In vitro studies of Brachyspira pilosicoli pathogenesis

Ram Naresh BVSc & AH, MVSc (Medicine)

Division of Health Sciences

School of Veterinary Biology and Biomedical Sciences

Murdoch University, Perth 6150

Western Australia

This thesis is presented for the degree of

Doctor of Philosophy

Veterinary Microbiology

Murdoch University

2010

i

This thesis is dedicated to

My Late Father (Appa) A Man of Moral Values

You proved that an illiterate father and farmer can educate his son very well You were always reluctant to send me away from home But you never stopped me and I kept on crossing seas You were my best teacher to introduce me in this world You taught me at the very beginning to be respectful and kind I am still living very happily on your philosophies You were a man of big heart, no one ever saw you in tears or crying Sorry I was not around at the last day of your life Though you are immortal father

My Late Mother (Amma) Great Animal Lover

You were the best animal lover I could ever see in my life, I still remember those broken leg dogs you used to bring home You treated them as an ancient veterinarian You fought several people for animal cruelties You were skilled to communicate with animals I always feel that I became a veterinarian to represent your traditional skills through university education You were more than a mum for many children in the community Perhaps you knew my future and asked me to learn cooking I laughed at you. I learned cooking during my Australian PhD! You were not a quitter in any situation

My lovely daughters

Chelsi (Anvesha) and Khushi (Aduesha) Little puppies you were my rare emotional strength in Australia during this PhD You both sacrificed in many ways Love You Both Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Ram Naresh

Abstract

Brachyspira pilosicoli is an intestinal spirochaete that colonizes the large intestine of a variety of species of birds and animals, including human beings. Colonization can lead to local inflammation and to diarrhoea in a condition known as "intestinal spirochaetosis". This infection has been described in many countries throughout the world. In the colonization process the bacterium must cross the thick mucus blanket overlaying the colonic epithelium. Characteristically, *B. pilosicoli* then attaches by one cell end to the underlying epithelium, forming a dense "false brush border". The mechanisms involved in moving through the mucus layer, attaching to enterocytes and inducing local cellular damage are poorly understood. The lack of *in vitro* models to study these events has been a major constraint to understanding the pathogenesis of *B. pilosicoli* infections.

The work described in this thesis deals with i) the development of an *in vitro* model of spirochaete attachment by using cells in suspension (erythrocytes) and cell monolayers (Caco-2), ii) the attraction of *B. pilosicoli* to mucin, and iii) the effects of norepinephrine exposure on expression of virulence traits by *B. pilosicoli*.

Attachment assays conducted with erythrocytes from different species at different ratios and time intervals identified one human isolate (WesB) that

adhered to goose and chicken erythrocyte at a 1:1000 ratio. This same strain, and an isolate from a pig (95/1000) also attached to Caco-2 cells. Transmission and scanning electron microscopy confirmed that the attachment resembled the *in vivo* situation. Exposure of the Caco-2 cells to *B. pilosicoli* resulted in actin rearrangements, damaged cell junctions and apoptosis. Caco-2 cells that were colonized with *B. pilosicoli* also demonstrated a significant up-regulation of interleukin-1ß (IL-1ß) and IL-8 expression, helping to confirm that the spirochaetes were inducing pathological changes in the cultured cells. Treatment of the monolayers with *B. pilosicoli* sonicates caused significant up-regulation of IL-1ß, TNF- α , and IL-6, but culture supernatants and non-pathogenic *Brachyspira innocens* did not altered cytokine expression. Hence II-8 expression was specifically associated with exposure to live *B. pilosicoli* cells.

For mucin attraction, 15 *B. pilosicoli* strains isolated from humans, pigs, chickens and dogs, and a control strain of *Brachyspira hyodysenteriae*, were analysed for their ability to enter solutions of hog gastric mucin in an *in vitro* capillary tube assay. Attraction started in a 2 % mucin solution, and then increased with increasing concentrations to peak at around 6 - 8 % mucin. Attraction varied from strain to strain. *B. pilosicoli* strain 95/1000 and *B. hyodysenteriae* strain B204 also were attracted to viscous solutions of polyvinylpyrillodone (PVP), in a manner mirroring the response to mucin. This suggested that as well as chemotaxis to mucin components, "viscotaxis" is involved in the attraction to mucin.

Finally, exposure of *B. pilosicoli* to norepinephrine enhanced the attachment to Caco-2 cells, chemotactic response to mucin, and spirochaete growth. Taken together, these *in vitro* studies have shed new light onto the pathogenic processes that are involved in intestinal spirochaetosis caused by *B. pilosicoli*.

Acknowledgements

This thesis work was completed in more than 4 years with the help of many people. I truly apologise for those who are left unacknowledged due to my poor memory. Please forgive me.

It gives me a sense of happiness to mention that I could notice an enormous appetite for research in my supervisor Prof. David Hampson. This work would have been impossible without your continuous and unconditional scientific, financial and moral support. Your timely initiatives and reminders on most of the research chapters enhanced the quality of this thesis. You always tried to enrich my knowledge and scientific understanding by providing books and literature. I have a great deal of respect for your true feedback, though it was frustrating sometime but was certainly fruitful at last. I always benefitted from your in-depth understanding in the area of microbiology and intestinal spirochaetes. Yes, I had problems but they were fixed amicably when and where arisen. I am deeply indebted for your all personal help on many other issues. To me it has been the most meaningful supervision I ever had. I still feel a lot more left to learn from you. It was wonderful to spent time with you as a student. Thanks!

I was the recipient of Endeavour International Postgraduate Research Scholarship and Murdoch University Research Studentship. I thank Murdoch University and the Graduate Centre staff for providing a scholarship for more than 4 years, and also for funding my Istanbul travel to attend an international conference in 2008. Big thanks to my supervisor for sponsoring part of the travel to Istanbul Conference.

I am delighted to acknowledge the help of Dr Yong Song, Post Doctorate Fellow, *Brachyspira* group for all his help with the Q-RT PCR assays to measuring cytokine specific gene expressions. A large part of my work was based on scanning and transmission electron microscopy, and this was supported by Mr Peter Fallon. Thanks Peter. Dr Kirsty Townsend, Technologist in Microbiology was another person who helped me out with a smile, all the time. Thanks for your all help Kirsty Ji. Half of the work of my thesis was based on cell culture and Linda Davies made me learn about it. Thanks Linda. I am thankful to Gordon Thompson, Ms Judy Robertson and Mr Ken Chong for valuable support.

Among the people of the Brachyspira group I must thank Dr Nyree Phillips for providing several frozen *Brachyspira* isolates and also for her help in culturing these bacteria. Special thank to Dr Tom La for all his genuine support and technical guidance. I sincerely thank Sheila, Reza Movahedi, Maswati, Erin and Belinda for their continuous support during the completion of this work. I thank Dr Alvaro Hidalgo, a Spanish visitor to the Brachyspira group for his help in editing my figures for my PLoS ONE research paper.

I would like to thank the scientific community and other staff of the Division of Medicine, Indian Veterinary Institute Izatnagar and Mukteswar campuses for their support which assisted by to travel for Australia to study for my PhD.

I am wordless to say anything for my late parents. I had the best childhood with both of you. You both were my best social teachers, motivators and carers. You both were strong believers of Karma and truth. You both gave me the best philosophies to live and also to take care of others. I will prefer worshiping you both than any god. I always feel sorry for being away from both of you after the age of 18.

If I could get anything precious out of my marriage, they are my 2 lovely daughters Anvesha and Aduesha. Both of you were the source of my real emotional strength during this work. Love you angels. I am thankful to my brothers, sisters, nieces and nephews for their support during my thesis work.

Awards and publications from thesis work

Awards

- Dean's Prize, Best Overall Poster Award. "Development of *in vitro* attachment model for *Brcahyspira pilosicoli*", Research Poster Day 2006, School of Veterinary and Biomedical Sciences, Murdoch University 2006. Sponsored by School's Dean.
- Best Poster Award. Pathogens and Parasite. Attraction of Brachyspira pilosicoli chemotaxis to mucin. Research Poster Day 2009, School of Veterinary and Biomedical Sciences, Murdoch University – 2009. Sponsored by Gene Works Pty Ltd.

Publications

- 1. **Ram Naresh** and David J. Hampson. 2010. Attraction of *Brachyspira pilosicoli* to mucin. *Microbiology (SGM)* 156:191-197
- Ram Naresh, Yong Song and David J. Hampson. 2009. The intestinal spirochete *Brachyspira pilosicoli* attaches to cultured Caco-2 cells and induces pathological changes. *PLoS ONE* 4 (12): e8352.

Presentations

- Ram Naresh, Yong Song and David Hampson. 2009. Interactions between *Brachyspira pilosicoli* and Caco2 cells. Annual Meeting of the Australian Society of Microbiology, Perth. July 6-10, 2009.
- Ram Naresh and David Hampson. 2009. Brachyspira pilosicoli chemotaxis to mucin. 5th International Conference on Colonic Spirochetal Infections in Animals and Humans, 8th-10th June, Leon, Spian.
- Ram Naresh and David Hampson. 2009. Chemotaxis to mucin by Brachyspira pilosicoli. Annual Meeting of Australian Society of Microbiology, Perth. July 6-10, 2009.
- Ram Naresh and David Hampson. 2008. Development of an *in vitro* attachment assay for the intestinal spirochaete *Brachyspira pilosicoli*. XII International Congress of Bacteriology and Applied Microbiology 5-9 August 2008, Istanbul, Turkey.
- Ram Naresh and David Hampson. 2008. Development of an *in vitro* attachment model for the intestinal spirochaete *Brachyspira pilosicoli*. Combined Biological Science Meeting, 29 August 2008, Perth, Western Australia.

Title Page	i
Dedication	ii
Thesis Declaration	iii
Abstract	iv
Acknowledgements	vii
Awards and publications from thesis work	ix
Presentations from thesis work	X
Table of contents	xi
List of Tables	xvi
List of Figures	xvii
Chapter 1: Literature Review	1
1.1 General Introduction	1
1.2 Intestinal Spirochaetes	3
1.3 Ecology and disease potential of <i>Brachyspira</i> species	5
1.3.1 Early observations on intestinal spirochaetes	5
1.3.2 Disease potential for animals	6
1.3.3 Brachyspira pilosicoli	7
1.3.3.1 Distribution of <i>B. pilosicoli</i> in animals	7
1.3.3.2 Distribution of <i>B. pilosicoli</i> in humans	8
1.3.3.3 Predisposing factors for <i>B. pilosicoli</i> infections	10
1.3.3.4 Molecular and cellular basis of <i>B. pilosicoli</i> virulence	12
1.4 In vitro attachments assays	15
1.4.1 Red blood cells	15

Table of Contents

1.4.2 Attachment of intestinal spirochaetes to cell lines	16
1.4.3 In vitro attachment assays for other pathogenic bacteria using Cac	co-2
cells	17
1.5 Cellular changes caused by other bacteria	- 20
1.5.1 Zonula Occludens (ZO)	- 20
1.5.2 Actin cytoskeleton	- 22
1.5.3 Apoptosis	24
1.5.4 Cytokines	25
1.6 Mucus, motility and chemotaxis	- 28
1.7 Effects of norepinephrine on bacterial pathogens	31
1.8 Aims and objectives	33
Chapter 2: General materials and methods	35
2.1 Brachyspira pilosicoli and Brachyspira hyodysenteriae strains	- 35
2.2 Growth of spirochaetes on solid medium	- 35
2.3 Growth of spirochaetes in liquid medium	- 36
2.3.1 Preparation of broth medium	36
2.3.2 Transfer of spirochaetes from solid medium to liquid medium	- 36
2.4 Counting spirochaetes	- 37
Chapter 3: Attachment assays with red blood cells	- 38
3.1 Introduction	- 38
3.2 Materials and Methods	- 39
3.2.1 <i>B. pilosicoli</i> strains and culture conditions	- 39
3.2.2 Source of blood and processing	39

3.2.3 Attachment assays	39
3.3 Results	41
3.4 Discussion	46
Chapter 4: Attachment assays with Caco-2 cell monolayers	49
4.1. Introduction	49
4.2 Materials and methods	49
4.2.1 Spirochaete strains and growth	49
4.2.2 Culture supernatants and sonicates	49
4.2.3 Cell cultures	50
4.2.4 Attachment assays	50
4.2.5 Electron microscopy	51
4.2.6 Preparation of Caco-2 monolayers for staining	52
4.2.7 ZO-1 and Hoechst fluorescent staining	53
4.2.8 Staining of filamentous actin	53
4.2.9 Cytokine expression assays	54
4.3 Results	56
4.3.1 Attachment to Caco-2 monolayers	56
4.3.2 ZO-1 distribution	64
4.3.3 Hoechst staining of Caco-2 cell nuclei	67
4.3.4 Actin rearrangements	68
4.3.5 Cytokine expression	71
4.4 Discussion	76

Chapter 5: Attraction of <i>B. pilosicoli</i> to mucin and other substrates	- 83
5. 1 Introduction	- 83
5.2 Materials and Methods	83
5.2.1 Animal ethics	- 83
5.2.2 Spirochaete strains and culture conditions	- 83
5.2.3 Capillary tube assays	86
5.2.4 Viscosity measurements	- 87
5.2.5 Statistical analysis	- 88
5.3 Results	88
5.3.1 Optimizing test conditions	- 88
5.3.2 Ratt values of different spirochaete strains with mucin	- 91
5.3.3 Ratt values of 95/1000 with D-serine	94
5.3.4 Ratt values of 95/1000 and B204 in relation to viscosity	- 94
5.3.5 Viscosity of caecal and colonic mucus	- 95
5.4 Discussion	- 97
Chapter 6: Effects of norepinephrine on <i>B. pilosicoli</i>	104
6.1 Introduction	104
6.2 Materials and Methods	104
6.2.1 Preparation of norepinephrine (NE) stock solution	104
6.2.2 Effect of NE on the growth of <i>B. pilosicoli</i> 95/1000	104
6.2.3 Effect of NE on <i>B. pilosicoli</i> attraction to mucin	105
6.2.3.1 NE added to the broth culture	105
6.2.3.2 NE added to chemotaxis buffer	106

6.2.3.3 NE added to 4% mucin	106
6.2.4 Effect of NE on <i>B. pilosicoli</i> attachment to Caco2 cells	- 106
6.2.4.1 Immediate effects of NE addition	· 106
6.2.4.2 Effect of cultures grown with NE	107
6.2.4.3 Quantitative scoring of attachment and statistical analysis	· 107
6.3 Results	- 108
6.3.1 Effect of NE on growth of <i>B. pilosicoli</i>	108
6.3.2 Effect of NE on the attraction of B. pilosicoli to mucin	- 109
6.3.2.1 NE added to the spirochaete culture	- 109
6.3.2.2 NE added to 4% mucin	109
6.3.2.3 NE added to the chemotaxis buffer	- 110
6.3.4 Effects on attachment to Caco-2 cells	- 111
6.3.4.1 Attachment assays with cultures of <i>B. pilosicoli</i> immediately exp	posed
to NE	111
6.3.4.2 Attachment assays with culture grown with NE	- 115
6.4 Discussion	- 117
Chapter 7: Summary, general discussion and conclusion remarks	125
References:	134
Appendix A:	- 170

List of Tables

Table 1.1 Brachyspira species and their disease potential 5
Table 1.2 Names and activities of the nine cytokines investigated in the
current thesis 27
Table 4.1 Forward and reverse primers used for cytokine amplification by
quantitative real-time PCR 55
Table 4.2 Density of attachment of B. pilosicoli cells to Caco-2 cells after 2,
4 and 6 hours incubation 57
Table 4.3 Changes in cytokine expression in Caco-2 cell monolayers
exposed for 12 hours to sterile broth, supplemented DMEM, B. pilosicoli
strain 95/1000 culture supernatant and sonicates, live B. pilosicoli 95/1000,
and live non-pathogenic <i>B. innocens</i> $B256^{T}$. The results are mean \pm standard
deviation of fold difference in gene expression measured by RT-qPCR 75
Table 5.1 Strains of <i>B. pilosicoli</i> used in the attraction assays 84
Table 5.2 Mean and standard deviation of relative attraction index (Ratt) at
seven different concentrations of porcine gastric mucin, and the number of
spirochaete cells in chemotaxis buffer tubes, for 15 strains of Brachyspira
pilosicoli after 90 minutes incubation. Cells with significant attraction to
mucin (Ratt > 2) are outlined 92
Table 5.3 Viscosities of the dilutions of mucin and polyvinylpyrillodone
(PVP) used in the attraction assays95
Table 6.1 Some suggested mechanisms by which NE may affect the growth
of different bacterial species 118

List of Figures

Figure 1.1: End-on attachment of <i>B. pilosicoli</i> to underlying enterocytes to
form false brush borders 8
Figure 3.1: Cells of <i>B. pilosicoli</i> WesB (human isolate) attached to individual
erythrocyte of goose (original magnification x 100) 42
Figure 3.2: Cells of <i>B. pilosicoli</i> WesB associated with the surface of
nucleated goose erythrocytes, agglutinating them. Phase contrast microscopy
(original magnification x 100) 42
Figure 3.3: Invaginated end-on attachment of a single cell of WesB to the
surface of a goose erythrocyte. Scanning electron microscopy (original
magnification x 10360) 43
Figure 3.4: Large numbers of cells of WesB attached to a goose erythrocyte.
Scanning electron microscopy (original magnification x 4828) 43
Figure 3.5: Non-invaginated and flat end-on attachment of WesB to a goose
erythrocyte. Scanning electron microscopy (original magnification x 11343) -
44
Figure 3.6: End-on attachment of a cell of WesB to a goose erythrocyte.
Transmission electron microscopy (original magnification x 66000) 45
Figure 3.7: Flat side of a cell of WesB attached to a goose erythrocyte.
Transmission electron microscopy (original magnification x 9700) 45
Figure 4.1: Caco-2 cells exposed for six hours with sterile broth medium.
The non-infected cells show intact tight junctions with clear boundaries.

SEM, original magnification X 2100 ----- 58

Figure 4.2: Caco-2 cells exposed with <i>B. pilosicoli</i> culture for two hours. The
B. pilosicoli 95/1000 mainly colonizes the cell boundaries. SEM, original
magnification x 2100 58
Figure 4.3: Caco-2 cells exposed for four hours. B. pilosicoli 95/1000
attachment is denser at the junctions. SEM, original magnification x 2100 -59
Figure 4.4: Most of the Caco-2 cells surface is covered by <i>B. pilosicoli</i>
95/1000 after six hours exposure. SEM, original magnification x 2100 59
Figure 4.5: Cells of WesB can be seen penetrating the outer membrane of the
Caco-2 cells (arrows). SEM, original magnification x 9800 60
Figure 4.6: Cross-sections and tangential-sections (arrows) of B. pilosicoli
can be seen at the cell junctions of Caco-2 cells. TEM, original magnification
x 5,800 61
x 5,800 61Figure 4.7: Cross-sections and tangential-sections (arrows) of <i>B. pilosicoli</i>
Figure 4.7: Cross-sections and tangential-sections (arrows) of <i>B. pilosicoli</i>
Figure 4.7: Cross-sections and tangential-sections (arrows) of <i>B. pilosicoli</i> under the Caco-2 cells membrane. TEM, original magnification x 7,900 61
 Figure 4.7: Cross-sections and tangential-sections (arrows) of <i>B. pilosicoli</i> under the Caco-2 cells membrane. TEM, original magnification x 7,900 61 Figure 4.8: Intact spirochaete cells invaginating into a pit-like structure
 Figure 4.7: Cross-sections and tangential-sections (arrows) of <i>B. pilosicoli</i> under the Caco-2 cells membrane. TEM, original magnification x 7,900 61 Figure 4.8: Intact spirochaete cells invaginating into a pit-like structure (arrows) in the Caco-2 cell membrane. TEM, original magnification x 24,500
Figure 4.7: Cross-sections and tangential-sections (arrows) of <i>B. pilosicoli</i> under the Caco-2 cells membrane. TEM, original magnification x 7,900 61 Figure 4.8: Intact spirochaete cells invaginating into a pit-like structure (arrows) in the Caco-2 cell membrane. TEM, original magnification x 24,500
Figure 4.7: Cross-sections and tangential-sections (arrows) of <i>B. pilosicoli</i> under the Caco-2 cells membrane. TEM, original magnification x 7,900 61 Figure 4.8: Intact spirochaete cells invaginating into a pit-like structure (arrows) in the Caco-2 cell membrane. TEM, original magnification x 24,500
Figure 4.7: Cross-sections and tangential-sections (arrows) of <i>B. pilosicoli</i> under the Caco-2 cells membrane. TEM, original magnification x 7,900 61 Figure 4.8: Intact spirochaete cells invaginating into a pit-like structure (arrows) in the Caco-2 cell membrane. TEM, original magnification x 24,500

Figure 4.11: Nuclei of an infected Caco-2 cells with chromatin condensation and fragmentation (arrows), consistent with apoptosis. TEM, original magnification x 5800 -----------63
Figure 4.12: Control, epifluorescent micrograph illustrating ZO-1 integrity in Caco-2 cell monolayers exposed to sterile autoclaved broth for six hours. No junctional damage can be seen. Original magnification x 100 -------65
Figure 4.13: Epifluorescent micrograph illustrating ZO-1 integrity in Caco-2 cell monolayers exposed to *B. pilosicoli* 95/1000 broth-culture for two hours. ZO1 is not as regular on the junctions as it was in control. The junctions are uneven and occasionally broken, and in some places the ZO-1 is punctuated and has moved towards the cytoplasm (arrows). Original magnification x 100 -------65

Figure 4.14: Epifluorescent micrograph illustrating ZO-1 integrity in Caco-2 cell monolayers exposed to *B. pilosicoli* 95/1000 broth-culture for six hours. The junctions are badly damaged and ZO-1 has migrated towards the cells' cytoplasm (arrows). Original magnification x 100 ------ 66 **Fig 4.15:** Epifluorescent micrograph illustrating ZO-1 integrity in Caco-2 cell monolayers exposed to sterile autoclaved broth for 6 hours. Original magnification x 100 ----- 66 **Figure 4.16:** Epifluorescent micrograph showing Hoechst staining of DNA in Caco-2 cells exposed to sterile broth for six hours. Nuclei are normal with regular chromatin distribution. Original magnification x 100 ------ 67

Figure 4.17: Epifluorescent micrograph showing exposure to 95/1000 for six hours resulted in many nuclei appearing condensed, and some showing clear chromatin fragmentation, consistent with apoptosis (arrows). Original magnification x 100 ------ 68

Figure 4.18: Epifluorescent micrographs showing actin staining in Caco-2 monolayers exposed to sterile broth for six hours (control). There is regular distribution of FITC (phalloidin) all over the monolayers, including the junctions ------ 69

Figure 4.19: Epifluorescent micrographs showing actin staining in Caco-2 monolayers after two hours incubation with *B. pilosicoli*. There are a few spots of localized actin (arrows) ------ 69

Figure 4.20: Epifluorescent micrographs showing actin staining in Caco-2 monolayers after six hours incubation with *B. pilosicoli*. The actin filaments are clearly mobilized on the junction of Caco2 cells where the bacteria attached. The actin rearrangement can be seen as round bodies distributed over the junctions (arrows) ------70

Figure 4.21: Epifluorescent micrographs showing actin staining in Caco-2 monolayers after six hours incubation with broth. The actin distribution is regular all over Caco-2 cells and junction ------70

Figure 4.22: Example of quantitation data for cycling A.FAM/Sybr for the β-actin gene ------71

Figure 4.23:	Example	of melt	data	for Melt	A.FAM/Sybr	with the	ß-actin
gene							71

Figure 4.24: The quantitative expression of IL1- β by Caco-2 cells at different time intervals after B. pilosicoli and B. innocens exposure. The expression remained unaltered in the case of *B. innocens* but increased significantly (P <0.05) in the case of *B. pilosicoli* after 8 and 12 hours, and were significantly (*P* < 0.05) higher than *B. innocens* ------ 72 Figure 4.25: The quantitative expression of IL8 by Caco-2 cells at different time intervals after *B. pilosicoli* and *B. innocens* exposure. The expression did not differ in the case of *B. innocens* but changed significantly (P < 0.05) in case of *B. pilosicoli* after 12 hours, and was significantly (P < 0.05) higher than *B. innocens* -----73 Figure 4.26: The quantitative expression of IL6 by Caco-2 cells at different time intervals after *B. pilosicoli* and *B. innocens* exposure. The expression did not differ significantly ----- 73 Figure 4.27: The quantitative expression of TNF by Caco-2 cells at different time intervals after *B. pilosicoli* and *B. innocens* exposure. The expression did not differ significantly ----- 74 Figure 5.1: Means and standard deviations of *Ratt* values for *B. pilosicoli* strain 95/1000 (filled circles) and B. hyodysenteriae strain B204 (open circles) incubated for 90 minutes in different concentrations of porcine gastric mucin in chemotaxis buffer ----- 89

Figure 5.2: Means and standard deviations of <i>Ratt</i> values for <i>B. pilosicoli</i>
strain 95/1000 incubated for 15, 30, 60, 90 and 120 minutes in 4% mucin - 90
Figure 5.3: Ratt values obtained for B. pilosicoli 95/1000 (filled circles) and
B. hyodysenteriae B204 (open circles) in dilutions of PVC plotted against
measured viscosities 96
Figure 5.4: Ratt values obtained for B. pilosicoli 95/1000 (filled circles) and
B. hyodysenteriae B204 (open circles) in dilutions of mucin plotted against
measured viscosities 96
Figure 6.1: Effect of Norepinephrine on the growth of <i>B. pilosicoli</i> 95/1000
in liquid medium 108
Figure 6.2: Effect of NE addition on the attraction of <i>B. pilosicoli</i> to 4%
mucin 109
Figure 6.3: B. pilosicoli attraction to different NE concentrations in 4%
mucin 110
Figure 6.4: Effect of NE on <i>B. pilosicoli</i> numbers in chemotaxis buffer 111
Figure 6.5: <i>B. pilosicoli</i> 95/1000, not exposed to NE, after two hours
(control). Relatively low numbers of bacteria were attached 112
Figure 6.6: <i>B. pilosicoli</i> 95/1000, exposed to NE, after two hours. More
spirochaetes are attached than with the control 112
Figure 6.7: Control B. pilosicoli 95/1000, not exposed to NE, after four
hours. Relatively fewer bacteria were attached than with the NE-exposed
culture 113

Figure 6.12: *B. pilosicoli* grown with 0.1 mM NE for 2 days, showing extensive colonization of the Caco-2 cells after six hours. Original magnification x 1000 ------ 116 Figure 6.13: *B. pilosicoli* grown without NE for two days, showing less attachment than the NE-grown culture after six hours (some cell surfaces are still visible). Original magnification x 1000 ------ 116