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Abstract
For rapid anti-tuberculosis (TB) drug development in vitro pharmacokinetic/pharmacodynamic
(PK/PD) models are useful in evaluating the direct interaction between the drug and the bacteria,
thereby guiding the selection of candidate compounds and the optimization of their dosing
regimens. Utilizing in vivo drug-clearance profiles from animal and/or human studies and
simulating them in an in vitro PK/PD model allows the in-depth characterization of antibiotic
activity of new and existing antibacterials by generating time–kill data. These data capture the
dynamic interplay between mycobacterial growth and changing drug concentration as encountered
during prolonged drug therapy. This review focuses on important PK/PD parameters relevant to
anti-TB drug development, provides an overview of in vitro PK/PD models used to evaluate the
efficacy of agents against mycobacteria and discusses the related mathematical modeling
approaches of time–kill data. Overall, it provides an introduction to in vitro PK/PD models and
their application as critical tools in evaluating anti-TB drugs.

According to the WHO report on global TB control 2009, the incidence of TB cases was
9.27 million in 2007. With half a million cases of multidrug resistant TB (MDR-TB) and
approximately 55 countries and territories reporting at least one case of extensively drug
resistant TB [1], there is a definite need for more effective and better tolerated anti-TB
agents to go into optimized, less complicated and shorter dosage regimens. The path to new
antibiotic drug discovery and development is a long and expensive process with very few
compounds making it to the market. Development of anti-TB drugs in particular was halted
during the last decades of the 20th century owing to a lack of commercial incentive, which
has only recently been addressed after a hiatus of almost 40 years through extensive
governmental and nongovernmental organizational support.

In recent years, the US FDA has suggested numerous approaches to optimize the drug-
development process. Pharmacokinetic/pharmacodynamic (PK/PD) modeling and
simulation is one such innovative tool intended to help in early go or no-go decisions and
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significantly improve development efficiency. For example, in preclinical as well as clinical
development, PK/PD modeling and simulation can be used to integrate independent
measures of potency, safety, bioavailability and clearance, including their inter-individual
variability and measurement uncertainty, to develop optimal dosing regimens with regard to
safety and efficacy, and to explore different treatment algorithms and trial designs with
regard to their likelihood of being successful [2–4]. There is often only limited PK/PD
information available for molecules under development owing to a lack of inexpensive
suitable animal models to predict efficacy, a poor understanding of the relationship between
PK and PD for novel compounds, and challenges by complex disease processes, such as the
phenomena of latency and drug tolerance in TB infections [5]. Hence, improved tools are
needed to evaluate the PK and PD properties and optimize dosing regimens for drug
candidates early in the development process.

The PD effect of an antibiotic can be characterized by measuring the bacterial growth and
death following its administration. Since these measures are difficult to quantify in humans,
preclinical models in animals and in vitro systems play a pivotal role in understanding the
concentration–effect relationship of antibiotics. Although animal models can provide similar
growing conditions for bacteria as the human host and thus imitate the characteristics of a
human infection, the potential differences in PK such as rate and extent of drug metabolism
and in drug delivery to the species-specific tubercular lesions, such as to organized
granulomas found in the human lung limit the extrapolation of information from animals to
humans [6,7].

In vitro experiments are useful in evaluating the direct interaction between the drug and the
bacteria, which enables the selection of candidate compounds and the determination of the
target drug concentrations [8]. In vitro PK/PD models cannot incorporate all variables
observed in vivo but they do provide valuable information for the drug-development process
and the determination of optimal dosing regimens. Utilizing the in vivo, drug clearance
profiles, in vitro models can help determine the PD information that is otherwise only
accessible in expensive clinical trials [9].

PK/PD parameters of anti-TB agents
Pharmacokinetics describes the time course of concentration of a drug resulting from
administration of a dosage regimen and accounts for its absorption, distribution, metabolism
and excretion in the body. Protein binding plays an important role when extrapolating results
from an in vitro experiment to humans or animals. It is the free drug concentration or the
unbound fraction (fu) that is relevant to pharmacological action, can distribute into target
tissue and undergoes metabolism and excretion. Most drugs bind to plasma proteins such as
albumin, α1-acid glycoprotein, lipoproteins and sometimes also to cellular blood
components such as erythrocytes. Since these are absent in an in vitro setup, it is necessary
to incorporate free rather than total concentrations as a PK input function for PK/PD
modeling and simulation approaches [10].

Another caveat in an in vitro experiment is that there is no distribution involved and the drug
has direct access to the bacteria. Hence the concentrations chosen should preferably reflect
the concentrations in the specified compartments where the antibiotic of interest exerts its
pharmacological effect. In that respect, use of unbound concentrations has proven to be
useful as a surrogate correlate [11].

Pharmacodynamics describes the intensity of drug effect in relation to its concentration. In
the context of anti-infective therapy, PD defines the effect of drug on the pathogen residing
in the host organism. In order to quantify the in vitro anti-TB activity of drugs against the
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infectious pathogen, minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) are the most commonly used parameters to date.

Minimum inhibitory concentration is defined as the lowest concentration that prevents
growth of bacteria within a defined time period of incubation, typically approximately 7
days for Mycobacterium tuberculosis (Mtb) with a standard inoculum (~105 colony forming
units [CFU]/ml) [12]. MBC is defined as the drug concentration that produces 99.99%
killing of bacterial cells in the initial inoculum. Although MIC and MBC appear to be good
measures of the potency of a drug and its interaction with a pathogen, they do not provide
any information on the time course of the antimicrobial activity.

Pharmacokinetic/PD indices are composites of a PK parameters, such as area under the
plasma concentration–time curve (AUC) or maximum plasma concentration (Cmax) and a
microbiological parameter such as MIC. Most frequently used PK/PD indices of antibiotics
based on MIC, shown in Figure 1, are time above MIC (T >MIC), ratio of peak
concentration to MIC (Cmax/MIC), ratio of AUC to MIC (AUC/MIC) and area under the
inhibitory curve (AUIC), which is calculated as the area under the curve where the plasma
concentration exceeds MIC (AUCT>MIC/MIC). If drug concentrations remain above MIC at
all times, then AUIC and AUC/MIC are identical [13].

The most common approach to antibiotic dosing is to adjust the doses to obtain antibiotic
plasma concentrations that are above the MIC for a given pathogen throughout the dosing
interval. Two distinct groups can be differentiated on the basis of the pattern of
antimicrobial activity. The first pattern is characterized by concentration-dependent killing
over a wide range of concentrations, where higher concentrations lead to a greater rate and
extent of killing. Intracellularly acting drugs such as aminoglycosides, rifamycins and
fluoroquinolones fall under this pattern. The second group involves time-dependent killing,
where the time of exposure governs the bactericidal activity. Antibiotics that act on cell wall
targets such as penicillins and cephalosporins exhibit such killing patterns [14]. AUC/MIC
and Cmax/MIC explain the bactericidal activity of concentration-dependent killing while
T>MIC explains the time-dependent killing pattern. Table 1 provides a compilation of the
PK/PD indices and related PK parameters of existing anti-TB drugs. It should be noted that,
with the exception of the first-line agents for which some dose optimization in the TB
indication has been performed, the calculated PK/PD parameters indicated in Table 1 may
not necessarily be the most optimal for driving efficacy in TB patients.

Classification of in vitro PK/PD models
In vitro PK/PD models have many favorable characteristics, such as flexibility, adaptability,
relatively low cost, good correlation with human and animal data and no ethical concerns as
compared with animal experiments, which make them excellent experimental platforms
[15]. Especially with anti-TB drugs, the drug–mycobacterial interaction can be measured
more precisely than in vivo since the influence of the immune system is absent in such
models. On the basis of drug exposure and bacterial concentration these in vitro models can
be classified into static models and dynamic models.

Static models
As the name suggests, static models evaluate how a bacterial culture responds to a constant
environment with a fixed antibiotic exposure. Since there is no exchange of medium in these
systems and bacteria utilize the same medium during the course of the experiment, their
growth is limited by nutrition, space, aeration and toxic metabolites in addition to the effect
of the antibiotic [13]. However, MIC determined from such a setup is the most prevalent and
best-understood in vitro PD parameter for antibiotics, which is used routinely to track
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antibacterial resistance in clinical isolates [8]. Although these models have been extensively
used [16–20], they cannot provide information on the time course of antimicrobial activity
under varying antibiotic concentrations as observed in vivo, and since MIC determination
depends on the number of bacteria at a given time point, many different combinations of
growth and kill rates can result in the same MIC [13]. However, these models when studied
with a range of constant antibiotic concentrations over a period of time, can provide useful
information on the kill kinetics, which approximates a constant infusion scenario of an
intravenous antibacterial agent in vivo.

The application of such models for studying the PK/PD relationships of the anti-TB agents
rifampin (RIF) and isoniazid (INH) and fluoroquinolones such as moxifloxacin (MXF),
ofloxacin, sparfloxacin and ciprofloxacin (CIP) has been reported by Jayaram et al. [21–23]
and is presented in Figure 2A. The kill kinetics were determined in BACTEC 7H12B
medium, followed by plating on 7H11 agar plates to obtain colony counts. The Mtb culture
was inoculated into BACTEC vials that were monitored daily by a radiometric detection
method using the BACTEC TB 460 system, where the mycobacterial growth is determined
by the utilization of 14C with release of 14CO2 by the multiplying bacteria. Fixed drug
concentrations ranging from high to low were added to the vials and samples from the
cultures with each concentration along with a drug-free control were plated over 9 days to
determine the CFU per milliliter. Time–kill curves were plotted and analyzed for the rate
and extent of bacterial killing. Rate of killing was determined from the start of experiment to
the time of maximal reduction in the log10 CFU/ml, and in vitro dose–response curves were
obtained by plotting the log10 CFU/ml against the ratio of the concentration to its MIC in
broth (Cbroth/MIC). Each fixed concentration of the drug was multiplied by the time of
exposure to get AUC, which was then divided by MIC in broth to obtain the AUC/MIC
index. The results from these studies allowed the authors to quantify PD parameters that
could describe the in vitro bactericidal efficacy and indicated AUC-dependent killing for
RIF, concentration-dependent killing for INH and time-dependent killing for the
fluoroquinolones.

Dynamic models
Any typical dosage regimen for anti-TB drugs involves periodic administration of the
antibiotic with varying drug concentrations at the effect site owing to in vivo absorption,
distribution and particularly clearance mechanisms. As bacteria react to these changing
concentrations differently than to exposure to constant concentrations, it is important to
mimic similar conditions in vitro to understand the rate and extent of bacterial kill by the
respective antibiotic under these conditions. Dynamic models utilize time–kill curves, which
follow the microbial killing and growth as a function of both time as well as antibiotic
concentration. These dynamic models used to study the PK/PD of anti-TB agents can be
further differentiated as follows.

Type I: models without filters involving bacterial loss, where the mechanism
of drug loss involves dilution—In order to simulate in vivo drug clearance, a
systematic loss of drug from the model becomes essential. This was usually achieved in
early models via dilution performed in a stepwise or continuous manner. To a culture vessel
containing actively growing bacteria, a known volume of culture was either substituted with
fresh medium lacking the antibiotic at fixed intervals or it was infused using a peristaltic
pump where the excess was directed into waste. Although these models mimicked a one-
compartment PK model, they suffered from dilutional loss of bacteria [9,24]. Loss of
bacteria from the model leads to a bias that can be corrected using mathematical equations
[25,26]. However, for slow-growing organisms, the resulting bias may be substantial and
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inadequate for mathematical correction. Therefore, no such models have been reported so
far for studying anti-TB agents.

Type II: models with filters involving no bacterial loss, where the mechanism
of drug loss involves dilution—The use of filters or membranes that do not allow the
bacteria to be washed out are alternative approaches to overcome the issue of bacterial loss.
A modified version of type I models involving a filter to prevent bacterial loss and a stirrer
to prevent blockage of the filter membrane and to maintain the homogeneity of the culture
has become popular to study the effects of antibiotics. One such model to evaluate time–kill
curves of anti-TB drugs against mycobacteria has recently been reported by Budha et al.
[27].

The in vitro system, as shown in Figure 2B, consisted of a two-armed, water-jacketed
spinner culture flask, where a filter unit consisting of a prefilter (5 μm) and filter membrane
(0.22 μm) was used to prevent leakage of bacteria during the dilution process. One of the
arms covered with silicone septa was used for dosing and repeated sampling. The other arm
was connected to a reservoir containing antibiotic free sterile medium. The whole filter unit
was suspended into the media from the top via a hollow steel tube whose outlet was
connected to a peristaltic pump to continuously withdraw the medium at a constant rate. The
flask was placed on a magnetic stirrer, which ensured homogeneity of the culture and also
prevented membrane pore blockage. The temperature in the flask was maintained at 37°C
for bacterial growth by attaching a thermostatic water circulator to the water jacket of the
flask. In this model, mycobacteria were exposed to INH concentration–time profiles as
encountered during multiple dose regimens with 25, 100 and 300 mg/day in humans who are
either fast or slow INH metabolizers and the resulting time–kill curves were obtained. The
different elimination half-lives (t1/2) of INH in slow versus fast metabolizers were simulated
in the model by varying the flow rates of the medium. The results from this study indicate
that AUC0–24/MIC is the most explanatory PK/PD index for the antimicrobial effect of
INH.

Type III: hollow-fiber models involving no bacterial loss, where the
mechanism of drug loss involves diffusion—In spite of the modifications in type II
models, membrane pore blockage could be a problem that becomes more pronounced when
antibiotics with short half-lives are studied, since the flow rate across the filter is higher
[28]. In order to overcome this problem, a diffusion or dialysis of the drug to create the
desired antibiotic concentration profile in a separate bacterial compartment has been
employed by several groups [29–31].

Gumbo et al. published several studies of the anti-TB agents RIF, INH, MXF and
pyrazinamide (PZA) utilizing a hollow-fiber bioreactor system, which is an example of a
diffusion model. Hollow-fiber systems represent a two-compartment model. The central
compartment of the hollow-fiber system is composed of the central reservoir, the inner
lumina of the hollow fiber capillaries, and the oxygen-permeable flow path connecting the
central reservoir to and from the hollow fibers. The peripheral compartment is the space
outside the hollow-fiber capillaries that is enclosed by an impermeable plastic encasement.
The hollow-fiber bioreactor system allows Mtb to grow in the peripheral compartment of a
hollow-fiber cartridge. This peripheral compartment is separated from the central
compartment by semi-permeable hollow fibers, with pore sizes that selectively allow
transfer of nutrients, drugs and bacterial metabolites but restrict bacteria from leaving the
peripheral compartment, as shown in Figure 2C. In these experimental systems,
sophisticated computer controlled peristaltic pumps are used to administer drugs via a
dosing port and fresh 7H9 broth is pumped into the afferent port of the central compartment
of the hollow-fiber system, while drug-containing media is isovolumetrically removed from
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the efferent port of the system at rates programmed to simulate the drug half-life
encountered in humans. These in vitro models were used to study a wide variety of issues
such as selection of MXF doses that suppress drug resistance [32], understanding reasons for
failure of CIP [33] and INH treatment [34], predicting efficacy of INH in different ethnic
populations [35] and evaluating the PK/PD parameters of RIF [36] and PZA [37]. Dose-
effect and dose-scheduling studies were also performed with ethambutol to identify
exposures and schedules linked to optimal kill and resistance suppression [38].

In spite of these advancements, there are limitations associated with the use of the hollow-
fiber bioreactor models. These bioreactors are complex and difficult to sterilize between
experiments and, hence, new hollow-fiber cartridges are recommended for every study. This
makes these studies very costly. Furthermore, nonspecific drug binding to the hollow-fiber
capillaries has been reported to result in potentially substantial errors [27].

Perspectives relevant to drug development
The use of in vitro models in drug development has increased tremendously recently.
Several scenarios for evaluating the activity of new molecules can be studied using these
models. Since MIC does not provide any information on the persistent effects of antibiotics,
inhibitory effects that persist after exposure to an antibiotic can be studied. In addition, anti-
TB therapy is a combination of several antibiotic agents that is further complicated when
treating patients co-infected with HIV, and it is challenging to study the different drug
combinations in vivo from a drug-development perspective. Whole-blood bactericidal
assays, serial sputum colony counting and liquid culture have been used in Phase II studies
to examine different combinations of drugs, albeit not exhaustively and only with specific
regimens of particular interest. In vitro models are reasonably simple to quantitatively assess
the efficacy of such combinations and to perform more comprehensive experiments
addressing these questions. Since it is relatively easy to study antimicrobial activity of drugs
against different strains of bacteria in these systems, these models may also serve as useful
tools to study the emergence of resistance and help identify novel drugs or combinations
thereof to treat drug-resistant strains.

Owing to the fact that these in vitro PK/PD techniques are relatively new in the area of anti-
TB drug development and tedious to work with because of the long doubling times of
mycobacteria, few or no studies have been reported pertaining to the following three
sections. Hence, we provide an insight into how these scenarios can be explored in the future
using such in vitro models.

Post-antibiotic effect
The rate of bacterial killing and time before regrowth of surviving bacteria influences the
design of an optimal dosing interval. Post-antibiotic effect (PAE) refers to the continued
suppression of bacterial growth following limited exposure of organisms to an antibacterial
agent [39]. It can be demonstrated in vitro by observing bacterial growth after a drug is
removed. The standard method to quantitate PAE is to calculate the difference in time
required for drug-exposed and control cultures to increase one log10 above the number
present immediately after withdrawal of the antibiotic [40]. The PAE using bacterial counts
as a parameter is calculated by PAE = T–C, where T is the time required for bacterial counts
of drug-exposed cultures to increase one log10 above the counts observed immediately after
washing/dilution and C is the corresponding time required for counts of untreated cultures
[41].

Post-antibiotic effect has been used to determine the optimal interval between dosing and is
the basis of twice or thrice weekly therapy for TB. Administration of drugs at less frequent

Vaddady et al. Page 6

Future Med Chem. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dosing intervals may not only improve patient compliance, but may also reduce toxicity and
costs involved in the treatment. Studies performed using static models with INH, RIF,
streptomycin, ethambutol, rifapentine and MXF have each demonstrated post-antibiotic
effects against Mtb [42,43]. Prolonged PAEs are usually observed with antibiotics that are
inhibitors of protein synthesis or nucleic acid synthesis. In other words, concentration-
dependent antibiotics tend to have larger PAEs [14]. For drugs with concentration-
dependent bactericidal action, the rate of bactericidal activity is maximal at the Cmax and
higher doses of the drug not only increase the rate of reduction of bacteria, but also the
length of time of drug exposure to bactericidal concentrations. Therefore, the higher the drug
concentration, the longer the duration of the PAE for these drugs, and the smaller the size of
the residual bacterial population at the time of the next dose [43]. Hence, from a PK/PD
standpoint, large doses can be administered at longer dosing intervals because prolonged
PAE protects against the bacterial re-growth when concentrations fall below the MIC.

Bacteria exposed to sub-MIC concentrations of antibiotics may undergo adaptive changes
with modifications in cell wall structure, changes in ribosome density or formation of
filaments. In addition to morphological changes, sub-MICs may also have a direct inhibitory
effect on the bacterial growth in vitro [44]. Post-antibiotic sub-MIC effect (PA SME) is
another useful parameter that measures such effects of sub-MIC drug concentrations on
bacterial growth following serial exposure to drug concentrations exceeding the MIC. This
can be calculated as PA SME = Tpa−C, where Tpa is the time taken for the cultures
previously exposed to antibiotics and then exposed to a sub-MIC to increase by one log10
above the counts observed immediately after washing/dilution and C is the corresponding
time for the unexposed cultures [41]. Ginsburg et al. reported PAE properties of
fluoroquinolones against Mtb using an in vitro PK/PD model [45]. By simulating PK
parameters in humans, they determined the PAE of a single 400 mg dose of MXF on Mtb to
be over 1 week compared with a PAE of greater than 15 days in a traditional static in vitro
study of MXF after an exposure period of 24 h. Thus, such models can be effectively used to
evaluate the post-antibiotic effect of existing antimycobacterial agents by simulating a
particular dosing regimen in vitro and studying the growth and kill rates after cessation of
that specific therapy.

Evaluation of combination therapy
Simultaneous administration of antibiotics is always practiced in anti-TB therapy owing to
the high potential for the development of TB drug resistance using monotherapy and the
differing drug sensitivities of active and latent populations of the TB bacilli found within an
established infection. There has also been substantial interest in novel combinations of new
compounds with existing drugs to block the emergence of drug resistance and to shorten the
duration of therapy. Testing new drugs or drug combinations for activity against TB in vivo
is a highly expensive and time-consuming process in animal models, and is largely
prohibitive in humans for ethical reasons. In vitro models provide an inexpensive and rapid
alternative for optimizing drug combinations before they proceed to preclinical or clinical
testing. They also allow a high degree of standardization to study drug–receptor interactions
without other interfering biological processes.

There are several existing methods to study antibiotic combinations in vitro. These include
checkerboard techniques with tube dilutions or microtiter apparatus, the agar dilution
method and various forms of disc proximity tests and paper strip methods [12,46–48].
However, all these methods involve constant concentrations of antibiotics to evaluate their
activity.

When studying the combination of drugs and their time–kill curves in in vitro PK/PD
models, differences in their PK properties can be taken into account. One of the major

Vaddady et al. Page 7

Future Med Chem. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



setbacks in this approach, however, is the complexity involved in effectively simulating
concentration–time profiles of drugs with different half-lives. In spite of these intricacies, in
vitro PK/PD models for simultaneous simulation of serum kinetics of two or more drugs
with different half-lives have been developed against fast growing organisms such as
Streptococcus pneumonia and Staphylococcus aureus [49–53]. Although no examples have
yet been reported for mycobacteria, similar models could likely be used to evaluate the
synergistic potential of novel combinations of anti-TB agents.

Resistance
Emerging resistance threatens the usefulness of available treatment options against the
multidrug-resistant mycobacteria. For example, MDR-TB takes approximately 18–24
months of therapy for complete cure as compared with a 6-month therapy against a
susceptible strain. This prolonged duration of therapy is oftentimes also associated with
severe toxicity related to the applied second-line agents leading to poor patient compliance.
Thus, it is desirable to develop novel drugs or drug combinations that are safe and effective
against MDR strains. In vitro PK/PD models can be effectively used to study such resistant
clinical isolates for developing new molecules or new regimens with existing drugs.
Conditions that can lead to resistant strains can be simulated and such resistant strains can be
further studied.

Tam et al. used a hollow-fiber model to examine the relationship between garenoxacin (a
desfluoroquinolone) and the likelihood of selecting resistant strains with different and
escalating free AUC over 24 h (AUC24)/MIC exposures of the drug for 48 h [54]. The
authors suggested that low AUC24/MIC ratios between 10 and 35 were optimal for
maximally amplifying the pre-existing resistant subpopulation. Exposures in excess of these
ratios amplified the resistant subpopulation suboptimally, until an exposure was achieved
that kept the number of resistant clones at or below the number present at the initiation of
the therapeutic pressure resulting in an ‘inverted-U’ shape for the function linking drug
exposure to suppression of the resistant subpopulation.

Mutant prevention concentration (MPC) defines the antimicrobial drug concentration
threshold that would require an organism to simultaneously possess two resistance mutations
for growth in the presence of the drug. For M. bovis BCG, the MPC is estimated by
determining the minimal antibiotic concentration that results in recovery of no mutants when
large numbers of cells are applied to antibiotic-containing agar plates. The use of large
numbers of cells on the order of 1010 ensures that the restrictive antibiotic concentration
blocks the growth of first-step mutants [55].

In one of the studies, the association between MPC-based PK/PD parameters (AUC/MPC,
Cmax/MPC or T > MPC) and emergence of resistant mutants of Streptococcus pneumoniae
was evaluated for fluoroquinolones using an in vitro PK/PD model. The results from this
study identified AUC0–24/MPC and Cmax/MPC indices to be associated with emergence of
resistance [56]. Although no such studies have been performed using mutant Mtb for
emergence of resistance against antimycobacterials, it is plausible to evaluate these
scenarios using in vitro PK/PD models.

Population analysis profiling is a specialized technique initially developed to detect
vancomycin resistance, but it can be applied to study drug-resistant Mtb strains. This
technique compares the AUC of viable counts versus the concentration profile of a strain
under study against a control-resistant strain after a given period of incubation. Based on this
ratio, one can determine whether the test strain is a resistant one or not.
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For example, in case of vancomycin-resistant Staphylococcus aureus, a ratio of AUC of a
test strain against AUC of a hetero-resistant control strain Mu3 is calculated. This ratio
exceeding 0.9 is used as a criterion to establish a vancomycin hetero-resistant S. aureus
[57,58]. In vitro PK/PD models can be used to perform such analyses. They can also be used
to study the population dynamics of the susceptible and resistant strains over time following
a particular dosage regimen [15]. Although no such reports have been published so far for
anti-TB drugs, similar studies can be performed using MDR-TB and XDR-TB in order to
establish effective dosing regimens against drug-resistant strains.

PK/PD data analysis
Pharmacokinetic/PD modeling and simulation techniques are increasingly used in drug
development in a variety of indications. Such techniques allow characterizing the time
course of the effect intensity resulting from a certain dosing regimen [2] and have been
widely applied to antibiotics for evaluating their PDs (their initial rate of the bacterial killing
and the regrowth of bacteria) and to obtain a relevant PK/PD index that correlates with a
therapeutic outcome.

Mathematical modeling of drug effects maximizes the information gained from an
experiment, provides further insight into the mechanisms of drug effects and allows for
simulations in order to design studies or even derive clinical treatment strategies [59].
Modeling approaches can be classified into mechanism-based or empirical.

Mechanism-based modeling for estimating PK/PD parameters
A mechanistic model is by definition a mathematical model based on known or
hypothesized mechanisms of behavior of a biological system. The parameters are in
accordance with PK, physicochemical, biophysical, physiological and pathophysiological
principles, and have direct identifiable biological or biophysical interpretations [60].
Mechanism-based models for antimicrobials utilize drug concentrations and relate them to
their effect. They are commonly applied to estimate the PK/PD parameters of antibiotic
drugs and have to include at least a submodel of microorganism replication, a submodel of
antimicrobial drug effects and a submodel for changing drug concentrations (PK submodel)
[59]. Since these models are limited to in vitro data, a host defense submodel is usually not
included.

The submodel for microorganism replication is most commonly modeled using Equation 1:

Equation 1

where N is the number of microorganisms and the first-order rate constants kreplication and
kdeath describe natural replication and death of microorganisms in the absence of
antibacterial agents. This model, however, is based on the underlying assumption that the
number of microorganisms, N, that can replicate is the same as the number subjected to
death. In addition, this model cannot adequately describe the decrease in the net growth rate
as the system approaches the stationary phase of bacterial growth. kgrowth or kapparent, a first-
order rate constant for observed growth, which is the difference between kreplication and
kdeath is often applied because of difficulties in separating microorganism replication and
death by a traditional kill curve analysis [59].

Increased knowledge regarding the production and the nature of persister cells, for example,
cells with reduced growth rates and reduced antibiotic susceptibilities, can be efficiently
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applied to build mechanism-based PK/PD models [61]. Nielsen et al. described a
semimechanistic PK/PD model for assessment of antibacterial agents where the total
bacterial population was divided into growing (S) and resting (R) population, allowing a
transfer from the growing population to the resting population as the total population
approaches the stationary phase. Mathematically this can be modeled using Equations 2 & 3:

Equation 2

Equation 3

where kSR is the transfer rate constant [62]. To incorporate the antimicrobial effect, a
submodel of antimicrobial drug effect relating the drug concentrations to the microbial
survival is often described using Equation 4:

Equation 4

The Emax model can be used to describe drug concentration and its effect on replication and
death rate of the bacteria. The maximum effect obtained when determining a concentration–
effect relationship (Emax) and the concentration required to produce half-maximal effect
(EC50) are PD parameters used in defining the Emax model. The Emax model can also be
used to describe the relationship between a PK/PD index and the effect. Drug effect
decreasing the replication rate (Ereplication) can be modeled using an inhibitory sigmoid Emax
model shown in Equation 5:

Equation 5

where Imax is the maximum inhibitory effect, C is the drug concentration, γ is the Hill
coefficient and IC50 is the concentration that produces half-maximal inhibition.

Drug effect leading to increased death rate (Edeath) can be modeled using a stimulatory
sigmoid Emax model in Equation 6:

Equation 6

where Emax is the maximum stimulatory effect, C is the drug concentration, γ is the Hill
coefficient and EC50 is the concentration that produces half-maximal stimulation leading to
death.

It is well known that bacteria show different growth phases and that antibiotic-induced
killing often shows an initial phase with rapid killing, followed by a decline in the killing
rate with time. Therefore, ignoring the replication inhibition and including stimulation of
death rate in Equation 4 leads to Equation 7, as shown below:
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Equation 7

with observed growth (kgrowth = kreplication − kdeath) and a maximum kill rate (kkill or kmax =
kdeath·Emax), this equation can be further transformed into the most frequently applied PK/
PD model for antibacterial drugs (Equation 8) [59]:

Equation 8

The PK submodel describes the relationship between dose or dosing regimen and drug
concentrations with time. Depending on the in vitro setup, this can be modeled as a one-
compartment model or a multicompartment model. Assuming dosing by an intravenous
bolus administration, a general form of the model can be defined as in Equation 9:

Equation 9

where A1 to An are correlation coefficients, α1 to αn are first-order rate constants and n
denotes the number of compartments. This submodel can also be applied to approximate the
concentration–time profiles for orally administered drugs that are rapidly absorbed.

Budha et al. reported the relationship between INH exposure and mycobacterial kill using a
modified version of Equation 8, as shown in Equation 10, which was initially developed for
voriconazole against Candida isolates [27,63]:

Equation 10

where N is the mycobacterial cell counts in CFU/ml, k0 is the bacterial net growth rate
constant, Nmax is the maximum number of bacteria in the system in CFU/ml, Imax is the
maximum kill rate, C is the concentration of INH at time t and IC50 is the concentration at
half-maximal kill rate. A logistic growth function, 1-N/Nmax was used to describe the limited
growth of bacteria in the absence of INH.

The authors reported a delay in bacterial kill, which is likely due to the time necessary to
achieve sufficient intracellular drug exposure to initiate the killing process that was modeled
using the term, 1−e−α·t, where α is the delay rate constant.

When studying PDs of antibiotics against Mtb, an adaptive IC50 is often used [27,35,63].
This model component is necessary to explain the change in IC50 over the course of
treatment due to an increase in drug insensitive cell population; for example, due to latency
for Mycobacterium species. The adaptive IC50 can be modeled using Equation 11 below:

Equation 11

where IC50,A is the adaptive IC50, N0 is the number of bacterial cells at time zero, N is the
cell count in CFU/ml, kadaptation is the adaptation constant and IC50 is the baseline IC50.
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Gumbo et al. reported a mechanistic PK/PD model for MXF [32], which has been further
applied in modeling INH [34] and RIF [36] PK/PD data. The resultant changes in the drug-
resistant [R] and the drug-sensitive [S] Mycobacterium TB population were described using
Equations 12 & 13 below:

Equation 12

Equation 13

where each subpopulation has an independent growth rate constant (drug sensitive, kgmax-S,
drug resistant, kgmax-R). Bacteria at the site of infection that were in the logarithmic growth
phase in the absence of drug exhibited an exponential density-limited growth rate described
by Equation 14:

Equation 14

where E is the logistic growth term, and the maximal bacterial density (POPMAX) is
identified as part of the estimation process. The authors allowed drug to affect the growth
rate independently of kill through a saturable Michaelis–Menten-type kinetic event (L) and
the killing effect of the drug was modeled as a saturable Michaelis–Menten type kinetic
event (M) that relates the kill rate to drug concentration, where C50-g and C50-k is the drug
concentration at which the bacterial growth or kill rate is half-maximal, as described in
Equations 15 & 16:

Equation 15

Equation 16

where H is the slope constant, X1 and X2 are the amounts of drug in the central and the
peripheral compartments of the hollow-fiber system, respectively, and Vc is the volume of
the central compartment of the hollow-fiber system. For drug-sensitive and -resistant
populations as expressed in Equations 13 & 14, there are separate terms for H, C50-g and
C50-k.

Empirical modeling for identifying appropriate PK/PD indices
An empirical model is a nonmechanistic model whose parameters may be adequate for
describing the longitudinal data at hand, but does not take the underlying biological
mechanisms into account. It can be predictive when used in conditions sufficiently similar to
the ones already studied, but has usually limited predictability beyond these conditions [60].
A typical empirical modeling exercise utilizes a time-integrated measure of exposure, such
as AUC or dose, from in vitro time–kill experiments to determine the primary PK/PD index
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responsible for the antibacterial effect and to understand whether a molecule exhibits a time-
or an exposure-dependent killing pattern.

AUC/MIC, Cmax/MIC and T>MIC, as discussed in the previous sections, are the three most
commonly used PK/PD indices to evaluate antibacterial effects. Using a combination of
dose escalation, fractionation and different strains, one can identify the best suitable index
related to the antibacterial effect for a specific compound [15]. A sigmoid inhibitory dose–
response model is one of the most frequently used models to characterize antimicrobial
activity. For instance, in one of the recent studies for identification of the most appropriate
empirical PK/PD index associated with the microbial kill of the first-line anti-TB agent INH,
viable cell counts on different days following multiple dosing of INH were analyzed using
an inhibitory Emax model shown in Equation 17:

Equation 17

where E is the observed M. bovis BCG cell counts in log10CFU/ml, Econtrol is the cell count
in the control experiment, and Emax is the maximal anti-microbial effect in log10CFU/ml.
EC50 is the value of the PK/PD index that produces half-maximal antimicrobial effect and
PK/PD is one of the empirical PK/PD indices AUC0–24/MIC, T>MIC or Cmax/MIC. INH
exhibited exposure-dependent antibacterial activity on M. bovis BCG where the empirical
PK/PD index AUC0–24/MIC was found to be well associated with the microbial kill [27].

For the first-line anti-TB agents INH, RIF and PZA and second-line fluoroquinolones and
aminoglycosides, a concentration-dependent killing pattern that correlates best with AUC/
MIC ratio is shown to be a reliable predictor of efficacy [27,32–37].

Drawbacks of in vitro models
In spite of the potential advantages of in vitro models discussed in this manuscript, these
models are obvious simplifications of in vivo scenarios and therefore come with certain
drawbacks that cannot be ignored. These can be classified under host factors, pathogen
factors and PK factors.

Host factors
The host immune system plays a major role in TB. Most infected immunocompetent
individuals fail to progress to full-blown disease because the Mtb bacilli are directly killed
by macrophages or walled off by the immune system inside a tissue nodule known as a
granuloma. The granuloma’s primary function is to contain and prevent the dissemination of
the mycobacteria [64]. Human tuberculous granulomas contain an organized collection of
differentiated and activated macrophages, T-lymphocytes, some B-lymphocytes, dendritic
cells, neutrophils, fibroblasts and extracellular matrix components that limit nutrient
delivery to the core [65]. Bacteria are often found multiplying inside macrophages around
the edge of the necrotic center of a granuloma. In vitro PK/PD models lack the ability to
mimic this complex host-defense mechanism and therefore approximate more to conditions
of an immunodeficient patient where the infection is more bacteremic in nature [9].
However, during the reactivation phase of the disease, the majority of the bacilli in
pulmonary cavities reside extracellularly [66] and, hence, the results obtained from in vitro
models may be reflective of the in vivo killing under this condition.

Besides the lack of immune response, physiological conditions also vary between in vivo
and in vitro setups leading to differences in anti-TB activity. For example, the front-line
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anti-TB drug pyrazinamide is inactive in normal culture conditions and is only active at
acidic pHs that are thought to mimic those experienced by bacteria in activated
macrophages. The TB granuloma is also believed to be subjected to a gradient of
microaerophilic/anaerobic conditions that limit growth. Since these conditions are
technically difficult to simulate in vitro, antibacterial efficacy can differ significantly
between the in vitro model and the in vivo environment.

Pathogen factors
The growth rate for most bacteria is faster in vitro compared with growth in vivo or in
human serum. Since antimicrobial efficacy in an in vitro model relates to the rate of
bacterial growth, this can be a potential limitation of in vitro models, especially when there
are significant differences in the growth rates [67,68]. Biochemical data suggest that Mtb
growing in vivo upon granuloma formation shifts to anaerobic metabolic pathways. It has
also been demonstrated that tubercle bacilli are able to shift into a nonreplicating drug-
tolerant state when nutrients are depleted. This process gives Mtb the capability to lie
dormant in the host for long periods of time and this results in differences in growth
conditions in vitro and in vivo [69].

Furthermore, the growth rate of Mtb within the infected host varies according to the type of
lesion, such as extracellular and actively multiplying bacilli in the liquefied caseous material
covering the cavity wall, semi-dormant bacilli with intermittent bursts of metabolic activity
inhabiting solid caseous material and a small population of bacilli within the acidic
environment around the areas of active inflammation or necrosis. The growth characteristics
within each lesion result in differing susceptibility to specific anti-TB agents [70] and
simulating such varying populations in vitro is very challenging. Only a few studies have
been reported so far where different metabolic populations of Mtb growing under acidic
conditions and under anaerobic/hypoxic conditions have been subjected to anti-TB drug
treatment using in vitro PK/PD models [37].

PK factors
Drug distribution is technically challenging to simulate in vitro. Using complex in vitro
setups, one can approximate the in vivo elimination process of the drug, but the model may
not truly represent the in vivo drug distribution. Plasma protein binding of the antibiotic is
absent in in vitro models and needs to be accounted for. Thus, free drug concentrations
relevant to the site of infection must be simulated. Although this is feasible, protein binding
in vivo is a dynamic process and can be altered due to co-existing disease conditions or the
presence of other drugs, which is challenging to simulate in vitro.

Future perspective
With the increasing incidence of MDR-TB and XDR-TB cases, it is more than ever pressing
to develop new anti-TB drugs and evaluate combinations of these new drugs with existing
anti-TB agents to block the development of drug resistance and shorten TB therapy. The
path to new antibiotic drug discovery and development is a long and expensive procedure
and major tools are needed to expedite this process.

In vitro PK/PD models serve as useful tools to evaluate the efficacy of such new anti-TB
drugs under development. Since they come with benefits of reduced cost, flexibility and
adaptability, they can be used to guide the early drug development process and establish
efficacy in experimental disease models. As advances in the technology associated with the
currently existing in vitro models are made, these models will become more efficient to
evaluate in vivo scenarios. From predicting the relevant PK/PD indices to studying the effect
of novel therapeutics on resistant clinical isolates, these in vitro models in combination with
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preclinical data can not only help in optimizing dosing regimens that can drive efficacy, but
can also help in a bench to bedside translation of newer classes of anti-TB agents. In spite of
the potential drawbacks associated with in vitro models, the wealth of information they
provide will be exploited to understand mechanisms of drug resistance and develop new
drugs that can target resistant strains. Associated mathematical modeling and simulation
techniques will allow the prediction of outcomes for new scenarios and thus allow
improving study designs for expensive preclinical and clinical studies, thereby optimizing
the use of limited development resources and accelerating the project progression.

In vitro PK/PD models will also likely be more often applied in academic research and
clinical settings. Utilizing such models may help clinicians optimize dosing regimens for
new drugs or combinations thereof with existing anti-TB therapies and, thus, improve
available treatment options for TB patients, especially those with MDR-TB, thereby
producing better treatment outcomes and ultimately getting one step closer to eradicating
TB.

Key Terms

Pharmacokinetics Describes the time course of concentration of a drug resulting
from administration of a dosage regimen and accounts for its
absorption, distribution, metabolism and excretion in the body

Pharmacodynamics Describes the intensity of drug effect in relation to its
concentration. In the context of anti-infective therapy, it defines
the effect of the drug on the pathogen residing in the host
organism

In vitro PK/PD model Static or dynamic system that can mimic in vivo conditions of
changing drug concentrations, designed to evaluate the efficacy
of antibiotics in vitro

Time–kill curves Profiles that follow the microbial killing and growth as a
function of both time as well as antibiotic concentration

PK/PD index Composite of a PK parameter such as area under the plasma
concentration–time curve or maximum plasma concentration and
a microbiological parameter such as minimum inhibitory
concentration
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Figure 1. Commonly used pharmacokinetic/pharmacodynamic indices
AUIC: Area under the inhibitory curve; AUC: Area under the curve; Cmax: Maximum
plasma concentration; T > MIC: Time above minimum inhibitory concentration.
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Figure 2. In vitro pharmacokinetic/pharmacodynamic models for anti-tuberculosis agents
(A) Static model where C1–5 denote a series of concentrations of a drug and T1–4 denote
times at which aliquots of mycobacteria are plated for every given concentration of drug. (B)
A dynamic model with filter assembly involving no bacterial loss and the mechanism of
drug loss involves simple dilution by the media. (C) A hollow-fiber model where there is no
bacterial loss and the mechanism of drug loss involves diffusion into the extracapillary
compartment.
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