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Abstract:

Objectives 

Intra-plaque angiogenesis and inflammation are key promoters of 

atherosclerosis and are mediated by the αvβ3 integrin pathway. We 

investigated the applicability of the αvβ3-integrin receptor-selective 

positron emission tomography (PET) radiotracer 18F-fluciclatide in 
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assessing human aortic atherosclerosis. 

Methods 

Vascular 18F-fluciclatide binding was evaluated using ex vivo analysis of 

carotid endarterectomy samples with autoradiography and 

immunohistochemistry, and in vivo kinetic modeling following radiotracer 

administration. Forty-six subjects with a spectrum of atherosclerotic 

disease categorized as stable (n=27) or unstable (n=19; recent 

myocardial infarction) underwent PET and computed tomography (CT) 

imaging of the thorax after administration of 226±13 MBq 18F-

fluciclatide. Thoracic aortic 18F-fluciclatide uptake was quantified on 

fused PET-CT images and corrected for blood-pool activity using the 

maximum tissue-to-background ratio (TBRmax). Aortic atherosclerotic 

burden was quantified by CT wall thickness, plaque volume and calcium 

scoring. 

  

Results 

18F-Fluciclatide uptake co-localised with regions of increased αvβ3 

integrin expression, and markers of inflammation and angiogenesis. 18F-

Fluciclatide vascular uptake was confirmed in vivo using kinetic 

modeling, and on static imaging correlated with measures of aortic 

atherosclerotic burden: wall thickness (r=0.57, p=0.001), total plaque 

volume (r=0.56, p=0.001) and aortic CT calcium score (r=0.37, 

p=0.01). Patients with recent myocardial infarction had greater aortic 

18F-fluciclatide uptake than those with stable disease (TBRmax 1.33 vs 

1.21, p=0.01). 

Conclusions 

In vivo expression of αvβ3 integrin in human aortic atheroma is 

associated with plaque burden and is increased in patients with recent 

myocardial infarction. Quantification of αvβ3 integrin expression with 

18F-fluciclatide PET has potential to assess plaque vulnerability and 

disease activity in atherosclerosis.
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Abstract

Objectives

Intra-plaque angiogenesis and inflammation are key promoters of 

atherosclerosis and are mediated by the αvβ3 integrin pathway. We investigated 

the applicability of the αvβ3-integrin receptor-selective positron emission 

tomography (PET) radiotracer 18F-fluciclatide in assessing human aortic 

atherosclerosis. 

Methods 

Vascular 18F-fluciclatide binding was evaluated using ex vivo analysis of 

carotid endarterectomy samples with autoradiography and 

immunohistochemistry, and in vivo kinetic modeling following radiotracer 

administration. Forty-six subjects with a spectrum of atherosclerotic disease 

categorized as stable (n=27) or unstable (n=19; recent myocardial infarction) 

underwent PET and computed tomography (CT) imaging of the thorax after 

administration of 226±13 MBq 18F-fluciclatide. Thoracic aortic 18F-fluciclatide 

uptake was quantified on fused PET-CT images and corrected for blood-pool 

activity using the maximum tissue-to-background ratio (TBRmax). Aortic 

atherosclerotic burden was quantified by CT wall thickness, plaque volume and 

calcium scoring. 
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Results

18F-Fluciclatide uptake co-localised with regions of increased αvβ3 integrin 

expression, and markers of inflammation and angiogenesis. 18F-Fluciclatide 

vascular uptake was confirmed in vivo using kinetic modeling, and on static 

imaging correlated with measures of aortic atherosclerotic burden: wall 

thickness (r=0.57, p=0.001), total plaque volume (r=0.56, p=0.001) and aortic 

CT calcium score (r=0.37, p=0.01). Patients with recent myocardial infarction 

had greater aortic 18F-fluciclatide uptake than those with stable disease 

(TBRmax 1.33 vs 1.21, p=0.01). 

Conclusions

In vivo expression of αvβ3 integrin in human aortic atheroma is associated with 

plaque burden and is increased in patients with recent myocardial infarction. 

Quantification of αvβ3 integrin expression with 18F-fluciclatide PET has 

potential to assess plaque vulnerability and disease activity in atherosclerosis.

Keywords

Atherosclerosis; positron emission tomography; integrin; computed 

tomography
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Key Questions

What is already known about this subject?

The αvβ3 integrin receptor is a mediator of plaque angiogenesis and 

inflammation and has been targeted as a potential marker of atherosclerotic 

activity using PET radiotracers. As yet however, studies of αvβ3 integrin-specific 

radiotracers in humans are lacking.

What does this study add?

This is the largest study to date assessing αvβ3 integrin expression in human 

atherosclerosis. We have demonstrated that 18F-fluciclatide uptake localises 

to vascular inflammation and angiogenesis, correlates with plaque burden and 

is increased in patients with clinically unstable disease.

How might this impact on clinical practice?

Non-invasive markers of atherosclerotic disease activity may identify vulnerable 

patients and provide incremental risk prediction to current anatomic imaging 

approaches. In this study, 18F-fluciclatide shows promise as a non-invasive 

marker of disease activity and instability in atherosclerosis.
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Introduction

Atherosclerotic cardiovascular disease is the commonest cause of death 

worldwide, and elucidating the mechanisms underlying the propagation and 

rupture of atherosclerotic plaques remains a key public health goal.(1) Although 

our understanding of the pathogenesis underlying atherosclerosis has 

progressed over the last two decades, accurate prediction of clinical events 

remains elusive. There is therefore considerable interest in non-invasive 

imaging techniques that go beyond the detection of luminal stenoses and 

instead focus on measuring disease activity within the vasculature.(2,3)

Combined positron emission tomography (PET) and computed tomography 

(CT) is a non-invasive hybrid imaging technique that integrates targeted 

functional molecular imaging with high-detail anatomical definition. This 

technique has been used to quantify vascular inflammation and calcification 

activity with success in both carotid and coronary atherosclerosis.(4-7) 

Recently, intraplaque angiogenesis and neovascularization has emerged as a 

key factor in the development, progression, and instability of atherosclerotic 

plaques.(8) The integrin αvβ3 cell surface receptor is upregulated on endothelial 

cells in states of angiogenesis and is also observed on macrophages at sites 

of increased vascular inflammation, another key contributor to plaque 

instability. This receptor helps coordinate interaction between cellular 

components and the extra-cellular matrix, and contains a distinctive RGD-

amino acid sequence (the arginine-glycine-aspartate motif) in the cell-ligand 

interaction site. On this basis, several PET tracers targeting the RGD sequence 
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have been developed for monitoring angiogenesis in malignant tumours.(9,10) 

These tracers have also shown promise in monitoring atherosclerotic activity in 

pre-clinical models (8,11-14) and in a recent small study of patients with carotid 

atheroma.(7)

18F-Fluciclatide is a novel RGD-based PET radiotracer with high affinity for the 

αvβ3 integrin receptor.(10,15,16) We hypothesized that 18F-fluciclatide may act 

as an imaging marker of atherosclerotic disease activity in vivo, informing about 

both inflammation and angiogenesis. In this study, we sought to characterize 

the cellular and imaging characteristics of 18F-fluciclatide uptake in human 

atherosclerosis using a clinical cohort of patients with both stable and unstable 

clinical disease. 
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Methods

Study populations

In total we studied 50 patients. Four patients were recruited who had sustained 

a recent stroke and were undergoing carotid endarterectomy. In these patients, 

excised carotid plaques were examined using histology and 18F-fluciclatide 

autoradiography. For in vivo imaging, 46 patients were recruited from the Royal 

Infirmary of Edinburgh between July 2013 and December 2014. This cohort 

comprised 19 unstable patients with a recent acute ST-segment elevation 

myocardial infarction (MI) (14±7 days after MI) (NCT01813045),(17) and 27 

stable patients with either stable angina (n=6) or asymptomatic atherosclerotic 

disease (n=21; 12 had calcific aortic valve disease) (NCT01837160). Exclusion 

criteria were age <40 years, women of childbearing potential, severe renal 

failure (estimated glomerular filtration rate <30 mL/min) or hepatic failure 

(Childs-Pugh grade B or C), atrial fibrillation, known contrast allergy, inability to 

undergo scanning and inability to provide informed consent. All 46 subjects 

underwent 18F-fluciclatide PET imaging alongside clinical assessment that 

included evaluation of cardiovascular risk and high sensitivity C-reactive protein 

(hs-CRP) measurement (Biocheck inc.; Foster City, California).

Studies were approved by the local research ethics committee and conducted 

in accordance with the Declaration of Helsinki and with written informed 

consent of each participant. 

Page 8 of 44

https://mc.manuscriptcentral.com/heart

Heart

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Confidential: For Review
 O

nly

8

Radiosynthesis of 18F-Fluciclatide

18F-Fluciclatide was manufactured at the Clinical Research Imaging Centre on 

an automated module (FASTlab synthesiser; GE Healthcare) by coupling an 

amino-oxy-functionalized peptide precursor (AH111695) with 4-18F-

fluorobenzaldehyde at pH 3.5 to form 18F-fluciclatide.(17) A full description of 

this synthesis has been published previously.(16)

Histological Validation

Carotid endarterectomy specimens (Data Supplement) were fresh frozen and 

sectioned in cryosection medium. Both atheromatous and non-atheromatous 

segments were fixed, stained with hematoxylin-eosin (HE) and examined by 

immunohistochemistry for smooth muscle actin, CD31, CD68, and αvβ3 integrin 

receptor expression before digital image capture (Axioscan.Z1, Zeiss, UK). 

Image analysis was performed on ImageJ32 software (NIH, Bethesda, 

Maryland). Staining was expressed as a percentage of the total plaque area 

and with an object size set threshold applied at 20 x 10 pixels, to limit counting 

to cell-sized objects. The density of cell staining in the endarterectomy tissue 

was expressed as cells per mm2.(18)

Autoradiography was performed to identify the precise localization of 18F-

fluciclatide binding in atherosclerotic tissue. Carotid sections were bathed in a 

solution of 18F-fluciclatide (1 kBq/mL) for 60 min and rinsed with phosphate 

buffer solution. To rule out non-specific radiotracer uptake, an un-labeled highly 

concentrated solution of fluciclatide was added to bind competitively with the 

αvβ3 integrin receptors. 18F-Fluciclatide binding was imaged using a FujiFilm 
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FLA-5100 Fluorescent Image Analyser (Raytek Scientific Limited, Sheffield, 

UK). 

Clinical 18F-Fluciclatide PET Imaging 

All patients in the imaging cohort underwent PET-CT imaging of the thorax with 

a hybrid scanner (Biograph mCT, Siemens Medical Systems, Erlangen, 

Germany) at the Clinical Research Imaging Centre, University of Edinburgh. 

Subjects were administered a target dose of 230 MBq 18F-fluciclatide. An 

attenuation correction CT scan (non-enhanced 120 kV and 50 mA, 3-mm 

slices) was performed prior to PET acquisition. To define tracer 

pharmacodynamics and the optimum timing of scanning, dynamic PET imaging 

of the thorax was performed in the initial 20 patients in 3-dimensional mode 

using a single bed position for 70 min. For the remainder of the study subjects, 

static imaging was performed at the optimal time point (found to be 40 min post-

injection) using a single 30-min bed position in list mode with 

electrocardiographic gating. Immediately after PET acquisition, thoracic CT 

angiography was performed. (Data Supplement)

PET Image Reconstruction and Analysis

Kinetic analysis was performed on the dynamic PET studies to investigate the 

pharmacodynamics of 18F-fluciclatide uptake within atheroma. The 

methodology is described in detail in the data supplement. In all patients, static 

electrocardiogram-gated PET images were reconstructed in diastole (40-70 

min post-injection, 50–75% of the R-R interval, Ultra-HD, 2 iterations, 21 

subsets, zoom x2, 200 pixels). Images were analyzed by experienced 

observers blinded to the demographic data (WJ, AV) using an OsiriX 
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workstation (OsiriX version 6.0 64-bit; OsiriX Imaging Software, Geneva, 

Switzerland). PET images were fused with the attenuation correction CT, and 

regions of interest (ROIs) drawn around the thoracic aorta on serial axial slices 

just beyond the discernible adventitial border. Aortic uptake was assessed in 

three regions: the ascending thoracic aorta (from the level of mid-right 

pulmonary artery (RPA) up to the last slice where the aorta maintained its 

circular cross-sectional appearance), the descending thoracic aorta (the region 

extending from the tip of the diaphragm up to the last circular slice) and the 

aortic arch (the region of the aorta connecting the ascending and descending 

aorta). Within these regions, mean and maximum tracer activities were 

measured using standard uptake values (SUV; the decay corrected tissue 

concentration of the tracer divided by the injected dose per body weight, 

kBq/mL) and corrected for mean radiotracer blood pool activity to provide a 

mean of the maximum tissue-to-background ratio (mean TBRmax).(5,19-20) The 

blood pool radiotracer activity was quantified in the superior vena cava (SVC), 

measured in the axial plane on 4-5 sequential 5-mm axial slices above the level 

of the junction of the left innominate vein. In a sub-study of 10 randomly 

selected subjects, images were assessed independently by two experienced 

observers and the inter-observer reproducibility of 18F-fluciclatide SUV and 

TBR measurements assessed. 

CT Image Reconstruction and Analysis

The aortic CT calcium score was calculated for the aorta as a whole and for its 

different regions using axial slices on the attenuation correction CT dataset 

Page 11 of 44

https://mc.manuscriptcentral.com/heart

Heart

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Confidential: For Review
 O

nly

11

(OsiriX version 6.0 64-bit; OsiriX Imaging Software, Geneva, Switzerland) and 

expressed in arbitrary units (AU).(21) In those patients whose descending aorta 

was visualised within contrast CT datasets (n=33), further measures of aortic 

atherosclerotic plaque burden were made on dedicated plaque analysis 

software (Vital Images, Minnetonka, Minnesota, USA). Using the sagittal plane, 

the entire portion of the descending thoracic aorta within the field of contrast 

CT acquisition was delineated and the luminal blood pool removed using semi-

automated thresholding. The mean aortic wall thickness was recorded and 

corrected for the vessel diameter providing the indexed wall thickness. 

Additionally, the aortic wall volume was recorded and corrected for total vessel 

volume to provide an indexed plaque volume. 

 

Statistical analysis

Continuous data were tested for normality visually and with the D’Agostino and 

Pearson Omnibus test.  Continuous parametric variables were expressed as 

mean±standard deviation and compared using Pearson correlation. Non-

parametric data were presented as median [interquartile range] and compared 

using Spearman correlation or Wilcoxon signed-rank test as appropriate. Aortic 

calcium score and hs-CRP were log-transformed to base 10 to achieve 

normality prior to statistical analysis. Interobserver reproducibility was 

calculated by Bland Altman method and presented as mean bias ± 2 standard 

deviations, and intraclass correlation coefficients (ICC).(22) Student’s t-test or 

Mann-Whitney U test was used for analysis of categorical variables. Statistical 

analysis was performed with Graph Pad Prism version 6 (GraphPad Software 

Inc., California USA). A two-sided P<0.05 was taken as statistically significant.
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Results

Plaque Autoradiography and Histology 

Autoradiography of carotid plaque demonstrated focal 18F-fluciclatide binding 

in regions of advanced atherosclerosis that was effectively blocked by un-

labeled fluciclatide (Figure 1 A and B). On adjacent tissue sections processed 

for histology, these regions of ex vivo 18F-fluciclatide uptake co-localised with 

areas of intense cellular staining of αvβ3 integrin (45.2 [29.1-66.9] cells/mm2, % 

area 4.2 [3.2-5.7]), microvascular endothelial cells at sites of angiogenesis and 

positive remodeling (CD31+; 23.0 [6.5-63.0] cells/mm2, % area 2.5 [2.2-4.9]), 

and inflammatory macrophages deeper adjacent to the necrotic core (CD68+; 

32.0 [21.0-49.8] cells/mm2, % area 3.7 [2.4-5.6], Figure 1 C-H). By comparison 

regions of carotid endarterectomy specimen without visible atheroma did not 

demonstrate 18F-fluciclatide uptake, and had much lower levels of αvβ3 integrin 

receptor expression (4.5 [4.3-5.2] cells/mm2, % area 0.6 [0.5-2.0], both p=0.05 

compared to areas with increased 18F-fluciclatide expression), as well as 

staining for both angiogenic endothelial cells (CD31+; 2.1 [1.8-2.4] cells/mm2, 

% area 0.9 [0.6-1.2], both p=0.05) and inflammatory macrophages (CD68+; 4.3 

[2.8-4.4] cells/mm2, % area 0.6 [0.5-1.2], both p=0.03) .

In Vivo Imaging Cohort 

A total of 46 subjects underwent PET imaging with CT angiography (age 66±10 

years, 74% male; Table 1) following injection of 226±13 mBq 18F-fluciclatide. 

Of the 46 subjects recruited, 19 had suffered a recent MI (unstable cohort), and 

27 had imaging evidence of aortic atherosclerosis on CT but no recent 

cardiovascular events (stable cohort: 6 with stable angina and 21 with sub-
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clinical disease who were asymptomatic with no prior cardiovascular events). 

Interestingly, those in the stable cohort had greater aortic calcification than 

patients in the unstable group (AU [IQR]; 326 [11-1114] vs 19 [0-483], p<0.01), 

reflecting their greater age (years; 70±8 vs 61±12, p<0.01). The groups were 

well matched for gender (p=0.97) and body-mass index (p=0.25), and were 

both characterized by high prevalence of atherosclerotic risk factors, with more 

smokers in the unstable group (p=0.02) and more patients with hypertension in 

the stable group (p=0.001). No adverse events were reported following 

administration of 18F-fluciclatide and the average total radiation dose per 

participant was 15 mSv.

Dynamic Analysis of Aortic 18F-Fluciclatide Uptake

On kinetic analysis (n=20), activity within aortic atheroma increased gradually, 

reaching a plateau at 40–70 min. Injected 18F-fluciclatide activity has a 

biexponential blood pool clearance with a half-life of about 10 min consisting of 

a fast redistribution component with a slower clearance component, causing 

relatively high residual blood pool activity during PET acquisition (40-70 min 

post-injection, SVC SUVmean 2.74±0.49; Figure 2). Consequently, whilst 18F-

fluciclatide uptake in aortic atheroma was measurable above background, 

tissue-to-background ratios were relatively low (TBRmax range 1.08-1.68; 

Tables 2 and 3, Figures 2 and 3). In the 3-D Patlak slope (Ki) parametric 

images, 6 datasets (30%) were uninterpretable due to patient movement. In the 

remaining studies, increased aortic 18F-fluciclatide uptake was observed in half 

of subjects. Patlak modelling demonstrated a discernible linear phase 

suggesting irreversible ligand-receptor binding over the selected acquisition 
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time and a greater Ki slope in these subjects compared to patients with no aortic 

uptake (Figure 2).  Subjects with uptake present on Patlak analysis (n=7) also 

appeared to have higher 18F-fluciclatide uptake on standard analysis (TBRmax 

1.32±0.05 vs 1.19±0.03, p=0.08) and greater aortic calcification (aortic calcium 

score 704 [28-1788] vs 0 [0-119] AU, p=0.06) than those without visible uptake, 

although this did not reach statistical significance. 

Aortic 18F-Fluciclatide Uptake Reproducibility Studies 

Using static PET images, quantification of 18F-fluciclatide blood-pool activity 

demonstrated excellent interobserver reproducibility, with no fixed or 

proportional bias (SUVmean mean difference; -0.11 [-0.36 – 0.15]) and a good 

intraclass correlation co-efficient (0.95, Table S1). Quantification of aortic 18F-

fluciclatide uptake using the established mean TBRmax approach (5,20) also 

displayed no fixed or proportional bias (mean difference; 0.08 [-0.01–0.16]) with 

good intra-class correlation (0.92) (Table S1).

Aortic 18F-Fluciclatide Uptake and Atheroma Burden

Our study cohort comprised patients with a wide spectrum of aortic 

atherosclerotic burden (aortic calcium score range 0-6857 AU). On static PET 

images, aortic 18F-fluciclatide uptake demonstrated a moderate relationship 

with disease burden in the aorta using both CT calcium scoring (r=0.37 [0.08-

0.60], p=0.01) and the indexed plaque volume (r=0.56 [0.26-0.75]; p<0.001) 

(Table 3, Figures 3 and 4). A good correlation was also observed with the 

relative vessel wall thickness (expressed as a percentage of vessel diameter, 

r=0.57 [0.28-0.76]; p<0.001). There was no correlation between aortic 18F-
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fluciclatide uptake and the inflammatory marker C-reactive protein (log10 hs-

CRP r=0.18, p=0.28). 

Aortic 18F-Fluciclatide Uptake in Stable and Unstable Patients

To establish whether 18F-fluciclatide uptake may be a marker of unstable 

atherosclerotic activity, we compared aortic uptake in patients who had 

sustained a recent MI to those in our stable cohort. Given the association 

demonstrated between 18F-fluciclatide activity and plaque burden, we matched 

patients in the two groups according to CT calcium score (Table S2). We 

demonstrated increased 18F-fluciclatide aortic uptake in patients with recent MI 

compared to those in the stable cohort (TBRmax; 1.33±0.15vs 1.21±0.1, 

p=0.008) despite equivalent aortic calcium scores (Table 2, Figure 4). 

Moreover, in patients with recent MI, a stronger correlation was observed 

between aortic plaque burden and 18F-fluciclatide uptake than in the patient 

population as a whole (aortic wall thickness r=0.68, p=0.02). When aortic SUV 

measurement were assessed, these were consistently increased in the 

unstable groups compared to the stable groups across all regions of the aorta, 

even before attempts were made to match these groups by calcium score 

(p<0.05 for all aortic regions, Table 2 and S3).

Aortic 18F-Fluciclatide and Cardiovascular Risk Factors

Amongst patients in the stable cohort, aortic 18F-fluciclatide uptake correlated 

with a number of risk factors (Table 3). 18F-Fluciclatide activity was higher in 

patients with hypercholesterolemia compared to those without (1.37±0.04 vs 

1.24±0.06, p=0.007). Apparent observed trends were also seen in patients with 

diabetes (1.41±0.08 vs 1.28±0.02, p=0.06) and those with a diagnosis of 
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coronary heart disease (1.37±0.04 vs 1.28±0.03, p=0.08), although these did 

not meet statistical significance. Again, a strong correlation was observed 

between 18F-fluciclatide uptake and the CT calcium score (r=0.62, p<0.001) in 

this subgroup.
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Discussion

We present the largest multimodality imaging study to date evaluating the 

application of an RGD-based αvβ3 integrin receptor radiotracer in the 

assessment of human atheroma. We have demonstrated that ex vivo 18F-

fluciclatide binding co-localises to sites of αvβ3 integrin receptor expression in 

excised carotid plaques, and this was associated with regions of both 

angiogenesis and inflammation. We have further demonstrated in vivo that 18F-

fluciclatide uptake increased with progressive atherosclerotic plaque burden 

and is higher in patients with unstable versus stable atherosclerotic disease. 

These data would suggest that 18F-fluciclatide holds promise as a non-invasive 

marker of disease activity in atherosclerosis, informing us about two key 

characteristics of high-risk atheroma: inflammation and angiogenesis. RGD-

based tracers may therefore aid our pathophysiological understanding of this 

important condition and help identify patients at increased risk of adverse 

cardiovascular events. 

Plaque inflammation and angiogenesis are two key pathological processes 

associated with atheroma progression, plaque rupture and clinical events. 

Macrophages drive expansion of the necrotic core and secrete matrix 

metalloproteinases that weaken the fibrous cap, predisposing it to rupture. 

Angiogenesis is believed to occur in response to hypoxic conditions within the 

necrotic core and is associated with high-risk plaque characteristics.(3) In 

addition, these new vessels are prone to leakage and rupture resulting in 

plaque hemorrhage that itself results in an pro-inflammatory response, plaque 

destabilization and clinical events. A non-invasive imaging technique that can 
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inform about the activity of these two adverse pathological processes might 

therefore be useful in identifying patients with active high-risk atheroma. 

Indeed, it is hoped that non-invasive markers of systemic atherosclerotic 

disease activity may identify the vulnerable patient and provide incremental risk 

prediction to an assessment of radiographic coronary or carotid disease burden 

alone.(2,23) We have here demonstrated that 18F-fluciclatide PET-CT is an 

emerging and promising approach to achieve these aims.

Our autoradiographic data showed focal 18F-fluciclatide binding within carotid 

atheroma that localised histologically to αvβ3 integrin expression with no 

evidence of non-specific binding. Regions of 18F-fluciclatide uptake on 

autoradiography also corresponded to sites of immunohistochemical cellular 

staining for vascular endothelial cells and macrophages. This is in keeping with 

previous RGD-radiotracer studies and supports its role as a selective marker 

for angiogenic and inflammatory components of atherosclerotic activity.(7, 

24,25) Due to the close relationship between intraplaque inflammation and 

angiogenesis however, we are unable to ascertain whether 18F-fluciclatide was 

binding preferentially to one or the other of these processes. 

Dynamic in vivo imaging studies in 20 subjects confirmed irreversible 18F-

fluciclatide binding to regions of aortic atherosclerosis over the selected 

acquisition time, and demonstrated that the optimum time for 18F-fluciclatide 

imaging in the aorta is between 40 and 70 min. This timeframe was used for 

subsequent static PET imaging across the cohort as a whole. Static in vivo 

imaging demonstrated reproducible quantification of 18F-fluciclatide in aortic 
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atheroma of all 46 patients, and this was correlated with the severity of aortic 

atherosclerotic burden, itself a manifestation of systemic atherosclerosis and a 

strong predictor of cardiovascular events.(26,27) Indeed associations were 

observed with the aortic calcium score, aortic wall thickness and overall plaque 

volume. In patients with clinically stable disease, aortic uptake of 18F-

fluciclatide was increased in subjects with hypercholesterolemia with trends 

towards higher uptake in patients with diabetes mellitus and those with 

ischemic heart disease that did not meet statistical significance.  Perhaps most 

importantly, 18F-fluciclatide uptake in aortic atheroma was increased in 

patients with unstable (recent MI) versus stable clinical disease. Interestingly, 

using 18F-fluorodeoxyglucose, we have previously demonstrated a similar 

pattern of increased metabolic activity in aortic atheroma amongst patients with 

recent MI.(28) These data therefore lend support to the hypothesis that acute 

MI causes inflammation and instability in systemic atherosclerosis, as has been 

suggested in preclinical murine models.(29) It also provides further validity to 

the concept that 18F-fluciclatide uptake can identify higher risk plaques. 

However, whether this increased disease activity truly represents a response 

to the infarct or rather the underlying trigger remains to be determined.

We acknowledge that there are some limitations of our study that include 

potential partial volume artefacts, a limited histological assessment and the use 

of surrogate measures for aortic histology. 18F-Fluciclatide imaging prior to 

carotid endarterectomy would allow for a more direct comparison between in-

vivo imaging and histological assessment and consolidate our findings in line 

with previous publications.(7) Furthermore, our exploratory assessment of 
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aortic plaque volume may not take into account non-atheromatous intimal 

thickening in response to chronic hypertension. The dynamic imaging approach 

proved sensitive to patient movement during the prolonged acquisition period, 

limiting its utility in quantitative analysis, but this may ultimately be readdressed 

by novel motion tracking systems that allow for correction of cardiac and 

respiratory motion, enabling even greater definition of regional αvβ3 integrin 

expression.(30) Nonetheless, we believe that the totality of our comprehensive 

evidence using multiple approaches and imaging modalities provides a robust 

and cogent argument to support our findings.

In conclusion, this is the largest study to date assessing αvβ3 integrin expression 

in human atherosclerotic disease. We have demonstrated that 18F-fluciclatide 

uptake localises to regions of inflammation and angiogenesis, correlates with 

the plaque burden and is increased in patients with clinically unstable disease. 

Although further study is required, our data indicate that 18F-fluciclatide shows 

promise as a non-invasive marker of disease activity and instability in 

atherosclerosis.
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Table 1. Patient Characteristics

All

(n=46)

Stable 

Atherosclerosis

(n=27)

Unstable 

Atherosclerosis

(n=19)

P value*

Age (years) 66±10 70±8 61±12 0.006

Male Sex 34 (74) 20 (74) 14 (74) 0.97

BMI (kg/m2) 28±4 28±4 29±5 0.25

Systolic BP (mmHg) 140±22 149±19 127±19 <0.001

18F-Fluciclatide dose 

(MBq)
226±13 225±13 228±14 0.62

Cardiovascular History

Angiographically 

documented CAD
26 (57) 7 (26) 19 (100) <0.001

Prev MI 24 (52) 5 (19) 19 (100) <0.001

Prev PCI 20 (43) 2 (7) 18 (95) <0.001

Prev CVD 4 (11) 4 (14) 0 (0) 0.08

Risk Factors

Current smoker 9 (20) 1 (4) 8 (42) 0.001

Diabetes Mellitus 6 (13) 4 (14) 2 (10) 0.58

Prior hypertension 23 (50) 18 (67) 6 (32) 0.02

Prior Hypercholester-

olemia
25 (54) 12 (44) 12 (63) 0.21

hs-CRP (mg/l) 3.5 [1.4-7.8] 2.7 [1.4-5.8] 5.6 [2.0-11.7] <0.001

Log10 hs-CRP (mg/l) 0.51±0.51 0.41±0.44 0.65±0.56 <0.001

Medications

Aspirin 28 (61) 10 (37) 19 (100) <0.001

Clopidogrel 19 (41) 4 (14) 19 (100) <0.001

Statin 31 (67) 13 (48) 19 (100) <0.001

β-Blocker 27 (59) 8 (30) 19 (100) <0.001

ACEi/ARB 31 (67) 10 (37) 18 (95) <0.001

Calcium Channel 

Blocker
7 (15) 6 (22) 1 (5) 0.11

Categorical data are displayed as n (%). Normally distributed data displayed as 

mean±SD. Non-normally distributed data displayed as median [interquartile range]. 

IHD - ischemic heart disease; AS - aortic stenosis; CAD - coronary artery disease; MI 

- myocardial infarction; CVD – cerebrovascular disease; PCI - percutaneous 

coronary intervention; hs-CRP - high sensitivity c-reactive protein; ACEi - ACE-

inhibitor; ARB - Angiotensin Receptor Blocker. 

* P-values are quoted for comparisons between matched stable and unstable groups.  
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Table 2. Imaging Results

All

(n=46)

Stable 

Atherosclerosis

(n=27)

Matched Stable 

Atherosclerosis 

(n=19) Ψ

Unstable 

Atherosclerosis

(n=19)

P 

value*

18F-Fluciclatide PET uptake

SVC

(SUVmean)
2.74±0.49 2.62±0.46 2.54±0.40 2.9±0.48 0.02

Whole aorta 

(mean SUVmax)
3.59±0.62 3.40±0.62 3.19±0.65 3.84±0.55 0.001

Whole aorta 

(mean TBRmax)
1.32±0.14 1.30±0.12 1.26±0.09 1.33±0.18 0.14

Ascending aorta 

(mean TBRmax)
1.32±0.16 1.31±0.17 1.25±0.10 1.34±0.17 0.05

Aortic Arch

(mean TBRmax)
1.30±0.14 1.26±0.14 1.21±0.1 1.33±0.15 0.008

Descending aorta 

(mean TBRmax)
1.32±0.17 1.32±0.13 1.29±0.11 1.33±0.21 0.56

CT Calcium Score 

Whole aorta (AU) 95 [0-852] 326 (11-1114) 36 (0-469) 19 [0-483) 0.85

Ascending aorta (AU) 0 [0-11] 0 (0-46) 0 (0-0) 0 [0-0} 0.15

Aortic arch (AU) 29 [0-352] 102 (0-586) 13 (0-469) 0 [0-263]
0.76

Descending aorta (AU) 7.5 [0-78] 0 (0-123) 0 (0-123) 8 [0-71] 0.43

CTA Plaque analysis (descending aorta)

Mean wall thickness

(% vessel diameter)
10.3±4.9 8.4±2.8 8.4±3.1 14.0±6.3 0.003

Plaque burden

(% total volume)
9.1±3.9 7.7±2.3 7.7±2.5 12.0±4.7 0.004

Ψ Stable group subjects paired to equivalent calcium score in unstable group.
 * P-values are quoted for comparisons between matched stable and unstable 
groups.  

SUV - standard uptake value; SVC – superior vena cava; TBR - tissue-to-
background ratio
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Table 3. PET uptake and baseline characteristics

Total Aortic 18F-Fluciclatide Uptake 

All patients Stable Cohort Unstable Cohort

Continuous variables

CT calcium score 

(Log10AU) 

r=0.37 (0.08-0.60)

p=0.01

r=0.62 (0.43-0.81)

p<0.001

r=0.20 (-0.28-0.60)

p=0.41

Mean wall thickness 

(% vessel diameter) Ψ
r=0.57 (0.28-0.76)

p<0.001

r=0.18 (-0.26-0.56)

p=0.43

r=0.69 (0.15-0.91)

p=0.02

Plaque volume 

(% total volume) Ψ
r=0.56 (0.26-0.75)

p<0.001

r=0.16 (-0.28-0.55)

p=0.47

r=0.68 (0.13-0.90)

p=0.02

Log10 hs-CRP (mg/l)
r=0.18 (-0.14-0.46)

p=0.28

r=0.32 (-0.07-0.62)

p=0.10

r=-0.24 (-0.63-0.24)

p=0.06

Categorical variables

Hypertension 

(mean TBRmax)

1.31±0.05 vs

1.32±0.04

p=0.66

1.31±0.05 vs

1.32±0.04

p=0.66

Established Ischemic 

Heart Disease

(mean TBRmax)

1.34±0.06 vs

1.28±0.06

0.15

1.37±0.04 vs

1.28±0.03

0.08

Hypercholesterolemia

(mean TBRmax)

1.34±0.06 vs

1.28±0.06

p=0.16

1.37±0.04 vs

1.24±0.06

p=0.007

Diabetes mellitus

(mean TBRmax)

1.40±0.10 vs

1.30±0.05

p=0.15

1.41±0.08 vs

1.28±0.02

p=0.06

Current Smokers

(mean TBRmax)

1.36±0.10 vs

1.30±0.04

p=0.30

N too small

Ψ18F-Fluciclatide uptake assessed in the descending aorta only, to correspond with 
CT analysis. 
CT – computed tomography; hs-CRP - high sensitivity C-reactive protein
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Figure 1. 18F-Fluciclatide Uptake in Carotid Atheroma

(A) Autoradiography image of segments of ruptured carotid plaque (left) and proximal 

healthy segments (right). Greater 18F-fluciclatide binding is visible within plaque 

rupture segments. Binding within the tissue segments (demarcated, black) was 

successfully blocked by the addition of a more concentrated un-labelled solution of 

fluciclatide (B).  Areas showing the highest fluciclatide binding (demarcated, blue) 

exhibited a high degree of αvβ3 integrin expression (C and D, arrow) that also 

featured cellular staining for vascular endothelial cells (CD31, E and F, arrow) and 

inflammatory cells (CD68, G and H, arrow). Scale bar 1 mm in C, E, G  and 75 μm 

in D, F, H. 
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Figure 2. Kinetic Analysis of Aortic 18F-Fluciclatide Uptake

Sagittal views of the thorax following kinetic analysis in two participants with 
(patient 1: A-E) and without (patient 2; F-H) aortic arch 18F-fluciclatide uptake. 
Computed tomography (CT) images confirm presence (A) or absence (F) of 
aortic arch calcification as a marker of established atheroma. Patlak slope (Ki) 
parametric images (B and G) identify focal uptake within the aortic arch in the 
region of atheroma (red arrow) localising to the vessel wall on the fused Patlak 
and CT images (C and H). Patlak modelling (D) confirms irreversible integrin 
binding within the region of aortic arch calcification (red arrow). Time activity 
curves (TAC) within the same region (E) show a persistently high blood pool 
fraction, but uptake within atheroma that exceeds the blood pool fraction 
beyond 40 min (dashed line).
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Figure 3. 18F-Fluciclatide Aortic Uptake

Patient 3: Modified coronal view of the aortic arch showing radiotracer uptake 
at the inner curvature of the aortic arch related to a region of aortic calcification. 
This activity is demonstrated on axial sections of the aorta (i and ii). Red lines 
indicate the adventitial borders of the aortic arch used for quantification of PET 
uptake. Patient 4: Sagittal view of the thorax displaying focal 18F-fluciclatide 
uptake within a region of vascular calcification in the aortic arch. 
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Figure 4. 18F-Fluciclatide Uptake, Atheroma Burden and Clinical 
Stability

Graphs displaying the relationship between aortic 18F-fluciclatide uptake and 
aortic plaque burden, assessed using both the plaque volume (A) and calcium 
score (B). Moreover 18F-Fluciclatide uptake was greater in patients with 
unstable (recent myocardial infarction) versus stable (no recent cardiovascular 
events) atherosclerotic disease (C).
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Figure 1. 18F-Fluciclatide Uptake in Carotid Atheroma 

(A) Autoradiography image of segments of ruptured carotid plaque (left) and proximal healthy segments 

(right). Greater 18F-fluciclatide binding is visible within plaque rupture segments. Binding within the tissue 

segments (demarcated, black) was successfully blocked by the addition of a more concentrated un-labelled 

solution of fluciclatide (B).  Areas showing the highest fluciclatide binding (demarcated, blue) exhibited a 

high degree of αvβ3 integrin expression (C and D, arrow) that also featured cellular staining for vascular 

endothelial cells (CD31, E and F, arrow) and inflammatory cells (CD68, G and H, arrow). Scale bar 1 mm in 

C, E, G  and 75 μm in D, F, H. 
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STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies 

Item 

No Recommendation

Page

No

(a) Indicate the study’s design with a commonly used term in the title or 

the abstract

2Title and abstract 1

(b) Provide in the abstract an informative and balanced summary of what 

was done and what was found

2

Introduction

Background/rationale 2 Explain the scientific background and rationale for the investigation being 

reported

5

Objectives 3 State specific objectives, including any prespecified hypotheses 6

Methods

Study design 4 Present key elements of study design early in the paper 7

Setting 5 Describe the setting, locations, and relevant dates, including periods of 

recruitment, exposure, follow-up, and data collection

7-9

Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection 

of participants

7

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, 

and effect modifiers. Give diagnostic criteria, if applicable

9-10

Data sources/ 

measurement

8*  For each variable of interest, give sources of data and details of methods 

of assessment (measurement). Describe comparability of assessment 

methods if there is more than one group

9-10

Bias 9 Describe any efforts to address potential sources of bias 11

Study size 10 Explain how the study size was arrived at

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 

applicable, describe which groupings were chosen and why

7-11

(a) Describe all statistical methods, including those used to control for 

confounding

11

(b) Describe any methods used to examine subgroups and interactions 11

(c) Explain how missing data were addressed

(d) If applicable, describe analytical methods taking account of sampling 

strategy

11

Statistical methods 12

(e) Describe any sensitivity analyses 11

Results

(a) Report numbers of individuals at each stage of study—eg numbers 

potentially eligible, examined for eligibility, confirmed eligible, included 

in the study, completing follow-up, and analysed

12

(b) Give reasons for non-participation at each stage

Participants 13*

(c) Consider use of a flow diagram

(a) Give characteristics of study participants (eg demographic, clinical, 

social) and information on exposures and potential confounders

25Descriptive data 14*

(b) Indicate number of participants with missing data for each variable of 

interest

Outcome data 15* Report numbers of outcome events or summary measures

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted 

estimates and their precision (eg, 95% confidence interval). Make clear 

which confounders were adjusted for and why they were included

12-

16
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(b) Report category boundaries when continuous variables were 

categorized

12-

16

(c) If relevant, consider translating estimates of relative risk into absolute 

risk for a meaningful time period

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, 

and sensitivity analyses

Discussion

Key results 18 Summarise key results with reference to study objectives 17-

20

Limitations 19 Discuss limitations of the study, taking into account sources of potential 

bias or imprecision. Discuss both direction and magnitude of any potential 

bias

17-

20

Interpretation 20 Give a cautious overall interpretation of results considering objectives, 

limitations, multiplicity of analyses, results from similar studies, and other 

relevant evidence

17-

20

Generalisability 21 Discuss the generalisability (external validity) of the study results 17-

20

Other information

Funding 22 Give the source of funding and the role of the funders for the present study 

and, if applicable, for the original study on which the present article is 

based

21

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and 

published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely 

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at 

http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is 

available at www.strobe-statement.org.
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Supplementary Text and Data

Computed Tomography Acquisition

Immediately after PET acquisition, thoracic CT angiography was performed: 330 ms 

rotation time, 100 (body mass index <25 kg/m2) or 120 (body mass index >25 kg/m2) kV 

tube voltage, 160-245 mAs tube current, 3.8 mm/rotation table feed, prospective (heart 

rate regular and <60 /min), or retrospective (heart rate >60 /min) electrocardiogram-gated. 

Depending on body mass index, a bolus of 80-100 mL contrast (400 mgI/mL; Iomeron, 

Bracco, Milan, Italy) was injected intravenously at 5 mL/s, after determining the 

appropriate trigger delay with a test bolus of 20 mL contrast material. 

PET Imaging 

Kinetic Analysis

PET data were reconstructed (Ultra-HD, 2 iterations, 21 subsets, 256 pixels, 1.6-mm pixel size) 

in a dynamic profile using the following time frames; 60s x 5, 120s x 5, 180s x 5, 300s x 8. 

Regions of interest (ROI’s) were drawn both in the blood pool and sites of aortic atheroma 

visible on CT and used to derive time activity curves after decay correction. These were used to 

define a timeframe for static imaging based upon the point at which optimum contrast 

between blood pool and tissue activity was observed. To define 18F-fluciclatide uptake in aortic 

atheroma, a kinetic modeling input function calculation was based on the PET image-derived 

activity curve from the aortic blood pool.(8) (PMod version 4.3.1, Pmod technologies limited, 

Switzerland). This input function was applied to a tissue activity curve generated from ROI’s 

placed in the myocardial interventricular septum, to estimate the tissue influx rate Ki (the slope 
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of the linear regression) and the volume of distribution (the intercept with the y axis) using a 2-

tissue irreversible Patlak model, with t* set to 20 min, as described previously (9,11). Thoracic 

18F-fluciclatide dynamic activity was then normalized for the blood-pool input function on a 

voxel-by-voxel basis, and after 3D Gaussian filtering (5-mm FWHM), a parametric 3-dimensional 

image of 18F-fluciclatide uptake was generated accordingly. Using this image, regions of 18F-

fluciclatide binding in the vasculature were identified and manually delineated for subsequent 

Ki analysis. 

Histological Processing and Analysis

After obtaining informed consent, four human carotid intimal samples were obtained from 

patients undergoing carotid endarterectomy for symptomatic carotid artery atherosclerotic 

disease. Segments of dissected carotid atheroma were frozen in mounting medium. The tissue 

samples were then cut in sequential, longitudinal 4 μm and 20 μm slices sections at -20°C and 

thaw-mounted onto microscope slides. Effort was made to align segments of ruptured plaque 

alongside non-atheromatous segments within the same slide. The slides were then dried for 15 

min and spray-fixed with neutral buffered formalin. After rinsing in distilled water the 4 μm 

sections were stained with hematoxylin-eosin (HE) and van-Gieson (VG) for conventional 

histopathological examination. In order to optimize immunohistochemistry, an antigen-

unmasking step was performed by microwave treatment for 30 s. Endogenous peroxidase was 

blocked by incubation with hydrogen peroxide for 5 min. Sections were subsequently incubated 

with the primary antibodies; smooth muscle actin, CD31, CD68 (clone PG-M1), and integrin αVβ3 
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antibody, clone LM609 (Millipore) for 30 min at room temperature. After washing, the sections 

were incubated with Envision Flex (DAKO, K5007) for 30 min at room temperature, followed by 

incubation with diaminobenzamine (Sigma) for 10 min. The slides were finally counterstained 

with hematoxylin and digitally imaged (Axioscan.Z1, Zeiss, UK).

Clinical PET systems have limited resolution. To gain more detailed information about the 

precise localization of 18F-fluciclatide binding in atherosclerotic tissue, we undertook 

autoradiography. The 20 μm frozen sections adjacent to those used for immunohistochemical 

analysis were warmed to room-temperature and bathed in a solution of 18F-fluciclatide at a 

concentration close to in vivo imaging concentrations (1 kBq/mL) for 60 minutes and then 

rinsed with phosphate buffer solution. An unlabeled highly concentrated solution of fluciclatide 

was added to selected slides in order to competitively bind to αvβ3 to assess for non-specific 

tracer uptake. A freshly blanked phosphor screen was then placed over the slides and an 

overnight exposure undertaken. The screen was read using a FujiFilm FLA-5100 Fluorescent 

Image Analyser (Raytek Scientific Limited, Sheffield, UK). Sections were then manually 

registered and examined for co-localization with histological markers of atherosclerotic disease 

activity. 
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Table S1 – Reproducibility Analysis

18F-Fluciclatide

Activity

Mean absolute differencea

Intra-class 

coefficientb

Superior Vena Cava 

Mean SUV (SUV [kBq/cc]) -0.11 (-0.36 – 0.15) 0.947

Aorta

Mean SUV (SUV [kBq/cc]) -0.005 (-0.14 – 0.13) 0.986

Mean SUVMDS (SUV [kBq/cc]) 0.01 (-0.17 – 0.15) 0.980

Max SUV (SUV [kBq/cc]) 0.07 (-0.13 – 0.27) 0.971

Max SUVMDS (SUV [kBq/cc]) 0.06 (-0.22 – 0.34) 0.957

Mean TBR 0.04 (-0.02 – 0.10) 0.954

Mean TBRMDS 0.04 (-0.04 – 0.10) 0.940

Max TBR 0.08 (-0.01 – 0.16) 0.912

Max TBRMDS 0.07 (-0.03 – 0.17) 0.919

SUV Target-background 0.19 (-0.05 – 0.43) 0.612

a Mean difference between TBRmax measurements (95% limits of agreement), and b ICC values 

for 18F-Fluciclatide throughout the thoracic aorta and SVC.

Abbreviations: ICC: intraclass correlation coefficient; MDS: most diseased segment; TBR: tissue to background 

ratio; SVC: Superior Vena Cava
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Table S2 – Baseline demographic data

Categorical data are displayed as n (%). Normally distributed data displayed as mean±SD. Non-

normally distributed data displayed as median [interquartile range]. 

IHD - ischemic heart disease; AS - aortic stenosis; CAD - coronary artery disease; MI - 

myocardial infarction; CVD – cerebrovascular disease; PCI - percutaneous coronary 

intervention; hs-CRP - high sensitivity c-reactive protein; ACEi - ACE-inhibitor; ARB - 

Angiotensin Receptor Blocker. 

* P-values are quoted for comparisons between matched stable and unstable groups.  

All

(n=46)

Stable 

Atherosclerosis

(n=27)

Stable 

atherosclerosis; 

matched group 

(n=19)

Unstable 

Atherosclerosis

(n=19)

P value

Age (years) 66±10 70±8 68±7 61±12 0.04

Male Sex 34 (74) 20 (74) 15 (79) 14 (74) 0.71

BMI (kg/m2) 28±4 28±4 26±4 29±5 0.59

Systolic BP (mmHg) 140±22 149±19 151±18 127±19 <0.001

18F-Fluciclatide dose 

(MBq)
226±13 225±13 225±13 228±14 0.55

Cardiovascular History

Angiographically 

documented CAD
26 (57) 7 (26) 1 (5) 19 (100) <0.001

Prev MI 24 (52) 5 (19) 0 (0) 19 (100) <0.001

Prev PCI 20 (43) 2 (7) 0 (0) 18 (95) <0.001

Prev CVD 4 (11) 4 (14) 3 (16) 0 (0) 0.08

Risk Factors

Current smoker 9 (20) 1 (4) 0 (0) 8 (42) 0.001

Diabetes Mellitus 6 (13) 4 (14) 2 (11) 2 (11) 0.99

Prior hypertension 23 (50) 18 (67) 11 (58) 6 (32) 0.11

Prior Hypercholester-

olemia
25 (54) 12 (44) 6 (32) 12 (63) 0.03

hs-CRP (mg/l) 3.5 [1.4-7.8] 2.7 [1.4-5.8] 3.0±2.4 5.6 [2.0-11.7] <0.001

Log10 hs-CRP (mg/l) 0.51±0.51 0.41±0.44 0.48±0.38 0.65±0.56 <0.001

Medications

Aspirin 28 (61) 10 (37) 5 (26) 19 (100) <0.001

Clopidogrel 19 (41) 4 (14) 3 (16) 19 (100) <0.001

Statin 31 (67) 13 (48) 5 (26) 19 (100) <0.001

β-Blocker 27 (59) 8 (30) 2 (11) 19 (100) <0.001

ACEi/ARB 31 (67) 10 (37) 4 (21) 18 (95) <0.001

Calcium Channel 

Blocker
7 (15) 6 (22) 4 (21) 1 (5) 0.11
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Table S3 – Imaging Results

All

(n=46)

Stable 

Atherosclerosis

(n=27)

Matched Stable 

Atherosclerosis 

(n=19) Ψ

Unstable 

Atherosclerosis

(n=19)

P 

value*

18F-Fluciclatide PET uptake

SVC

(SUVmean)
2.74±0.49 2.62±0.46 2.54±0.40 2.9±0.48 0.02

Whole aorta 

(mean SUVmax)
3.59±0.62 3.40±0.62 3.19±0.65 3.84±0.55 0.001

Ascending aorta

(mean SUVmax)
3.60±0.66 3.42±0.70 3.16±0.56 3.87±0.51 <0.001

Aortic Arch

(mean SUVmax)
3.51±0.62 3.29±0.61 3.05±0.52 3.84±0.48 <0.001

Descending aorta 

(mean SUVmax)
3.61±0.68 3.46±0.65 3.28±0.65 3.83±0.66 0.01

Whole aorta 

(mean TBRmax)
1.32±0.14 1.30±0.12 1.26±0.09 1.33±0.18 0.14

Ascending aorta 

(mean TBRmax)
1.32±0.16 1.31±0.17 1.25±0.10 1.34±0.17 0.05

Aortic Arch

(mean TBRmax)
1.30±0.14 1.26±0.14 1.21±0.1 1.33±0.15 0.008

Descending aorta 

(mean TBRmax)
1.32±0.17 1.32±0.13 1.29±0.11 1.33±0.21 0.56

CT Calcium Score 

Whole aorta (AU) 95 [0-852] 326 (11-1114) 36 (0-469) 19 [0-483) 0.85

Ascending aorta (AU) 0 [0-11] 0 (0-46) 0 (0-0) 0 [0-0} 0.15

Aortic arch (AU) 29 [0-352] 102 (0-586) 13 (0-469) 0 [0-263]
0.76

Descending aorta (AU) 7.5 [0-78] 0 (0-123) 0 (0-123) 8 [0-71] 0.43

CTA Plaque analysis (descending aorta)

Mean wall thickness

(% vessel diameter)
10.3±4.9 8.4±2.8 8.4±3.1 14.0±6.3 0.003

Plaque burden

(% total volume)
9.1±3.9 7.7±2.3 7.7±2.5 12.0±4.7 0.004

Ψ Stable group subjects paired to equivalent calcium score in unstable group.

Page 44 of 44

https://mc.manuscriptcentral.com/heart

Heart

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Confidential: For Review
 O

nly

7

 * P-values are quoted for comparisons between matched stable and unstable groups.  

SUV - standard uptake value; SVC – superior vena cava; TBR - tissue-to-background ratio
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