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Abstract

Purpose Successful use of augmented reality for laparoscopic surgery requires that the surgeon has a thorough understanding

of the likely accuracy of any overlay. Whilst the accuracy of such systems can be estimated in the laboratory, it is difficult to

extend such methods to the in vivo clinical setting. Herein we describe a novel method that enables the surgeon to estimate in

vivo errors during use. We show that the method enables quantitative evaluation of in vivo data gathered with the SmartLiver

image guidance system.

Methods The SmartLiver system utilises an intuitive display to enable the surgeon to compare the positions of landmarks

visible in both a projected model and in the live video stream. From this the surgeon can estimate the system accuracy when

using the system to locate subsurface targets not visible in the live video. Visible landmarks may be either point or line features.

We test the validity of the algorithm using an anatomically representative liver phantom, applying simulated perturbations to

achieve clinically realistic overlay errors. We then apply the algorithm to in vivo data.

Results The phantom results show that using projected errors of surface features provides a reliable predictor of subsurface

target registration error for a representative human liver shape. Applying the algorithm to in vivo data gathered with the

SmartLiver image-guided surgery system shows that the system is capable of accuracies around 12 mm; however, achieving

this reliably remains a significant challenge.

Conclusion We present an in vivo quantitative evaluation of the SmartLiver image-guided surgery system, together with

a validation of the evaluation algorithm. This is the first quantitative in vivo analysis of an augmented reality system for

laparoscopic surgery.

Keywords Image-guided surgery · Augmented reality · Liver · Validation · Error measurement · Laparoscope

Introduction

Laparoscopic surgery for liver resection is in general prefer-

able to open surgery, due to the significant reduction in

post-operative pain and scarring [7]. Currently only a minor-

ity of patients at specialist hospitals undergoes laparoscopic

resection. One reason for the low rate of laparoscopic resec-

tion is the difficulty surgeons have in identifying key anatomy

through a laparoscopic camera and monitor [4]. This can be
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addressed by introducing external images to the procedure,

known as image-guided surgery (IGS). A recent review [5]

describes the state of the art of laparoscopic IGS. In most

cases Augmented Reality (AR), where a model is overlaid

directly on the laparoscopic video, is avoided due to the dif-

ficulty in creating a well aligned overlay on a deforming and

mobile organ. One approach is to show a solid model derived

from pre-operative Computed Tomography (CT) next to the

surgical scene. Whilst the model may be orientated to match

the surgical scene, it is up to the surgeon to identify the final

correspondence between the model and the video. The first

reported use of an AR overlay in laparoscopic liver surgery

is reported by [10] making the case for the benefits of an AR

laparoscopic system. We developed the “SmartLiver” IGS

system to show the liver model overlaid on the video feed

from a laparoscope. This spares the surgeon some cognitive
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load; however, it raises questions in terms of perception and

interpretation of errors.

In any AR system, there will be misalignment between

the overlay and what is visible on the screen. Furthermore,

it must remain the responsibility of the surgeon to interpret

and act upon any apparent error. To enable this, we have

implemented advanced visualisation algorithms, to allow the

surgeon to rapidly identify AR overlay errors. Figure 1 shows

an in vivo overlay using our system. A key feature of the

overlay is that we have maintained a projected 2D outline of

the liver, which can be compared to the visible anatomy. The

outline enables an estimate of the accuracy of any overlaid

non-visible anatomy.

Background

One reason for the slow progress of laparoscopic IGS is a

lack of a realistic approach to the measurement and inter-

pretation of alignment errors. In contrast to orthopaedics

or neurosurgery, the anatomy of the abdomen is mobile, so

IGS using rigid registration may suffer significant localised

errors. It is theoretically possible to use deformable registra-

tion and motion models [17]; however, this adds complexity,

and makes it harder for the surgeon to interpret the sys-

tem’s performance. Breath hold or gating can also be used to

improve the apparent accuracy, at a cost in usability.

Collins et al. [9] investigate the effect of variation in sur-

face reconstruction protocol on rigid and non-rigid surface-

based registration. They show that a system using rigid

registration can be expected to have registration errors around

10 mm, while deformable registration can get down to

approximately 6 mm. These figures are also in agreement

with our results.

Kang et al. [13] propose an AR laparoscopic system

that avoids some of the problems of soft tissue motion and

deformation between scan and surgery by only using intra-

operatively acquired ultrasound images. They report errors

of approximately 3 mm for their ultrasound only AR system.

The primary source of errors in such a system will be tracking

and calibration errors, again providing a useful comparison

with our system.

Hayashi et al. [12] present a novel registration method for

gastric surgery, using subsurface landmarks to progressively

improve the registration as and when they become visible dur-

ing resection. They report accuracies around 13 mm, which

is similar to our best achieved accuracy of 12 mm. Interest-

ingly they report that their surgeons believe the system would

become useful at accuracies of 10 mm, as the surgeon should

be able to mentally compensate for the residual registration

errors caused by deformation and motion.

Amir-Khalili et al. [1] propose displaying contours show-

ing uncertainty around the displayed targets. Alternatively,

Pratt el al. [15] overlay a wire-frame of the organ surface.

In our experience, these approaches are too visually clut-

tered for liver surgery, hence our proposed use of outline

rendering. Communication of alignment errors gets harder

when deformable registration is used. Bano et al. [3] show

two results relevant to our study in their pre-clinical work on

using intra-operative C-arm to inform a non-rigid registra-

tion of the liver. Firstly, in their porcine model, deformation

due to insufflation is a significant source of registration error

(around 8 mm). Furthermore, the error measured at internal

vessels is significantly higher (by approximately 6 mm) than

the error measured at the liver surface.

Contributions of this Paper

Our proposed method for in vivo estimation of errors uses the

visible misalignment of the liver outline (Fig. 1) to infer the

misalignment of non-visible target anatomy. In this paper, we

define a measure of visible misalignment, re-projection error

(RPE), and test the assumption that RPE is a useful predictor

of the misalignment of subsurface targets, or target regis-

tration error (TRE). In part this can be estimated using the

relations between fiducial localisation error (FLE) and TRE

originally put forward by Fitzpatrick and West [11]; however,

two factors limit the applicability of their approach. Firstly,

the FLE of individual in vivo landmarks are not independent

random variables, as they will all be influenced by system-

atic errors in calibration and tracking of the laparoscope and

tissue motion. Independence of FLE is a key assumption of

[11] and derived works; therefore, use of these relationships

when the assumption is not true can significantly underesti-

mate TRE [19]. Secondly, in our calculation of RPE, errors

normal to the camera lens are effectively discarded, because

they cannot be estimated from a 2D image. This creates a

non-linear transformation from 3D misalignment errors to

2D RPE. Therefore, it is not clear that RPE can be safely

used as a proxy for FLE.

In our pre-clinical work, only point landmarks were used

for validation [21]; however, during our ongoing in vivo val-

idation we have found it extremely difficult to identify point

landmarks on the human liver. In general, the landmarks we

have been able to use are concentrated around the high cur-

vature points close to the falciform ligament. In contrast, it is

possible to identify line landmarks across the entire visible

edge of the liver. To enable validation of the system in vivo,

we have therefore developed a novel algorithm to measure

RPE using both point and line landmark features.

With this paper, we make three important and novel con-

tributions. We test the validity of using RPE derived from

point and landmark features to estimate subsurface TRE, in

so doing we enable the translation from pre-clinical to clinical

research. Secondly, the algorithm is applied to 9 in vivo cases,
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Fig. 1 The right liver lobe as seen through the laparoscopic camera,

left image. The right image shows the same scene augmented using the

SmartLiver system. The outline of the liver, shown as an orange line,

can be compared to the visible liver outline. The mismatch gives an

estimate of the accuracy of overlay for non-visible vessels, veins (blue

and purple) and arteries (red). Also visible is the gall bladder (yellow

outline) and a tumour (green)

to our knowledge this is the first attempt at a quantitative eval-

uation of a liver AR IGS system on multiple patients. Lastly

we describe the ongoing development of the SmartLiver sys-

tem, including the use of a novel rendering engine to enable

in vivo visualisation of misalignment errors and an improved

user interface.

Materials andmethods

SmartLiver surgery workflow using surface-based
registration

The SmartLiver system hardware consists of a workstation

PC and a Polaris Spectra1 optical tracking system, mounted

on a custom built trolley with an un-interruptible power

supply. The PC runs custom software based on the NifTK

software platform [8]. The PC includes an NVIDIA SDI cap-

ture card and an NVIDIA K6000 GPU. In theatre, the system

stands next to the laparoscopic stack, allowing the surgeon

to see an augmented reality overlay near their existing line

of sight.

Figure 2 shows the software flowchart and user inter-

face from start up to augmented reality overlay. Up until the

patient being ready for surgery, set-up time does not impact

on total theatre time. Once the patient is anaesthetised and

ready for surgery, time is critical, hence the need for a well-

defined work flow and simple user interface. The in vivo data

reported in this paper was gathered using earlier versions of

the user interface. Because the user interface was often dif-

ficult to use the quality of any registrations performed in

theatre is highly variable, as will be seen in the results.

1 Northern Digital Inc. www.ndigital.com.

Steps 6 and 7 in Fig. 2 define the transform from model

space to world space, henceforth denoted TM2W . Once TM2W

is estimated the surgeon can refer to the augmented real-

ity display, to localise subsurface anatomy. Steps 6 and/or 7

can be repeated to give a new estimate of TM2W if the liver

moves significantly. The visualisation (Fig. 1) shows visible

anatomy as a 2D outline and internal anatomy as a depth

fogged surface model. Visualisation is implemented using

the Visualisation Library.2 The surgeon can use the mismatch

between the visible and projected outlines to make a rapid

assessment of the system accuracy. Analysis of registration

accuracy was performed after surgery, using data saved dur-

ing surgery. These data consist of video and tracking data

recorded throughout the procedure, calibration data for the

laparoscope, and any estimates of TM2W from in-theatre reg-

istrations.

Estimation of re-projection error

Errors in augmented reality can be estimated in some appli-

cations where features are visible in both the video and in the

projected model. This approach was described in our previ-

ous publication [21] on pre-clinical and phantom data and is

extended here.

Landmark points on the CT derived model and on the

video data were manually identified by a surgeon who had

been trained in the use of our software. Point and line picking

on the model was done using NifTK [8], utilising MITK’s

[14] point set interaction plugin. We wrote a custom point and

line picking application for the video data, which now forms

part of the NifTK software suite. The software scans through

a recorded video file stopping every n frames where n is set

by the user, typically between 25 and 100 frames, depending

2 www.visualizationlibrary.org.
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1: Patient model

loaded and checked

by the user.

5: Liver surface

patches are re-

constructed using

[22].

2: Tracking and

video data sources

started and status

checked.

6: The user manu-

ally aligns the model

to video, using on

screen buttons.

3: Tracking collar

is attached to la-

paroscope, before

covering with sterile

drapes.

7: ICP registers re-

constructed surfaces

to model [21].

4: Laparoscope is

calibrated using

method from [20].

8: Overlay is ready,

individual anatomy

objects can be

turned on/of.

Fig. 2 Flow diagram of the SmartLiver IGS software. The user runs through 7 tabbed screens, moving from system initialisation to registration

and overlay. To provide the clearest possible images, we have used a mixture of images from clinical use (panels 3, 4, and 8) and phantom testing

(panels 1, 2, 5, 6, 7)

on the length of the recorded video. The software finds the

nearest (in time) tracking data to the video frame and checks

the timing difference. If the tracking data are from within 20

ms of the video frame the user is shown a pair of still images

from the left and right channels. If the timing difference in

greater than 20 ms the frame is skipped.

When presented with the two still images the user is able

to click on either of them to define visible landmarks. The

user can toggle between point and line selection mode. The

landmarks correspond to those selected on the patient model.

Landmarks not visible in a given frame are simply excluded.

We have written another application to determine RPE

using the landmark points, the camera calibration, the camera

tracking data, and TM2W . For each frame of video where

landmark points have been picked, the error in pixels between

the picked landmark and its projected location on the model

is calculated. Landmarks that do not project onto the screens

visible area are excluded from the analysis.

Representing errors in pixels is problematic for two rea-

sons. Firstly, it has no physical meaning, the surgeon is

interested in how the system errors compare with anatomy,

for example the smallest vessel size that can be safely cut

through and cauterised (approx 3 mm). Secondly, it makes

no account of the distance of the object from the camera.

If the geometric error (in mm) remains the same, the pixel

error will increase as the camera gets closer to the object. To

counter this problem, we “re-project” the on-screen errors

onto a plane parallel to the camera frame at the distance of the

corresponding model feature. The distance between the two

points on this plane can be measured in millimetres. Because

the on-screen point is back projected onto a plane passing

through the corresponding model point, there is no error in

the direction normal to the camera plane (the z direction).

The above approach was used on phantom and pre-clinical

data using landmark points [21]. However, we found it was

difficult to identify corresponding landmark points for in vivo

data. Specifically, it was very difficult to find point features

away from the centre of the liver (near the falciform liga-

ment). In contrast, line features, such as the liver edges, can

be identified across the entire liver and used by the surgeon to

assess accuracy. Therefore, the methodology was extended

to allow the use of line features on the liver surface. The user

defines lines as a set of discrete vertices on both the model

and the video. When calculating errors, the lines on the video

images are treated as a set of discrete vertices, whilst linear

interpolation between vertices is used on the model. Figure

3 shows examples of line and point features identified on

phantom and in vivo data. The question of how to measure
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RPE using lines is more ambiguous than for points. We use

the following algorithm:

1. Define uniquely identifiable points and lines (points con-

nected by straight segments) on the CT derived liver

surface model.

2. For a given video frame, mark any visible points and lines.

Partial lines may be used, i.e. there is no requirement that

the whole line is visible on the video frame.

3. Each line vertex on the image is re-projected along a ray

through the camera’s origin.

4. Transform model features to the camera lens’ coordinate

system using TM2W and the world to camera transform.

5. For each ray, find the closest point (x) on the correspond-

ing model line.

6. Define a plane (p) parallel to the camera image plane

passing though (x).

7. Compute the distance between point x and the intersec-

tion of the ray with plane p.

8. The mean distance for all vertices of the re-projected line

is the RPE for that feature.

Experiment 1: correlation of TRE and RPE on a liver
phantom

The assumption that RPE can be used to estimate TRE is

fundamental to the utility of our proposed IGS system. We

test this assumption here. To estimate the system’s accuracy

in localising subsurface landmarks a custom made silicone

phantom was utilised,3 see Fig. 4.

The shape of the phantom was taken from a CT scan of

an adult male liver. The external appearance was designed to

be representative of a healthy adult liver to enable testing of

computer vision algorithms on the phantom [21]. The outer

part of the liver phantom is made from flexible silicone and

can be repeatably mounted on a set of 9 rigid pins inserted

into a moulded epoxy base, see Fig. 4. This configuration

enables future work on deformable registration, by utilising

bases with different pin geometry.

For this paper, we treat the 9 positioning pins as subsur-

face targets, so the accuracy of a given estimate of TM2W can

be assessed by removing the flexible liver phantom and mea-

suring the pin head locations. This method depends on the

repeatability of the positioning of the flexible liver phantom

on the base, which was checked by taking 2 CT scans, with

the liver phantom removed and replaced between each scan.

The CT scans were then aligned using the pin head positions

and the alignment of the liver phantom surfaces compared

visually. No significant misalignment was observed.

The model to world transform, TM2W , could be found

by using a separate tracked pointer to locate the pin heads

3 www.healthcuts.co.uk.

in world space; however, we do not use this method as it

gives an inaccurate measure of the overlay errors observed

in the SmartLiver system. Use of a separate pointer results

in errors in the hand-eye and left to right lens calibration of

the stereo laparoscope showing up as a linear offset. The

SmartLiver system avoids the need for a highly accurate

hand-eye calibration by performing all localisation and over-

lay in the coordinate system of the laparoscope lens. The liver

model is located relative to the laparoscope lens position at

some time zero. The model is placed in world coordinates

using the hand-eye transform and tracking data. The model

is subsequently projected on to the screen using the same

hand-eye transform. Provided the laparoscope motion is lim-

ited between time zero and the time of AR projection the

inaccuracies in the hand-eye calibration largely cancel out.

As a clinical laparoscope is constrained by the trocar, we

have found this to be the case during pre-clinical and clinical

evaluation of the system.

To get a more relevant error measure TM2W is found using

stereo triangulation as follows. The pin head positions are

manually defined in multiple stereo image pairs taken from

a video sequence of the uncovered pin heads. The 3D posi-

tion of the pin relative to the left camera lens is triangulated

using the pixel location in each stereo pair, the two cameras’

intrinsic matrices and right to left lens transform. The tri-

angulated points are placed in world coordinates using the

hand-eye and tracking transforms. The result is a point cloud

in world space for each pin head. The pin heads defined in

the model are registered to the centroids of these point clouds

by minimising fiducial registration error (FRE) a per Arun et

al. [2]. RPE for this ideal model to world transform (denoted

TM2W (i)) will not be zero, as errors due to tracking, cali-

bration, and point picking will still be present; however, the

RPE will be approximately minimised, giving the surgeon the

best possible estimate of the position of the subsurface tar-

gets. Therefore, TM2W (i) is assigned a zero TRE. Any other

model to world transform for the phantom data set can be

described in terms of its TRE relative to TM2W (i).

The experiment we performed consisted of:

1. Identify landmark points and lines in the CT model of

the liver phantom.

2. Record a tracked video sequence of the surface of the

liver phantom.

3. Remove the silicone phantom, record a tracked video

sequence of the subsurface pins.

4. Identify landmark points in both videos, plus lines in the

surface videos.

5. Measure the RPE of landmarks (pin heads and surface

points and lines) using TM2W (i).

The RPE thus found will be substantially lower than that

observed for in vivo data due to the absence of numerous
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Fig. 3 Example projection using the surface features on the phantom (left) and on in vivo data. The on-screen features (shown in yellow) are defined

on the recorded video images. The projected features (in white) are projected from the model using the estimated TM2W

Fig. 4 The silicone liver phantom used for validation. The exterior (left)

is representative in appearance and geometry of an adult male liver. The

internal pins (centre, highlighted in red) secure the liver phantom and

act as subsurface landmarks for the measurement of TRE. The right-

hand image shows the relative positions of the subsurface targets and

surface landmarks. The 9 targets are shown in red, the 6 peripheral sur-

face point landmarks are shown in yellow, the 2 central landmarks in

green and the 9 line features in blue

error sources encountered in vivo, most significantly errors

due to liver motion and deformation, but also the difficulty

in achieving the optimum rigid body registration. Though

the sources of error are varied, we make the assumption that

their combined effect can be modelled using perturbations

of TM2W (i). To create sufficient data to test for correlation

between RPE and TRE, we generated 20,000 random per-

turbations of TM2W (i), and measured the root mean square

(RMS) values of RPE and TRE at each.

Random perturbations were defined by 6 independent ran-

dom variables, 3 translations and 3 rotations. All rotations

were about the centroid of the liver phantom. Translations

were randomly sampled from a zero mean normal distribu-

tion of standard deviation 1.0 mm. Rotations were randomly

sampled from a zero mean normal distribution of standard

deviation 1.2◦. The scaling (1.2◦ per mm) was set so that

a translation or rotation of 1 standard deviation results in

the same mean absolute displacement across the liver phan-

tom. Rotations and translations were then scaled (using the

same scalar for all six vectors) to give a defined normalised

Euclidean distance from TM2W (i). Sampling in this way gen-

erates perturbations uniformly distributed along each of the 6

degrees of freedom. 1000 random perturbations were gener-

ated at each integer value of normalised Euclidean distances

from 1 to 20 in. The range of normalised Euclidean distances

was set to provide a usable distribution of results at clinically

representative RPE.

At each perturbed transform (denoted TM2W (p)), TRE and

RPE were calculated for each available landmark. RMS val-

ues for each measure over multiple landmarks were then

calculated and reported. RMS TRE was calculated using Eq.

1, where X i is the position vector for each of the nine targets

(pin heads) in world coordinates.

TRERMS =

√

√

√

√

1

9

9
∑

i=1

(X i − TM2W (p) X i )
2 (1)

Three measures of RMS RPE were calculated using different

subsets of the surface features shown in Fig. 4. The first uses

all 8 available surface point landmarks, the second only uses

the 2 point landmarks near the falciform ligament to represent

the sort of point features that can be located in vivo. The last

measure of RMS RPE uses these 2 point landmarks together

with 9 line features, predominantly along the front edge of
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the liver phantom, representative of the line features that can

be located in vivo.

Experiment 2: evaluation of in vivo data

For in vivo data, there exists no ideal transform as the posi-

tion of subsurface landmarks remains unknown. However, we

were able to collect substantial amounts of in vivo clinical

data, following as closely as possible the protocol described

in section “SmartLiver surgery workflow using surface-based

registration”. To date we have evaluated the accuracy on nine

clinical procedures. In each case landmark points were iden-

tified in the CT-derived liver model and in several hundred

frames of video per patient.

Where available, any model to world transforms, TM2W ,

determined by manual alignment in theatre were used to mea-

sure RMS RPE on surface landmarks. Where sufficient point

landmarks were available it was also possible to estimate

TM2W based on triangulation and registration of surface land-

mark points. Such landmark-based registration is used by

similar liver IGS systems [6,12], so it makes a useful com-

parison with our system.

In most cases, we also recorded ex vivo laparoscope cali-

bration data, either of a cross-hair [20] or in earlier cases of a

chessboard calibration grid [23]. These calibration data were

used to assess the accuracy of the system in theatre in the

absence of tissue motion. Chessboard corners or cross-hair

centres were manually identified in the video data for tens

of frames per data set. These feature were triangulated to

world coordinates, and these used to measure re-projection

error using the method described in section “Estimation of

re-projection error”. Using this method will include errors

in picking the points in the video frames, allowing a more

direct comparison with the in vivo accuracy, in contrast to

reporting the calibration residual errors.

Results

Experiment 1: correlation of TRE and RPE on a liver
phantom

Video of the liver phantom surface was recorded, imaging

the surface point and line landmarks. A total of 2296 stereo

images were recorded (2 × 540 × 1920 pixels). The laparo-

scope was moved steadily by hand to try and image each

landmark, at an average speed (measured at the lens) of

approximately 30 mm/s. A total of 68 images were manu-

ally annotated with the positions of point and line landmarks

by an experienced research scientist, to give a total of 76

point landmarks and 104 line landmarks. The flexible sili-

cone liver phantom was then removed from its base. A total

of 2460 stereo pairs of the securing pin heads were recorded,

with the laparoscope again moved steadily around the phan-

tom at a speed of approximately 35 mm/s. A total of 44 frames

were manually annotated, giving 87 samples of the pin head

positions.

The pin heads picked in the CT model and the pin heads

triangulated from the video form two sets of ordered fiducial

points, allowing TM2W (i) to be found by minimising FRE as

per [2]. The residual FRE was 2.55 mm, suggesting an error

in localising each pin head of around 2.89 mm using equation

10 from [11]. The RMS RPE at TM2W (i) was 2.15 mm

Figure 5 plots the distribution of RMS TRE versus RMS

RPE and FRE. Each of the 20,000 registrations were binned

according to their RMS RPE in 1 mm bins centred around

integer values from 1 to 30mm, for each bin the mean

and standard deviation of RMS TRE is plotted. Correlation

between RMS TRE and RMS RPE or FRE was measured

using Pearson’s correlation coefficient (r ), and the mean stan-

dard deviation (σ ) over all bins. Figure 5a plots RMS TRE

versus RMS RPE and FRE when evaluated on the pin heads

themselves. Both RMS RPE and FRE correlate very well

with RMS TRE, an unsurprising result given that the mea-

surements are all made on the same features, but confirmation

that RPE can be used as a proxy for TRE in the ideal case.

Figure 5b plots RMS TRE versus RMS RPE when RPE

is calculated using surface landmark features only, whilst

the RMS TRE is measured at the subsurface pin heads. The

first (red) line shows the result for when all (8) surface point

landmarks are used for measuring RPE, similarly to our pre-

clinical results ([21]). In this case, RMS RPE provides a good

predictor of RMS TRE with a Pearson’s correlation coeffi-

cient of 0.79. This suggests that in cases where surface point

landmarks are available over a significant area they provide

a useful indicator of subsurface accuracy. The second (blue)

line shows a more clinically realistic situation in which only

those point landmarks near the falciform ligament are used

to calculate RPE. In this case, the correlation coefficient is

significantly reduced (to 0.44), and what correlation there

is predominantly occurs above RMS RPE of 15 mm, mak-

ing this measurement of questionable clinical use. The third

(green) line in Fig. 5b shows how correlation can be improved

by incorporating surface line features, which can be identi-

fied in vivo.

Experiment 2: evaluation of in vivo data

Data from nine patients have been analysed. Acquisitions

were made during surgery with the laparoscope being slowly

moved by hand. Acquisition time and speed varied, but typi-

cally consisted of 1–3 minutes of video with the laparoscope

lens moving at around 10–20 mm/s. The number of point

and line features used varied between patients. The mini-

mum number of points was 3 and the maximum was 7. The

minimum number of lines was 5 and the maximum was 9.
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(a) (b)

Fig. 5 RMS RPE measured on visible features versus RMS TRE mea-

sured at the pin heads for the phantom. a shows the RMS RPE measured

using 9 subsurface pin heads (i.e. with the silicone liver phantom

removed from its base.) b shows the RMS RPE measured using 3 subsets

of features on the on the liver phantom’s surface

An average 469 frames of video data were manually anno-

tated per patient, with a minimum of 80 and a maximum of

19094 frames. Annotation of the video and CT was done by

an experienced laparoscopic surgeon. In all cases RPE was

measured on a static calibration pattern, on a set of triangu-

lated in vivo point landmarks, and a set of in vivo lines and

points registered using point-based registration. The result-

ing RMS RPE is recorded in the first three numerical columns

of Table 1.

The last three numerical columns in Table 1 show the

results of registrations performed using the SmartLiver sys-

tem’s user interface. In four cases, registration was performed

during surgery, (Manual Live Alignment), in three differ-

ent cases manual alignment was performed after surgery

on recorded data (Manual Retro. Alignment). Registration

using the surface-based Iterative Closest Point (ICP) algo-

rithm was performed once, using surface patches grabbed

during surgery. Due to the small sample sizes, we have not

performed any statistical comparison of the different regis-

tration methods.

As in our pre-clinical work [21], it is useful to analyse the

in vivo results in terms of what error sources contribute to

the overall error. The bottom 10 rows of Table 1 show which

error sources contribute to each result.

4 Excluding two outliers the minimum number of frames used is 210,

and the maximum 462.

Discussion

Several tentative conclusions can be drawn from Table 1. The

combination of dynamic and static deformation and laparo-

scope tracking and calibration errors is at least 10 mm. This

is the best case accuracy for a laparoscopic IGS utilising

optical tracking and a rigid model. There is a slight improve-

ment in RMS RPE for retrospective manual alignment versus

in theatre manual alignment, probably due the time pres-

sure and ergonomic compromise present during surgery. The

best RMS RPE was found using the surface-based ICP; how-

ever, there remain significant challenges to make this process

robust.

In vivo results indicate that it is possible to achieve appar-

ent accuracies (RPE) of around 12 mm, which correspond to

mean subsurface accuracies around 15 mm (green line in Fig.

5b) with a rigid registration system. Whether such accuracy

is clinically useful is currently unknown. The SmartLiver

IGS system is at present the only laparoscopic liver surgery

system where an augmented reality overlay is attempted rou-

tinely. Clinical evaluation is ongoing to try and link accuracy

achieved to clinical outcome. Clinical evaluation will also

enable an analysis of the most useful way to report errors,

i.e. here we report RMS errors, whereas it may be more rel-

evant to focus on the extreme values. Anecdotally, surgeons

were generally impressed with the overlays achieved, giving

encouragement that the system may be useful at its current

accuracy level.

Our long-term aim is to develop a clinical guidance sys-

tem which can reliably achieve accuracies better than 5 mm,
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Table 1 Average RMS RPE errors measured for the human clinical data, classified by what error sources contribute to each error measurement

Registration method

Calib. Error Triang. Points Point-Based Reg. Manual Live Align. Manual Retro. Align. ICP Retro. Align.

Average RMS RPE 7.5 10.2 16.3 25.0 19.4 12.3

Standard deviation (Samples) 5.2 (9) 3.3 (9) 3.9 (9) 8.8 (4) 7.4 (3) − (1)

Contributing errors

Laparoscope tracking � � � � � �

Laparoscope calibration � � � � � �

Picking points in video � � � � � �

Picking points in CT – – � � � �

Ordered point-based registration – – � – – �

Manual registration – – – � � –

Operating room conditions – – – � – –

ICP surface-based registration – – – – – �

Static deformation (insuflation) – – � � � �

Dynamic deformation (breathing) – � � � � �

Cells containing ticks indicate that a given error source (rows) contributes to total error for a given registration method (columns)

in order to allow the surgeon to navigate around vessels

of that size. However, this target was set in the absence

of an agreed method to measure accuracy, so is somewhat

arbitrary. Nonetheless, the results presented here indicate

that accuracies better than 10 mm can only be achieved by

deformable registration. Deformable registration and breath-

ing motion compensation [16] of the liver has been shown to

be technically possible by several groups [9,17]. This raises

the question of how the surgeon interprets alignment errors

when the model has been computationally deformed. Fur-

ther work could compare TRE and RPE over a wider range

of liver shapes and incorporating deformable registration.

Our proposed approach of using the 2D projected organ out-

line should continue to allow a rapid in vivo assessment of

error.

Our phantom results, Fig. 5, indicate that the addition of

line landmark features results in a smaller RPE for the same

TRE. This is likely due to the greater degree of freedom in

matching two lines. In this instance, this has helped bring

the RPE values closer to TRE; however, this result may be

specific to the geometry tested. Further work is required to

determine whether this is true in a more general case.

Based on the phantom results, positive correlation between

RPE measured at the surface and TRE at subsurface land-

marks breaks down below RMS RPE of around 6 mm when

using points and lines and 10 mm when using central points

only. The main cause of this is likely to be the geometric rela-

tionship between the position of surface landmarks and the

subsurface targets. In theory, the same rules that govern the

design of fiducial markers and tracked instruments [11,19,24]

can inform the ideal choice of in vivo surface landmarks to

use for error estimation. We have begun work [18] looking at

the what surface features provide the best registration, which

could be extended so that the overlay only shows portions

of the liver edge to maximise correlation between apparent

RPE and TRE.

Conclusion

We have described some aspects of the in vivo clinical use of

the SmartLiver AR IGS system. We have highlighted some

of the many challenges involved in the transition from pre-

clinical to clinical research in IGS. Not least of these is the

need for a clear and well-validated method to determine the

in vivo accuracy. The algorithm we have presented, tested,

and used should enable the evaluation of the IGS system

on a larger patient cohort, potentially showing a correlation

between overlay accuracy and clinical outcomes.
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