D( ) ( ) Cat( )1 2  with D = (0.5, 0.5), while the probability of oi is 
determined by a categorical distribution ⊗ =P o s s A A( , ) Cat( )i i1 2  where each element of A is given by 

= = = =P o j s k s l A A( , , )i ijkl1 2 . For the process generating outcomes, this means that the values of the likeli-
hood matrix are:
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A session of training comprising 256 trials with the 1 s intervals, followed by 244 second rest periods. We repeated 
this training 500 second cycle for 100 sessions. By inducing electrical stimulation generated by a mixture of hid-
den sources and monitoring the evoked responses over 14 hours, we were able to characterise the emergence of 
functional specialisation of certain neurons in these cultured neural networks.

http://neuron.t.u-tokyo.ac.jp
http://neuron.t.u-tokyo.ac.jp
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Analysis. Estimation of posterior beliefs based on empirical responses. The hypothesis we have in mind is that 
stimulation (o) excites a subset of neurons in the tissue culture in an obligatory fashion. With repeated exposure, 
other neurons — with the right sort of connectivity — will come to recognise the patterns of responses as being 
caused by the presence or absence of hidden sources (s). Following the process theory for this form of Bayesian 
source separation — based on minimising variational free energy — we assume that the expected probability of 
sources being present or absent come to be encoded in the firing rate of functionally specialised neurons, whose 
activity is reported by the recording electrodes.

Under these assumptions, the activity recorded at the 64 electrodes would receive contributions from popula-
tions receiving input and neurons encoding the presence of sources. To identify functionally specialised neurons, 
it is therefore necessary to separate responses directly induced by stimulation from those encoding the sources. 
In brief, we identified specialised responses by modelling recorded activity as a mixture of stimulation related 
responses and functionally specialised responses to the sources. Crucially, the former should remain invariant 
over time, while the latter will emerge during learning. This distinction allows us to decompose responses into 
stimulation and source specific components — and thereby identify electrodes in functionally segregated regions 
of the culture.

The time course of this emerging specialisation was modelled using temporal basis functions to avoid any 
bias in estimating the associated learning rate. Then, the empirical responses were summarised in terms of the 
electrode responses with the most significant functional specialisation; i.e., a pattern of firing that progressively 
differentiated between the presence and absence of one of the two sources. In Fig. 3, significant specialisation was 
identified using empirical responses at electrodes with the greatest F statistic. For comparison, in Fig. 4, we used 
two additional data features. Surrogate analyses were conducted for all analyses to verify that they were robust to 
any (parametric) assumptions.

Simulated Markov decision process scheme. We used the same generative process described above and simulated 
the Bayes optimal encoding for the causes or sources of sensory stimulation. This was done by implemented using 
variational message passing has coded in spm_MDP_VB_X in the open access academic software SPM (http://
www.fil.ion.ucl.ac.uk/spm/software/). See30 for details regarding this MDP scheme. The posterior expectations of 
the two sources obtained by the MDP scheme were plotted in Fig. 5.

Briefly, in the MDP scheme, we define a generative model probabilistically with:

= |P o s A P o s A P s P A( , , ) ( , ) ( ) ( ) (3)t t t t t

here, the likelihood is given by a categorical distribution | =P o s A A( , ) Cat( )t t  and the prior distribution of A is 
given by Dirichlet distribution =P A a( ) Dir( ) with sufficient statistics a. The mean-field approximation provides 
an approximation to the posterior (recognition) density:

=Q s A Q s Q A( , ) ( ) ( ) (4)t t

here, the posterior distributions of st and A are given by a categorical =Q s s( ) Cat( )t t  and Dirichlet =Q A a( ) Dir( ) 
distributions, respectively. Note that st and a constitute sufficient statistics. Below, we use the posterior expecta-
tion of in Ai to express the posterior belief about hidden parameters, which is given by:

∑ψ ψ≡ = −
=
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This expression uses the digamma function ψ ⋅( ). Neurobiologically, this likelihood mapping is associated 
with synaptic strengths. The free energy of this system is given by:

D D

B∑

≡ − | + || + ||

= − ⋅ ⋅ + ⋅ + − ⋅ −
=

F o Q s Q A P o s A Q s P s Q A P A

o as A s s a A a

( , ( ), ( )) E [ ln ( , )] [ ( ) ( )] [ ( ) ( )]

ln ln {( ) ln ln ( )},
(6)

t t Q s Q A t t t t

t t t t
i

i i i i

( ) ( )

1

32

t

here, ⋅( )  is the beta function. The first term in the right side corresponds to the accuracy, while the second and 
third terms constitute complexity (expressed by Kullback-Leibler divergence)59. Inference optimises the posterior 
expectations of hidden states to minimise free energy, which is given by

σ= ⋅ oInference s A(ln ), (7)t t

where σ ⋅( ) is a softmax function (associated with a nonlinear neuronal activation function). While Eq. (7) was 
derived from the free energy minimisation, the same result can be obtained from Bayes rule as shown in Fig. 1. 
Moreover, learning entails updating posterior expectations about the parameters to minimise free energy:

= + ⊗− oLearning a a s , (8)t t t t1

where ⊗ express the operator of outer product. Neurobiologically, Equations (5) and (8) are usually associated 
with synaptic plasticity (i.e., a Hebbian rule).

Empirical free energy components. We defined st as the predicted specialisation obtained in Figs 3 and 4 and 
substituted these values into Eq. (6). This enabled us to evaluate the empirical free energy during learning and to 
decompose free energy into accuracy and complexity, which are shown in Figs 6 and 7.

http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/software/
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The analyses reported in this study represent a point of reference for future studies that will examine the effects 
of stimulation patterns, sequences of sources and pharmacological manipulations on the learning — as character-
ised in terms of free energy, accuracy and complexity.
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