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In Vivo Cluster Formation of Nisin and Lipid II Is Correlated with
Membrane Depolarization

Menno B. Tol, Danae Morales Angeles, Dirk-Jan Scheffers

Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands

Nisin and related lantibiotics kill bacteria by pore formation or by sequestering lipid II. Some lantibiotics sequester lipid II into
clusters, which were suggested to kill cells through delocalized peptidoglycan synthesis. Here, we show that cluster formation is
always concomitant with (i) membrane pore formation and (ii) membrane depolarization. Nisin variants that cluster lipid II kill
L-form bacteria with similar efficiency, suggesting that delocalization of peptidoglycan synthesis is not the primary killing mech-
anism of these lantibiotics.

Lantibiotics form a class of antimicrobial peptides that contain
thioether rings formed by lanthionine residues. Nisin, the most

studied lantibiotic, is a 34-residue peptide produced by Lactococcus
species with antimicrobial activity against a wide range of Gram-
positive bacteria (see Fig. S1 in the supplemental material). Nisin
targets lipid II, the precursor molecule for peptidoglycan (PG)
synthesis (1), and kills via two modes of action: (i) formation of
large membrane pores and (ii) interference with PG synthesis.

Two lanthionine rings in nisin (A and B) form a pyrophosphate-
binding cage that binds lipid II and is highly conserved among lipid
II-binding lantibiotics (2). The C terminus of nisin is important for
membrane integration (3, 4). Nisin-lipid II complexes (8:4 stoichi-
ometry) form pores in the membrane (5–7) that result in the efflux of
small molecules and influx of sodium ions, which will lead to cell
death. Mutations in the hinge region of nisin either block or severely
inhibit pore formation activity, presumably by preventing the hinge
region (residues N20, M21, and K22) (see Fig. S1 in the supplemental
material) from flipping the C-terminal tail into and across the mem-
brane. Mutants PP-nisin (N20P M21P) and ��-nisin (�N20 �M21)
fail to form pores in liposome efflux assays (7, 8). Nisin 1-22 (�23-34)
cannot dissipate the membrane potential of sensitive Lactococcus
species (9). Similar to nisin 1-22, mutacin 1140 and mersacidin
bind lipid II but are too short to span the membrane (6, 10).
Mutants that do not efficiently form pores are thought to act by
affecting cell wall synthesis only.

Two mechanisms for lantibiotic interference with PG synthesis
are proposed: “occlusion” and “clustering.” Occlusion is the bind-
ing to the pyrophosphate moiety of lipid II, which blocks incor-
poration of lipid II into glycan strands (11). Clustering is the for-
mation of nonphysiological domains containing lipid II and nisin
in the membrane, which results in delocalized PG synthesis (12).

Recently, we used PP-nisin as a tool to cluster lipid II into
domains to determine the effect of delocalized lipid II on the lo-
calization of proteins involved in PG synthesis (13). PP-nisin was
expected not to affect the membrane potential of live cells (7);
however, we found that PP-nisin induced membrane potential
loss (13). This compromised the localization of many membrane-
associated proteins, including MreB (14). Here, we further inves-
tigated the effects of various nisin mutants on lipid II cluster for-
mation and pore formation using live Bacillus subtilis cells.

The nisin, nisin variants, and other lantibiotics used in this
study all displayed antibacterial activity against B. subtilis (Ta-
ble 1), as determined using the resazurin microplate assay

(REMA), which uses the resazurin-resorufin dye pair to assess the
metabolic capacity of cells (15) (see the methods in the supple-
mental material). The MIC50s determined correspond well with
MIC values reported in the literature for the various compounds
(8, 16–18). The capacity of these compounds to cluster lipid II was
tested by microscopy. Lipid II was stained with a vancomycin-
conjugated BODIPY (boron-dipyrromethene) fluorophore, and
cells were imaged. Control cells show a large amount of lipid II in
the septum and additional lipid II on the cell edges, whereas nisin
and PP-nisin induce the formation of spotty clusters with the loss
of defined fluorescent cell edges (Fig. 1A and B), as reported pre-
viously (12, 13, 19, 20), although nisin was more potent at lower
concentrations. ��-Nisin was less potent in cluster formation,
with only 27% of cells showing clusters at 30 �g/ml and a mini-
mum concentration at which cluster formation was observed of 20
�g/ml. This suggests that the presence of the two amino acids at
positions 20 and 21 is important for clustering. Nisin 1-22 did not
induce cluster formation even at a concentration of 30 �g/ml,
which is 3 times the measured MIC50 (Fig. 1A and Table 1). Mer-
sacidin and mutacin 1140 failed to cluster lipid II at concentra-
tions far above their MIC50 (Fig. 1B and Table 1). This was sur-
prising as all lantibiotics were expected to cluster lipid II, as
described for PP-nisin in giant unilamellar vesicles (GUVs) and
live cells and for mutacin 1140 in GUVs only (12). The hinge
region mutants, nisin 1-22, and mutacin 1140 all have the ring A/B
cage, yet mutacin 1140 and nisin 1-22 were not effective in clus-
tering, suggesting that the cage itself is insufficient for clustering.

As not all lantibiotics tested clustered lipid II, we decided to
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further study the pore-forming activity of nisin (variants) in
live cells, using fluorescent dyes to monitor membrane depo-
larization and pore formation in 96-well plate assays. Mem-
brane depolarization was measured in hyperpolarized cells
with the membrane potential dye DiSC3 (5). Addition of nisin
leads to depolarization with a concomitant fluorescence in-
crease with a 50% effective concentration (EC50) of 96 nM
(Table 1; see Fig. S2A in the supplemental material). PP-nisin
and ��-nisin were clearly not as active as nisin but caused
complete membrane depolarization at higher concentrations
(see Fig. S2A), which was unexpected as they were reported to
be deficient in pore formation (8, 12). Nisin 1-22 was inactive
in our depolarization assay, as reported earlier (9).

The membrane depolarization observed with PP-nisin and
��-nisin was surprising; therefore, the pore formation capacity of
these nisin variants was determined. The quenching of the mem-
brane- permeable DNA stain SYTO9 by membrane-impermeable
propidium iodide (PI) influx was used as a proxy for pore forma-
tion in live B. subtilis cells by nisin (variants). Efficient influx of the
propidium probe was detected with nisin, with an EC50 of 9.0 nM
(Table 1; see Fig. S2B in the supplemental material). PP-nisin also
allows the passage of the probe in vivo only slightly less efficiently
than nisin (Table 1; see Fig. S2B). ��-Nisin and nisin 1-22 are
much less efficient in this assay (see Fig. S2B). ��-Nisin does not
quite plateau, resulting in very wide confidence intervals for the
EC50 (Table 1). SYTO9 quenching by nisin 1-22 reaches a plateau
at half the level of quenching caused by nisin, indicating that nisin
1-22 can induce pore formation but not to the extent that mem-
brane potential is altered. This assay does not resolve whether or
not a subfraction of cells is responsible for the observed probe
influx. It is possible that live cells can counteract the depolariza-
tion effects of pore formation to a certain extent— e.g., by reseal-
ing unstable pores. The protonophore carbonyl cyanide m-chlo-
rophenyl hydrazone (CCCP) did not cause propidium influx (not
shown), indicating that depolarization of the membrane alone
does not cause propidium influx. A potassium efflux assay using
the potassium indicator PBFI confirmed that nisin, PP-nisin, and
��-nisin cause potassium efflux, whereas nisin 1-22 did not, but
EC50s could not be determined for all nisin variants (see Fig. S3 in
the supplemental material).

All nisin variants that cluster lipid II induced membrane depo-
larization. ��-Nisin induced both clustering and pore formation
at much higher concentrations than nisin and PP-nisin, suggest-
ing that both events are linked. To establish whether pore forma-
tion is the main killing mechanism for these nisin variants, we
used L-forms that grow and proliferate in the absence of a cell wall
(21). L-forms will be killed by nisin variants that form pores, while
nisin variants that kill by inhibition of PG synthesis alone will be
ineffective. Although lipid II synthesis is blocked or reduced in
L-forms, nisin is still effective against L-forms due to the presence
of other precursor lipids similar to lipid II (lipids III and IV [22]).
MIC values for nisin, PP-nisin, and ��-nisin in L-forms were
either lower than or similar to the MIC values for PG-containing
cells (Table 1), indicating that all of these variants kill with a sim-
ilar efficiency irrespective of the presence of a cell wall. The MIC50

for nisin 1-22 increased 5-fold. Membrane depolarization of L-
forms was also found to be similar to depolarization of cells con-
taining PG (Table 1; see Fig. 4 in the supplemental material). Thus,
by using L-forms as a way to discern whether nisin variants kill
exclusively by inhibiting PG synthesis or also by pore formation,T
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we conclude that only nisin 1-22—which kills cells much more
efficiently when PG synthesis is required—predominantly targets
PG synthesis.

The results presented here suggest that lantibiotic-induced
cluster formation of lipid II coincides with membrane depolar-
ization. Surprisingly, mutacin 1140 clusters lipid II in GUVs
(12) but fails to do so in live cells (Fig. 1), and PP-nisin and
��-nisin formed pores in live cells, although they are inactive
in pore formation in lipid II-doped 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) liposomes (8). This suggests that lan-
tibiotics have a stronger pore-forming activity on live cell
membranes, which could be caused by either differences in
lipid composition, the presence of protein in the membranes,
or the presence of a membrane potential. Neither lipid II bind-
ing (by nisin 1-22 or mersacidin) nor membrane depolariza-
tion (e.g., by CCCP [13]) alone is sufficient to form lipid II
clusters. This strongly suggests that nisin-lipid II cluster for-
mation results in depolarization, although we cannot formally
exclude that depolarization results in clustering.

These findings have implications for the proposed killing
modes of nisin-like lantibiotics: nisin variants capable of mem-
brane depolarization may inhibit PG synthesis as well, but our
results suggest that this is not important for killing as cell-wall-less
L-forms are killed by these compounds with similar or higher
efficiency. Nisin 1-22, the only nisin variant that exclusively tar-
gets PG synthesis, should work through occlusion not clustering,
as we never observed clusters formed by lipid II and nisin 1-22.

Similarly, occlusion is the mode of action of mersacidin and mu-
tacin. An implication of our finding is that monitoring the effects
of lantibiotic-mediated lipid II delocalization on cell wall synthe-
sis proteins is only possible for those proteins that are not affected
by the collapse of the membrane potential that is associated with
lipid II delocalization.
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