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Abstract

A comprehensive comparative study of metabolite quantification from the human brain was
performed on the same 10 subjects at 4T and 7T using MR scanners with identical consoles,
the same type of RF coils, and identical pulse sequences and data analysis. Signal-to-noise
ratio (SNR) was increased by a factor of 2 at 7T relative to 4T in a volume of interest selected
in the occipital cortex using half-volume quadrature radio frequency (RF) coils. Spectral
linewidth was increased by 50% at 7T, which resulted in a 14% increase in spectral resolution
at 7T relative to 4T. Seventeen brain metabolites were reliably quantified at both field
strengths. Metabolite quantification at 7T was less sensitive to reduced SNR than at 4T. The
precision of metabolite quantification and detectability of weakly represented metabolites were
substantially increased at 7T relative to 4T. Because of the increased spectral resolution at
7T, only one-half of the SNR of a 4T spectrum was required to obtain the same quantification
precision. The Cramér-Rao lower bounds (CRLB), a measure of quantification precision, of
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In Vivo 1H NMR Spectroscopy of the Human Brain at
High Magnetic Fields: Metabolite Quantification
at 4T vs. 7T

Ivan Tkáč,* Gülin Öz, Gregor Adriany, Kamil Uğurbil, and Rolf Gruetter

A comprehensive comparative study of metabolite quantifica-

tion from the human brain was performed on the same 10

subjects at 4T and 7T using MR scanners with identical con-

soles, the same type of RF coils, and identical pulse sequences

and data analysis. Signal-to-noise ratio (SNR) was increased by

a factor of 2 at 7T relative to 4T in a volume of interest selected

in the occipital cortex using half-volume quadrature radio fre-

quency (RF) coils. Spectral linewidth was increased by 50% at

7T, which resulted in a 14% increase in spectral resolution at 7T

relative to 4T. Seventeen brain metabolites were reliably quan-

tified at both field strengths. Metabolite quantification at 7T was

less sensitive to reduced SNR than at 4T. The precision of

metabolite quantification and detectability of weakly repre-

sented metabolites were substantially increased at 7T relative

to 4T. Because of the increased spectral resolution at 7T, only

one-half of the SNR of a 4T spectrum was required to obtain the

same quantification precision. The Cramér-Rao lower bounds

(CRLB), a measure of quantification precision, of several me-

tabolites were lower at both field strengths than the intersub-

ject variation in metabolite concentrations, which resulted in a

strong correlation between metabolite concentrations of indi-

vidual subjects measured at 4T and 7T. Magn Reson Med 62:

868–879, 2009. © 2009 Wiley-Liss, Inc.
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The potential of high-field in vivo 1H NMR spectroscopy to
provide extended neurochemical information based on in-
creased sensitivity and spectral resolution was demon-
strated approximately a decade ago (1,2). Since then, a
number of comparison studies have investigated the im-
provement in signal-to-noise ratio (SNR), spectral resolu-
tion, and the precision of metabolite quantification with an
increase in static magnetic field B0 (3–10). However, re-
ported gains in SNR and metabolite quantification have
not been consistent, which might be explained by the
complexity of the comparison of two different MR scan-
ners operating at different B0 values. A number of factors

influence the SNR, spectral resolution, and ultimately the
quantification precision, such as functionality of the trans-
mit and receive channels, B0 shimming efficiency, radio
frequency (RF) coils, pulse sequence design, and data pro-
cessing (11). Increases in SNR by 20% to 46% at 3T rela-
tive to 1.5T were reported in single-voxel (3,7) and chem-
ical-shift imaging (CSI) studies (5,6) of the human brain.
Modest increase (5), almost no improvement (3), or even
decrease (7) in spectral resolution (ppm) at 3T relative to
1.5T have been observed. The diagnostic accuracy of 1H
NMR spectroscopy to distinguish patients with Alzheimer
disease from cognitively normal subjects was not im-
proved at 3T relative to 1.5T (7). On the other hand, pre-
cision and reproducibility of myo-inositol quantification
were significantly increased in another comparative study
at 3T vs. 1.5T (10). The SNR in human brain stimulated-
echo acquisition mode (STEAM) spectra was increased by
�80% at 4T relative to 1.5T (4), while SNR of singlet
resonances increased linearly with increasing B0 using
proton echo-planar spectroscopic imaging (PEPSI) at dif-
ferent field strengths between 1.5T and 7T (8). A signifi-
cant increase in the reliability of quantification of metab-
olites with J-coupled spin systems was described at 4T
relative to 1.5T (4) and 3T (9).

Increased availability of 7T whole-body MR scanners in
recent years stimulates an interest in evaluating the pros
and cons of in vivo 1H NMR spectroscopy at ultrahigh
magnetic fields. Several years ago we have demonstrated
the feasibility of in vivo 1H NMR spectroscopy of the
human brain at 7T and reported substantial improvements
in sensitivity and spectral resolution (12). Previous com-
parative studies were mainly focused on the field depen-
dence of SNR (3,5,8). The purpose of the current study was
a quantitative evaluation of gains in NMR spectroscopy at
ultrahigh magnetic fields with the main emphasis on pre-
cision and accuracy of metabolite quantification. To
achieve this goal, a comprehensive comparison study was
performed at 4T and 7T. To separate the effect of increased
B0 as much as possible from other factors influencing sen-
sitivity, spectral resolution, and metabolite quantification,
the same 10 subjects were scanned both at 4T and 7T using
identical consoles, similar design of RF coils, and identical
pulse sequences and data processing.

MATERIALS AND METHODS

Subjects

Ten healthy volunteers (3 females, 7 males, age range �

24 � 5 years) participating in this comparison study were
examined both at 4T and 7T within 1 to 10 d. The study
protocol was approved by the Institutional Review Board
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and all subjects provided informed written consent before
study participation.

MR Scanners

The measurements were performed using 4T and 7T
whole-body magnets interfaced to Varian INOVA consoles
(Varian, Inc., Palo Alto, CA, USA). The 4T/90-cm magnet
(Siemens/Oxford Magnet Technology, UK) was equipped
with a gradient system (40 mT/m, 400 �s rise-time), which
included second-order shim coils with maximum shim
strengths of XZ � YZ � 5 Hz/cm2, Z2 � 12 Hz/cm2, and
XY � X2–Y2 � 2.5 Hz/cm2. The 7T/90-cm magnet (Mag-
nex Scientific, UK) was equipped with a head gradient coil
(40 mT/m, 500 �s rise-time) and strong second-order shim
coils (Magnex Scientific) with maximum strengths of XZ �

YZ � 25 Hz/cm2, Z2 � 38 Hz/cm2, and XY � X2–Y2 �

12 Hz/cm2. Shim coil currents were controlled using am-
plifiers from Resonance Research, Inc. (Billerica, MA,
USA). The RF amplifiers (CPC, Brentwood, NY, USA) pro-
vided maximum power of 2.6 kW (4T) and 4.5 kW (7T) at
the coil. Half-volume RF coils of similar design (13) com-
bined with quadrature hybrids with fixed 90° phase shift
were used for RF signal transmission and reception at both
field strengths. The two geometrically decoupled circular
coil loops of the 4T RF coil were 14 cm in diameter. To
adjust for the difference in RF field penetration at the
higher frequency due to more complex B1 fields, the loop
shape of the 7T RF coil was slightly modified toward an
elliptical loop design with dimensions along the short and
long axes of 11 cm and 15 cm, respectively. The shorter
axis of the 7T coil loops was along the Z-axis of the
magnet. Using the aforementioned RF amplifiers and RF
coils, the maximum transmit B1

� field was just above 40 �T
in the center of the occipital lobe.

MRI

Transverse RARE (rapid acquisition with relaxation en-
hancement) images and sagittal TurboFLASH (turbo fast
low-angle shot images) were used for the precise position-
ing of the volume of interest (VOI) in the occipital lobe of
participating subjects. MR images from 4T studies were
used to guide the VOI selection at 7T and vice-versa to
guarantee that for each subject the same VOI in the brain
was selected for spectroscopy at 4T and 7T. Parameters of
RARE imaging were repetition time (TR)/echo time (TE)/
echo spacing (ES) � 4000 ms/60 ms/15 ms at 4T and
TR/TE/ES � 5000 ms/48 ms/12 ms at 7T, echo train length
(ETL) � 8, number of transients (NT) � 2, slice thickness
(THK) � 4 mm (at 4T) and THK � 2 mm (at 7T). Parame-
ters for TurboFLASH imaging were inversion time (TI)/
TR/TE � 1200 ms/11 ms/5 ms, and THK � 5 mm at 4T and
TI/TR/TE � 1450 ms/12 ms/5 ms and THK � 4 mm at 7T,
NT � 2. Specific absorption rates (SARs) were maintained
within U.S. Food and Drug Administration (FDA) guide-
lines for all measurements.

1H NMR Spectroscopy

All first- and second-order shim terms were automatically
adjusted using FASTMAP (fast, automatic shimming tech-
nique by mapping along projections) with echo-planar im-

aging (EPI) readout (14,15). Ultrashort echo-time STEAM
pulse sequence optimized for 4T (TR/TM/TE � 5000 ms/
42 ms/4 ms) and 7T (TR/TM/TE � 5000 ms/32 ms/6 ms)
was used for spectroscopic data acquisition (12,16). The
spectral width (sw � 6 kHz) and the number of acquired
complex points (np � 4096) were identical for both field
strengths. The STEAM sequence was combined with outer
volume suppression (OVS) to improve the localization
performance. The water signal was efficiently suppressed
by variable-power RF pulses with optimized relaxation
delays (VAPOR) (16,17). STEAM 90° RF pulses were used
for the local RF power adjustment and the power of all
other pulses in OVS and VAPOR water suppression was
automatically set. Data were acquired from 8-ml volumes
(VOI � 2 � 2 � 2 cm3) centered on the midline in the
occipital lobe. Data (free induction delays [FIDs]) were
acquired in a “single-scan mode,” which means that each
single scan (transient) was saved separately. The total
number of acquired transients was 160. In addition, un-
suppressed water signal was acquired for eddy current
correction (with OVS) and for metabolite quantification
(without OVS).

Data Processing

Time domain frequency and phase correction were ap-
plied on single-scan data. Then a different number of
single scan FIDs were chosen from the whole set of 160
FIDs and summed, creating 49 summed FIDs from each
subject as follows: 10 FIDs with NT � 2, 10 � NT � 4, 10 �

NT � 8, 10 � NT � 16, 5 � NT � 32, 2 � NT � 64, 1 �

NT � 128, and 1 � NT � 160. This summing was repeated
for all 10 subjects and both field strengths, creating 960
FIDs in total. All summed FIDs were corrected for residual
eddy currents using unsuppressed signal of water acquired
with OVS and finally an automatic zero-order phase cor-
rection was applied on data in time domain (subtraction of
the phase of the first point of FID).

Metabolite Quantification

In vivo 1H NMR spectra were analyzed using LCModel
(18,19). The unsuppressed water signal measured from the
same VOI without OVS was used as an internal reference
for quantification, assuming 80% brain water content. LC-
Model basis sets for 4T and 7T included spectra of 19 brain
metabolites: alanine (Ala), ascorbate (Asc), aspartate (Asp),
creatine (Cr), phosphocreatine (PCr), �-aminobutyric acid
(GABA), glucose (Glc), glutamate (Glu), glutamine (Gln),
glutathione (GSH), glycerophosphorylcholine (GPC),
phosphorylcholine (PCho), glycine, myo-inositol (myo-
Ins), scyllo-inositol (scyllo-Ins), lactate (Lac), N-acetylas-
partate (NAA), N-acetylaspartylglutamate (NAAG), phos-
phorylethanolamine (PE), and taurine (Tau). All spectra
for both 4T and 7T basis sets were simulated using Varian
spectrometer spin-simulation software (neglecting J-evolu-
tion for ultrashort TE) based on a recently updated data-
base of chemical shifts and coupling constants (20,21).
Averaged spectra of fast relaxing macromolecules mea-
sured from five subjects at 4T and 7T using metabolite
nulling inversion-recovery experiments with a short repe-
tition time (TR � 2 s, TI � 0.675 s) were also included in
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the 4T and 7T LCModel basis sets. Before putting macro-
molecule spectra into the LCModel basis set, the residual
signal of PCr with a short T1 was removed from FIDs and
the high-frequency noise was suppressed by the Gaussian
filter (� � 0.05 s). The LCModel analysis was performed on
spectra within the chemical shift range 0.5–4.2 ppm. The
default value of the LCModel parameter DESDSH, control-
ling the uncertainty in referencing between in vivo spectra
and spectra in the LCModel basis set, was decreased from
0.004 ppm to 0.002 ppm. All four parameters controlling
the zero- and first-order phase correction and their devia-
tions were set to zero. The hidden parameter DKNTMN,
controlling the knot spacing for the spline baseline fitting,
was set to 0.20. LCModel analysis was performed in chem-
ical shift range 0.5–4.2 ppm.

Cramér-Rao lower bounds (CRLB) of LCModel analysis
were used to eliminate meaningless fitting results with
extremely high estimated errors. Metabolites quantified
with CRLB above 100% were excluded from further anal-
ysis. If a metabolite was not quantified with CRLB 	 100%
in at least 50% of analyzed spectra of a given subject and
a given number of summed transients, then this metabolite
was eliminated from further analysis for this subject and
NT. If a metabolite was not quantified from spectra with a
given NT for at least five subjects, then this metabolite was
eliminated from further analysis. Finally, if the average
CRLB of a specific metabolite was higher than 50%, this
metabolite was considered “not detectable” under these
conditions (B0, NT). The correlation matrix from the de-
tailed LCModel output was used to evaluate the correla-
tion between fitted concentrations of metabolites with sim-
ilar spectral patterns and high spectral overlap. t-Tests

with and without corrections for multiple comparisons
were used to evaluate the statistical significance of differ-
ences between 4T and 7T data. Average values are always
reported as mean � SD.

RESULTS

Ten healthy volunteers were scanned both at 4T and 7T
and in vivo 1H NMR spectra were acquired from the same
location in the occipital lobe. Spectral quality achieved at
4T and 7T; the consistency in VOI selection on the two
scanners is shown in Fig. 1. Highly efficient water sup-
pression and elimination of signals from outside the VOI
resulted in artifact-free spectra with a flat baseline without
any residual water signal removal and baseline correction.
Increased sensitivity at 7T is demonstrated by the ability to
detect very weak signals, such as the H-1 signal of 
-D-
glucose at 5.22 ppm. This spectral quality was consistently
achieved throughout the whole study, which is evident
from Fig. 2, where spectra of all 10 subjects acquired at 4T
and 7T are presented. FASTMAP shimming resulted in
very reproducible spectral resolution, which can be seen
from the characteristic multiplet patterns of glutamate at
2.35 ppm at 4T and of myo-inositol at 3.6 ppm at 7T (Figs.
1 and 2). The water signal linewidth was 8.2 � 0.6 Hz at 4T
and 12.3 � 1.1 Hz at 7T, corresponding to an increase at 7T
by a factor of 1.50 � 0.07 relative to 4T. In addition, a
strong positive correlation (R � 0.84) was found between
water signal linewidths of individual subjects at 4T and 7T
(Fig. 3). Specifically, two subjects with the largest line-
width at 4T had also the largest linewidth at 7T, and the
same subject had the smallest linewidth at 4T and 7T (Fig.

FIG. 1. 1H NMR spectra acquired at 4T and

7T from the brain of the same subject.

STEAM, TE � 4 ms (4T), TE � 6 ms (7T),

TR � 5 s, VOI � 8 cm3, NT � 160. Process-

ing: frequency and phase correction of sin-

gle-scan FID arrays, FID summation, cor-

rection for the residual eddy currents,

Gaussian multiplication (� � 0.15 s), FT,

zero-order phase correction. SNR � 149

(4T), SNR � 303 (7T). Insets: transverse

RARE images of the brain with the position

of the VOI on the midline in the occipital

lobe.
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FIG. 2. In vivo 1H NMR spectra of 10 healthy subjects measured at 4T and 7T. Data acquisition and processing parameters were the same

as in Fig. 1. No water signal removal or baseline corrections were applied. Average SNR � 154 (4T), SNR � 307 (7T).
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3). Metabolite linewidths, determined from the singlet of
total creatine at 3.03 ppm, were smaller than linewidths of
corresponding water signals by 2.3 � 0.6 Hz at 4T and by
2.5 � 0.5 Hz at 7T.

SNRs were calculated from nonfiltered spectra using the
maximum height of signal at the position of NAA methyl
resonance at 2.008 ppm. Averaged SNR of spectra with
NT � 160 was 102 � 12 at 4T and 194 � 27 at 7T, which
corresponded to an increase in SNR at 7T by a factor of
1.91 � 0.13. The ratio of measured signal intensities
(heights) at the position of NAA methyl resonance be-
tween 7T and 4T was 1.76 � 0.13, and the ratio of noise
levels between 7T and 4T was 0.92 � 0.03. To also com-
pare integral to noise ratios at two fields, the unsuppressed
water signal was used. The ratio between integrals of water
signals at 7T and 4T was 2.8 � 0.2.

Concentrations of 16 metabolites and the content of fast
relaxing macromolecules were quantified with CRLB 	

50% from all in vivo 1H NMR spectra (NT � 160) of 10
subjects measured at 4T and 7T (Fig. 4). In addition, scyllo-
Ins was quantified from spectra of all subjects at 7T and of

eight subjects at 4T. Quantification of the macromolecule

content was highly reproducible with the coefficient of

variation below 6%. Metabolite concentrations quantified

at 4T and 7T were in excellent agreement; the average

difference between concentrations obtained at 4T and 7T

was only 0.16 �mol/g. Of all 17 metabolites and three

combined pairs of metabolites (Fig. 4), only differences in

concentrations of Asp, Cr, GABA, NAAG, and PE were

significant (P 	 0.05). When the Bonferroni correction for

multiple comparisons was applied, only differences in

Asp and GABA remained significant. Despite the signifi-

cance level, differences in concentrations of these five

metabolites obtained at 4T and 7T were very small, less

than 0.6 �mol/g. Consistent quantification of Ala was pos-

sible only at 7T (0.16 � 0.07 �mol/g, N � 6) and of Glc

only at 4T (1.2 � 0.5 �mol/g, N � 10); therefore these

metabolites were omitted from the bar diagram in Fig. 4.

The mean SDs across all metabolites were nearly iden-

tical at 4T and 7T (0.32 �mol/g, error bars in Fig. 4) and

substantially higher than the mean estimated error of me-

tabolite quantification (mean CRLB) at 4T (0.20 �mol/g)

and at 7T (0.11 �mol/g). This comparison indicated that

the intersubject variation is the dominant source for the

observed variance in metabolite levels. In fact, a strong

positive correlation between concentrations obtained from

4T and 7T spectra was found for multiple brain metabo-

lites (Fig. 5). In addition, clusters of points on scatter plots,

representing measurements from individual subjects, were

directly on the lines of identity. These data demonstrated

the potential of 1H NMR spectroscopy at 4T and 7T to

quantify brain metabolites in absolute concentration units.

A strong correlation between 4T and 7T data confirmed

that the dominant source for variations in calculated con-

centrations were not errors of measurement, but real dif-

ferences of metabolite levels in the brains of participating

subjects. For example, two subjects with the lowest Gln

concentration at 4T were the same two subjects with the

lowest Gln at 7T; the highest level of Lac was found in the

same subject at 4T and 7T; and similarly, the lowest level

of Lac was found in another subject at both fields. Further-

more, the two subjects for whom scyllo-inositol was not

quantified at 4T had the lowest scyllo-Ins concentrations at

7T, close to 0.10 �mol/g.

FIG. 3. Correlation between water signal linewidths of individual

subjects achieved at 4T and 7T. Gray matter–rich occipital cortex,

VOI � 8 cm3, see Fig. 1 for the location.

FIG. 4. Comparison of neuro-

chemical profiles determined at

4T and 7T from gray-matter–rich

occipital cortex of 10 healthy vol-

unteers (age � 24 � 5 years). 1H

NMR spectra with NT � 160, error

bars � SD, significance level:

*P 	 0.05, **P 	 0.01, ***P 	

0.001.
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To investigate the effect of SNR on metabolite quantifi-
cation, 4T and 7T spectra with different number of tran-
sients (NT � 2 to 128) were analyzed using LCModel (Fig.
6). As expected, estimated errors in quantification of me-
tabolite concentrations (error bars in Fig. 6) increased with
decreasing SNR (lower number of transients). When SNR
dropped below a certain threshold, quantification of some
weakly represented metabolites, such as GABA, NAAG,
PE, or PC, was not possible at 4T. Decreased SNR resulted
in systematic errors in quantification of metabolites, caus-
ing deviations of means from values determined from
spectra with high SNR. This effect was more noticeable at
4T. At 7T, measured metabolite concentrations were
nearly independent of NT, except for Asp, GABA, and PE.

CRLBs of LCModel analysis were used to evaluate the
precision of metabolite quantification at 4T and 7T. Com-
parison of CRLBs as a function of the number of summed
transients clearly demonstrated that for a given number of

transients, estimated errors of quantification were always
smaller at 7T than at 4T (Fig. 7). This could be expected,
because 7T spectra had two times higher SNR than 4T
spectra for a given number of transients. However, even
when comparing CRLB from spectra with the same SNR,
e.g., spectra with NT �128 at 4T vs. spectra with NT � 32
at 7T, the precision of metabolite quantification was still
better at 7T. The precision of metabolite quantification
achieved at 4T for NT � 128 (dashed lines in Fig. 7)
corresponded to the precision of quantification achieved at
7T for NT � 4 to 8. To verify the validity of this gain in
quantification precision with increased field strength, LC-
Model analysis of 4T spectra with NT � 128 was further
compared to the analysis of 7T spectra with NT � 8, which
had two-fold lower SNR than the 4T spectra (Fig. 8). Me-
tabolite concentrations quantified at 4T (NT � 128) and 7T
(NT � 8) were in very good agreement (Fig. 9). Only
concentrations of Asp, Cr, and NAAG quantified at 4T and

FIG. 5. Correlation between metabolite concentrations of individual subjects determined from 4T and 7T spectra (NT � 160).
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7T were significantly different (P 	 0.05); however, the
difference was only 0.6 �mol/g on average. CRLBs at 7T
(NT � 8) were similar or even slightly lower than those at
4T (NT � 128) (Fig. 9).

LCModel correlation coefficients between fitted metab-
olite concentrations were more negative than –0.5 for the
following pairs of metabolites: Cr and PCr, PC and GPC,
and PC � GPC and PE both at 4T and 7T; NAA and NAAG,
and Glc and Tau at 4T. Comparison of LCModel correla-
tion coefficients of selected pairs of metabolites between
4T and 7T is shown in Fig. 10a and b. The pair of glu-
tamine and glutamate was also included (Fig. 10c) to dem-
onstrate a very weak correlation between them even at low
SNR. The magnitude of the LCModel correlation coeffi-
cients between NAA and NAAG were systematically lower
at 7T. LCModel fitting anticipated a strong negative corre-
lation between Cr and PCr in a broad range of SNR values
for both 4T and 7T spectra (Fig. 10a). A similar depen-
dence was observed for the pair PC and GPC, with the only
difference that PC was not detectable in 4T spectra with
low SNR (NT 	 64). In order to evaluate to which extent
LCModel correlation coefficients accurately predicted a

correlation between assessed concentrations of these pairs
of metabolites, their concentrations measured in 10 sub-
jects were compared in scatter plots (Fig. 10d–i). A nega-
tive correlation (R 	 –0.3) was not found for any pair of
metabolites from spectra of any number of transients.

DISCUSSION

The results of the present study clearly demonstrate ad-
vantages of 1H NMR spectroscopy at ultrahigh magnetic
fields for noninvasive metabolite quantification in the hu-
man brain. Increased sensitivity and spectral resolution at
7T relative to 4T substantially improved the precision of
metabolite quantification and expanded the potential to
detect and reliably quantify weakly represented metabo-
lites. In general, fair field comparison is inherently prone
to difficulties resulting from the fact that data has to be
generated on two different MR scanners, which may per-
form considerably differently. In this study we minimized
such differences by using 4T and 7T MR scanners with
identical consoles and very similar design of RF coils, by
using the same pulse sequence, same processing tools, and

FIG. 6. Metabolite concentrations determined at 4T and 7T from spectra with number of transients ranging from 2 to 128. Number of

subjects � 10, number of spectra per subject: 10 spectra with NT � 2, 10 � NT � 4, 10 � NT � 8, 10 � NT � 16, 5 � NT � 32, 2 � NT �

64, 1 � NT � 128. Error bars: average Cramér-Rao lower bounds. Metabolites such as GABA, scyllo-Ins, NAAG, and PC were not detected

from spectra with lower number of transients at 4T (CRLB � 50%). Macromolecules (MM) are quantified in arbitrary units.
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an LCModel basis set simulated from the same source of
metabolite NMR data. In addition, data were collected
from the same group of 10 subjects and an extra effort was
made to select the same VOI at both field strengths.

An unbiased comparison of 1H NMR spectroscopy at
different fields requires spectra free of artifacts and distor-
tions originating from an insufficient water suppression
and insufficient suppression of signals from outside of the
VOI, such as signals of subcutaneous lipids. In addition,

macroscopic B0 inhomogeneity in the VOI has to be min-
imized as much as possible in order to achieve the highest
spectral resolution at the given field strength, limited by
intrinsic properties of the studied tissue and T2 relaxation.
An ultrashort echo-time STEAM sequence optimized for
4T and 7T provided very reproducible and clean spectra
(Figs. 1 and 2). FASTMAP shimming and sufficiently
strong second-order shim systems were essential for sup-
pressing macroscopic B0 inhomogeneity in the measured

FIG. 7. Comparison of Cramér-Rao lower bounds (CRLBs) of brain metabolites and fast-relaxing macromolecules (MM) between 4T and

7T as a function of the number of transients. Number of subjects and number of spectra per subject are the same as in Fig. 6. Error bars �

SD. Horizontal lines represent the CRLB achieved with NT � 128 at 4T.
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VOI to a negligible level and enabled to achieve high
reproducibility in signal linewidths. A strong correlation
between 4T and 7T linewidths (Fig. 3) suggests that the
small variation in the signal linewidth was determined by
intersubject variation in the properties of the selected
brain tissue. The increase in spectral linewidth by 50% at

7T relative to 4T, corresponding to a 14% increase in
spectral resolution of singlet resonances, is in very good
agreement with published results (8).

Sensitivity profiles of half-volume RF coils are always
nonuniform, which has to be taken into consideration
when the gains in SNR between 4T and 7T are evaluated.
An approximately two-fold increase in SNR, using the
height of the NAA signal, was observed at 7T relative to
4T, which appeared to be in agreement with the theoretical
prediction of the linear increase in SNR with B0 (22).
However, theoretical analysis predicts a linear increase in
SNR for a constant linewidth, which did not hold for the
4T and 7T data. Taking into account the 1.5-fold increase
in signal linewidth at 7T, the gain in corrected SNR be-
tween 4T and 7T was approximately three-fold, which
corresponded to the gain in the integral-to-noise ratio cal-
culated from the water reference spectra at 4T and 7T. To
trace the source of the gain in SNR, the absolute values of
signal intensities and noise levels were compared between
4T and 7T. The direct comparison can be questionable due
to multiple modules in transmit and receive chains, the
performances of which have a direct effect on observed
values of signal and noise. Surprisingly, the observed gain
in signal intensity (integrals) at 7T relative to 4T was
proportional to B0

2, as predicted from theory (22). However,
absolute values of the observed noise intensities (root-
mean-square deviations) did not increase linearly with the
field as expected (22). This discrepancy could be ex-
plained by a smaller volume of the sample inducing the
noise in 7T RF coil (23) resulting from slightly different
shapes of the RF coil loops (elliptical vs. circular) and
more limited penetration of the B1

– field into the sample
(see Figs. 1 and 8) (23,24). Consequently the expected

FIG. 8. Representative 1H NMR spectra of one subject measured at

4T with 128 transients and at 7T with eight transients. Insets: trans-

verse RARE images of the brain with the position of the VOI on the

midline in the occipital lobe.

FIG. 9. Concentrations of brain me-

tabolites and corresponding Cramér-

Rao lower bounds quantified by LC-

Model analysis from spectra mea-

sured at 4T with 128 transients and at

7T with eight transients. Number of

subjects � 10, number of spectra per

subject and field strength � 1, error

bars � SD, significance level: *P 	

0.05, ***P 	 0.001.
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increase of noise at 7T (22) was probably cancelled by a
reduced volume of the sample interacting with the coil. A
supralinear increase in SNR with field is in agreement
with the results of other works (23,25,26). However, this
observed gain in SNR between 4T and 7T is valid only for
a specific location of the VOI inside the brain; i.e., for a
specific location within the sensitive volume of the RF
coils. Selecting the VOI deeper in the brain and further
away from the RF coil would result in much less favorable
gain in SNR at 7T relative to 4T because of the difference
in sensitivity profiles of the RF coils used at 4T and 7T.
These differences originate from increased nonuniformity
of B1

� and B1
– field distributions at higher frequencies when

wavelengths become comparable with the size of the mea-
sured object (23–25).

Spectra acquired at two different field strengths were
processed and quantified identically. LCModel basis sets
for 4T and 7T were generated from the same NMR database
of metabolite chemical shifts and J coupling constants.
Acquiring data with a long repetition time (TR � 5 s) and

ultrashort echo times (TE � 4–6 s) minimized the depen-
dence of signal intensities on T1 and T2 relaxation pro-
cesses; therefore, intensity corrections for “absolute” me-
tabolite quantification were not necessary. Neurochemical
profiles calculated from 4T and 7T 1H NMR spectra were
nearly identical (Fig. 4). In addition, data from individual
subjects shown in scatter plots (Fig. 5) lay very close to the
line of identity and exhibited a strong correlation, which
suggests that the precision of metabolite quantification
both at 4T and 7T was higher than the intersubject varia-
tion in metabolite levels. This implies that ultrahigh-field
1H NMR spectroscopy is sensitive enough to detect subtle
changes in metabolite concentrations between healthy
subjects; therefore, substantially increased sensitivity to
detect changes between healthy controls and patients with
metabolic brain disorders is expected.

Metabolite quantification at 7T is less sensitive to de-
creasing SNR than the quantification at 4T (Fig. 6). All 17
metabolites could be quantified with reasonable accuracy
from 7T spectra after four scans acquired from an 8-ml

FIG. 10. Comparison of correlation coefficients of selected pairs of metabolites estimated by LCModel analysis of 4T and 7T spectra (a–c)

with the correlation between the concentrations of these metabolites measured in 10 subjects at 4T (d–f) and 7T (g–i). LCModel correlation

coefficients are presented as a function of a number of transients (a-c). Scatter plots (d,g) PCr vs. Cr (NT � 8); (e,h) NAAG vs. NAA (NT �

128); (f,i) Glu vs. Gln (NT � 8) document that strong negative correlations between these pairs of metabolites were not observed. Number

of subjects and number of spectra per subject are the same as in Fig. 6.
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VOI. At 4T, reduced SNR resulted in systematic errors and
the loss of sensitivity to detect several weakly represented
metabolites. Only the quantification of Glc was better at 4T
than at 7T. The highly J-coupled spin system of 
- and
�-Glc is spread between 3.2 and 4.0 ppm under strong
signals of other metabolites, such as Glu and myo-Ins. At
4T, some Glc multiplets collapse into a single peak, which
makes the quantification of Glc easier at 4T, when the
signal of H-1 of 
-Glc at 5.22 ppm is not included in the
LCModel analysis. Inclusion of the 
-Glc signal in the
fitting range for LCModel is expected to increase the reli-
ability of glucose quantification at 7T; however, this re-
quires the complete elimination of the residual water sig-
nal with postprocessing methods.

Increased SNR at 7T was not the only source for an
increased precision of metabolite quantification (Figs. 6, 7,
and 10). Increased chemical shift dispersion at 7T signifi-
cantly reduced the CRLBs of all 17 quantified metabolites
(Fig. 7), decreased the systematic errors in assessed metab-
olite concentrations introduced by low SNR (Fig. 6), in-
creased the detectability of weakly represented metabo-
lites, such as Asc, Asp, GABA, and PE at low SNR (Fig. 6),
and increased the reliability to distinguish Gln from Glu
and NAA from NAAG (Fig. 10). Decreased CRLBs at 7T
relative to 4T are in agreement with the observed decrease
in CRLBs at 4T relative to 1.5T (4) and 3T (9). Increased
chemical shift dispersion at 7T especially improves the
spectral resolution of J-coupled spin systems, such as Gln
and Glu (12). The spectra of structurally similar molecules
become more different from each other, which enables
reliable quantification despite low SNR (Figs. 8 and 9). In
other words, spectra in the LCModel basis set are more
orthogonal at high magnetic fields, which means that any
spectrum in the basis set cannot be substituted by a linear
combination of other spectra from the same basis set. Con-
sequently, the observed improvement in precision in me-
tabolite quantification (decrease in CRLB) was approxi-
mately proportional to B0

2. This noticeable improvement in
detectability of metabolites was confirmed experimentally
by comparing metabolite quantification from spectra ac-
quired from 10 subjects at 4T with NT � 128 and at 7T
with NT � 8 (Figs. 8 and 9).

Estimated correlation coefficients, derived from a stan-
dard least-squares variance-covariance matrix of LCModel
analysis, indicated a strong negative correlation between
Cr and PCr at both fields without any improvement at high
SNR (Fig. 10a). This implies that the calculated concentra-
tion of Cr might be incorrectly increased at the expense of
decreased PCr and vice-versa. Such a correlation would
result in spreading of data points in a (PCr) vs. (Cr) plot
along a line with a slope of –1. However, there is no
indication that concentrations of PCr and Cr, quantified in
10 subjects, follow this line (Fig. 10d and g). The strong
negative correlation between Cr and PCr estimated by LC-
Model is the consequence of the insufficient separation
between methylene signals of Cr and PCr relative to their
linewidths. Difference in chemical shifts of 0.017 ppm
corresponded to the difference of 2.9 Hz at 4T and 5.1 Hz
at 7T, which was smaller than their linewidths (5.9 Hz at
4T and 9.8 Hz at 7T). Despite this estimated correlation,
discrimination between Cr and PCr and their reliable
quantification was possible (Figs. 4, 6, and 10). PCr con-

centrations determined both at 4T and 7T were in very
good agreement with previously published values (27).
The concentration ratio [PCr]/[Cr]  1 was consistently
assessed from spectra with different SNR (Fig. 6) and is in
agreement with values observed in the rodent brain under
normal physiology (2,28,29). The higher precision in Cr
and PCr quantification achievable at 7T was especially
pronounced for spectra with low SNR (Fig. 7). However,
the quantification of Cr and PCr is highly sensitive to
spectral quality and data processing. Baseline distortions,
poor water suppression, and even minor inaccuracies in
chemical shifts of Cr and PCr in LCModel basis set may
result in substantial systematic errors in Cr and PCr quan-
tification.

In conclusion, this study clearly demonstrates advan-
tages for in vivo 1H NMR spectroscopy of the human brain
at ultrahigh magnetic fields. Increased detection sensitiv-
ity for a broad range of brain metabolites implies that the
total measurement time can be significantly reduced or the
spatial resolution significantly increased at 7T relative to
4T without compromising the information content. These
data indicate a great potential of in vivo 1H NMR spectros-
copy at 7T to reveal new information about the neuro-
chemistry of human brain under normal and pathological
conditions.
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