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In-vivo flow simulation in coronary arteries
based on computed tomography datasets:
feasibility and initial results

Abstract The purpose of this paper
was to non-invasively assess hemo-
dynamic parameters such as mass
flow, wall shear stress (WSS), and
wall pressure with computational fluid
dynamics (CFD) in coronary arteries
using patient-specific data from com-
puted tomography (CT) angiography.
Five patients (two without atheroscle-
rosis, three with atherosclerosis)
underwent retrospectively electrocar-
diogram (ECG) gated 16-detector row
CT using ECG-pulsing and geometric
models of coronary arteries were
reconstructed for CFD analysis. Blood
flow was considered laminar, incom-
pressible, Newtonian, and pulsatile.
The mass flow, WSS, and wall pres-
sure were quantified and flow patterns
were visualized. The wall pressure
continuously decreased towards distal
segments and showed pressure drops
in stenotic segments. In coronary
segments without atherosclerotic wall

changes, WSS remained low, even
during phases of high flow velocity,
whereas in atherosclerotic vessels, the
WSS was elevated already at low flow
velocities. Stenoses and post-stenotic
dilatations led to flow acceleration and
rapid deceleration, respectively, in-
cluding a distortion of flow. Areas of
high WSS and high flow velocities
were found adjacent to plaques, with
values correlating with the degree of
stenosis. CFD provided detailed mass
flow measurements. CFD analysis is
feasible in normal and atherosclerotic
coronary arteries and provides the
rationale for further investigation of
the links between hemodynamic
parameters and the significance of
coronary stenoses.

Keywords Computational flow
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Introduction

In daily clinical routine, coronary artery disease (CAD),
defined as a diameter stenosis larger than 50% on coronary
angiograms, is usually considered to be severe enough to
cause myocardial ischemia and, therefore, is regarded to be
a candidate for revascularization procedures. As a corol-
lary, mismatch between the detection of ischemia using
myocardial perfusion measurements and angiographic
results has usually been attributed to the inherent
inaccuracies of the non-invasive tools. However, a number
of studies have indicated that the simple mechanistic
concept of diameter reduction in epicardial coronary

arteries leading to myocardial ischemia is incomplete
[1, 2]. Current data, rather, suggests that coronary athero-
sclerosis is a precondition but may not itself be sufficient to
produce ischemic heart disease, and that factors such as the
pathobiology of the plaque, the development of collateral
circulation, and coronary blood flow play an additional and
crucial role in the pathophysiology of myocardial ischemia
[3]. Because several investigations have reported that the
apparent percent stenosis on coronary angiograms shows
no correlation with hemodynamic measurements of blood
flow [1, 4], the assessment of hemodynamic parameters in
adjunct to coronary artery morphology appears intriguing.
Moreover, increasing evidence has accumulated that
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hemodynamic factors such as wall pressure and wall shear
stress (WSS) promote the process of atherosclerotic plaque
formation [5, 6].

Hemodynamic flow assessment in coronary arteries is
usually performed with intravascular Doppler ultrasound
by measuring local velocities [6]. Even if these data enable
a hemodynamic characterization of stenosis severity, the
introduction of an ultrasound-catheter into the lumen is an
invasive procedure, leads to flow disturbances, and the
results of such measurements are, therefore, often difficult
to interpret [7]. An alternative means for invasive flow
measurements is presented by the calculation of models in
which blood flow can be virtually simulated, a method that
is called computational fluid dynamics (CFD). In fact,
several in vitro studies [8–13] and some in vivo
investigations [10, 12, 14] have shown that CFD allows
reliable physiologic blood flow simulation and measure-
ments of WSS, wall pressure, and mass flow. A requisite
for obtaining reliable results from coronary CFD is to use
exact anatomical models [10], which, today, are provided
by multi-detector row computed tomography (CT). The
three-dimensional (3D) reconstruction of coronary arteries
from CT datasets has been shown to be more accurate
than corresponding 3D reconstructions obtained from
conventional angiography combining two simultaneously
captured two-dimensional (2D) views [10, 15]. The
purpose of this study was to simulate pulsatile blood
flow in coronary arteries using CFD based on geometric
models from CT datasets in five patients and to measure
the WSS, wall pressure, and mass flow and visualize
flow patterns both in the absence and presence of
coronary plaques.

Materials and methods

Computed tomography data acquisition

Five patients (two female, three male; mean age 57.3±
7.9 years; age range 47–66 years) underwent cardiac CTon
a 16-detector row scanner (Sensation 16, Siemens Medical
Solutions, Forchheim, Germany) using the following
parameters: detector collimation 16×0.75 mm, gantry
rotation time 0.37 s, pitch 0.38, tube potential 120 kV,
tube current time product 400 mAs. A bolus of 150 ml
iodinated contrast material (iodixanol, Visipaque 320,
320 mg/ml, Amersham Health, Buckinghamshire, UK)
followed by 30 ml saline solution was continuously
injected into a right antecubital vein via a 18–20-gauge
catheter at a flow rate of 5 ml/s. Bolus tracking was
performed with a region of interest (ROI) in the ascending
aorta, and image acquisition was automatically started 5 s
after signal attenuation reached a threshold of 140 HU. All
patients received β-blockers as part of their baseline
medication at the time of the CT scan; no additional
β-blockers were administered prior to CT.

Synchronized to the electrocardiogram (ECG), CT data
sets were retrospectively reconstructed throughout the
cardiac cycle in 5% steps of the R-R interval with a slice
thickness of 1 mm and an increment of 0.5 mm using a
medium soft-tissue convolution kernel (B30f). The percent
phase indicates the beginning of the respective interval.
The adaptive cardio volume approach was used for image
reconstruction [16] and ECG-pulsing was applied to reduce
radiation exposure [17]. Similar to a previous study [18],
the reconstruction phase providing the best image quality
with the lowest degree of motion artifacts was determined
by two radiologists in consensus and was used for further
post-processing. The study protocol was approved by the
local ethics committee and written informed consent was
obtained from all patients.

Geometric reconstruction

Axial CT images were digitally processed to extract
geometrical contours representing the coronary vessel
walls. The lumen of the coronary arteries of the five
patients was semi-automatically segmented using a
commercially available software package (Amira 3.1,
TGS, Belgium). In regions of reduced arterial opacifica-
tion, segmentation was manually complemented. The
outflows (i.e., the end of the branches) and inflows
(i.e., the ostium) of the vessels were separately marked to
allow the definition of boundary conditions. As a next step,
an unstructured surface mesh of triangles was generated
covering the segmented volume using the marching cube
algorithm [19]. Manual smoothing and low-pass spatial
filtering was then applied to further reduce fine-scale
surface irregularities. The final model depicted the real 3D
geometry of the coronary arteries (Fig. 1). Geometric
computational models were subsequently built with
computational meshes of 800,000–1,000,000 tetrahedral
cells for the entire models, representing a spatial resolution
of 0.15 mm. The number of elements per cross-section was
150 to 200, depending on the vessel diameter. Only one
model per patient was reconstructed. This model was used
for pulsatile blood flow simulations for the entire cardiac
cycle.

Model assumptions and boundary conditions

The flow for the simulation was considered transient, 3D,
incompressible, and laminar (based on the low Reynolds
number of approximately 300 for small vessels) [11].
Corresponding to standard values from the literature [20],
the blood was assumed to be Newtonian with a viscosity of
0.0037 Pas and a density of 1060 kg/m3. The walls were
taken as solid and stiff, and a zero-velocity boundary
condition was assumed for the walls, corresponding to a
no-slip condition. Compared to other flow simulations, it
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was renounced to elongate the inlet part, which is usually
done for a full development of the fluid with a parabolic
velocity shape. Therefore, the inlet is identical to the real
coronary ostium and every point at the inlet has identical
flow parameters, including direction and velocity. The flow
velocity profile at the different inlets was based on standard
data reflecting the physiologically pulsatile, biphasic blood
flow from the ascending aorta into the coronary arteries
[21, 22] (Fig. 2).

Computational fluid dynamics

A threshold value of 0.5% has been adopted for the
maximum permissible change in the numerically calculated
values of wall pressure, WSS, and flow velocities within
the flow domain. The FIDAP software (Fluent Corp.,
Darmstadt, Germany) was used to carry out the simulation
by solving Navier-Stokes equations. This software has
been evaluated for steady flow in a previous study and has
been employed for the simulation of flow in the aorta
[23, 24]. The calculated flow variables were flow
velocities, WSS, and wall pressure. The FIELDVIEW
software (Version 11.0, Intelligent Light, Lyndhurst, NJ)

was used for the visualization of flow patterns, the
quantification of WSS and wall pressure, and for the
measurement of mass flow at selected sites.

Results

Mean heart rates during CT scanning in the five patients
were 64±11 bpm (range 52–78 bpm). The percent phase
providing the best image quality was found between 45–
60% of the R-R interval for the right coronary artery (RCA)
and between 55–70% for the left main artery (LMA), left
anterior descending artery (LAD), and left circumflex
artery (LCX). All coronary arteries larger than 1.5-mm
vessel diameter could be adequately visualized (see
example in Fig. 1). Three patients showed atherosclerotic
wall changes of their coronary arteries with five significant
stenoses (i.e., >50% luminal diameter reduction) in four
segments, that were later confirmed by conventional
invasive angiography. Two patients had no evidence of
coronary artery disease (i.e., no fibrous, lipomatous, or
calcified plaques, no evidence of positive remodeling, and
no diameter stenoses).

Fig. 1 Curved multi-planar re-
formation (top) and geometric
model after semi-automatic
segmentation (bottom) of the left
coronary artery in a patient
with no evidence of atheroscle-
rosis (left) and in a patient with
severe atherosclerotic wall
changes (right)
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Mass flow

The mean mass flow, measured after simulation, through
the left and right coronary artery in the two patients without
arteriosclerosis was 3.55 ml/s (range 3.21–3.71 ml/s) and
2.97 ml/s (range 2.51–3.31 ml/s), respectively, whereas the
mean mass flow through the left and right coronary artery
in the three patients with arteriosclerosis was 3.16 ml/s
(range 2.91–3.36 ml/s) and 2.41 ml/s (range 2.25–2.71 ml/s),
respectively. Quantification of mass flow through the LMA,
LAD, and LCX, and the instantaneous history of blood flux
through each of the outlets in a patient without evidence of
coronary atherosclerosis and in a patient with significant
stenosis at the origin of the LAD are demonstrated in Fig. 3a.
The distribution of pulsatile flow could be determined by
using this mass flow curve at each time-step of the cardiac
cycle. In the patient with coronary arteriosclerosis, the mass
flow calculations revealed that about 67% of the total blood
inflow was directed through the LCX, about 28% through
the LAD, and 5% through the ramus intermedius. The high
percentage of mass flow through the LCX can be explained
by the significant stenosis at the origin of the LAD. In
contrast, the mass flow through the LAD and LCX was
almost equal (LAD 46%, LCX 54%) in the patient without
significant stenosis. The effects of pulsatility damped from
the origin of the right and left coronary artery towards distal
segments, as the flow progressed further downstream and
eventually reached a quasi steady capillary bed value.

Wall pressure and wall shear stress

The change of WSS throughout the cardiac cycle highly
correlated to flow velocities. The WSS characterizes the
forces that longitudinally act on the vessel wall. These forces

were high when the blood flow parallel to the wall was fast.
The maximum WSS spatial variation was approximately
15.8 Pa, whereas the corresponding maximum wall pressure
drop reached 188 Pa. The value of the wall pressure drop is a
fair estimate of the pressure head needed to drive the flow
through the various branches of the coronary tree. The
existence of a stenosis increased the required pressure
difference for an identical amount of blood flow. The
average WSS ranged from 0.01 Pa to 1.63 Pa for minimum
and maximum inflow, respectively. These values were
within the baseline value of 2 Pa that were suggested for
most arteries in various species [25]. In every patient, the
wall pressure decreased towards the periphery of the
coronary artery tree. It gradually decreased in non-athero-
sclerotic segments, whereas the wall pressure was slightly
elevated in immediate pre-stenotic segments due to the
funnel-like geometry. The wall pressure dropped inside the
stenoses as blood flow velocity increased (Law of Bernoulli).
In the post-stenotic segments, the wall pressure continued to
gradually drop towards the most distal segments (Fig. 3b).

Comparing hemodynamic changes throughout a cardiac
cycle between a normal (Fig. 4) and an atherosclerotic
vessel (Fig. 5) revealed that the arteriosclerotic wall
contains more regions with WSS variations. Whereas in
normal coronary arteries the WSS remained low during
phases of high flow velocity, the WSS was elevated in
arteriosclerotic vessels, even at low flow velocities. Parallel
to the changes of WSS, the flow pattern was more variable
and inconsistent in arteriosclerotic vessels. Stenoses and
post-stenotic dilatations have led to acceleration and rapid
deceleration, respectively, including a distortion of flow.
No vortices were found in any atherosclerotic vessel. In
coronary segments with no evidence of coronary artery
disease, small areas of increased WSS were found, which
may indicate regions of early plaque formation initializing

Fig. 2 Flow velocities
throughout one cardiac cycle
used as the input function at the
ostium of the left main artery
(LMA) and right coronary artery
(RCA). Values are based on
measurements from the
literature [21, 22]
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the vicious circle of arteriosclerosis. However, no early
atheromas could be visualized in these areas, which may be
due to the limited spatial and temporal resolution of the 16-
detector row CT scanner used in this study.

Discussion

The invasiveness and the risk of conventional coronary
angiography forced clinicians to conceive non-invasive
tests to optimize the selection of candidates for catheter

Fig. 3 a Measured mass flow values (in ml per second) at defined
points in the left main artery (LMA), left anterior descending artery
(LAD), left circumflex artery (LCX), and in the ramus intermedius in
a patient without atherosclerosis (left) and a patient with athero-
sclerosis (right). The mass flow shows no significant difference
between the LAD and LCX in the normal coronary arteries. In the
patient with significant stenosis at the origin of the LAD, a reduced
mass flow distal of the stenosis and a higher absolute mass flow
value in the LCX is demonstrated. b Color-coded wall shear stress
(Pa) and wall pressure (Pa) in the same two patients with non-

atherosclerotic coronary arteries (left) and in the patient with
significant stenosis at the origin of the left anterior descending artery
(LAD) (right) at mid-diastole. In the normal vessel, the wall pressure
gradually drops towards distal segments and no region with high
wall shear stress is found. In the atherosclerotic vessel, the wall
pressure drops at the site of the stenosis and wall shear stress
significantly increases. Some additional areas of elevated wall shear
stress correlate to atherosclerotic segments. Quantitative values can
be assessed by reference to the scales
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angiography. Through the use of these non-invasive
methods, knowledge has been accumulated which indicated
that the detection of myocardial ischemia provides inde-
pendent and complementary information to coronary artery
morphology [26], that patients with less than 50% diameter
stenoses may be at relatively high risks of developing
clinical events [27], and that the angiographic degree of
stenosis is a poor predictor of subsequent culprit lesions
[28]. Therefore, the degree of epicardial stenosis represents
only one factor responsible for a reduction in coronary blood
flow reserve in patients with clinical symptoms, and a

stenosis incapable of producing angina in one patient may
result in severe functional limitation in another [29].
Nowadays, multi-detector row CT coronary angiography
provides the most accurate non-invasive means to visualize
and characterize the epicardial coronary artery tree with
sensitivity values for the detection of coronary stenoses
approaching those of the invasive method [30–33]. Our
study demonstrates, for the first time, that incorporating into
the structural information of CT the parameters characteriz-
ing coronary blood flow has become feasible with aid of
CFD. This might represent the first step for closing the gap

Fig. 4 Velocity-coded streamlines (m/s), wall shear stress (WSS,
Pa), and wall pressure (Pa) in a non-atherosclerotic coronary
bifurcation at three different time-steps of the cardiac cycle. The
flow pattern is smooth and the wall shear stress remains low, even at
high velocities. Note the small foci of elevated WSS in the middle

segment of the left circumflex artery (LCX), possibly indicating
regions of early atherosclerotic intimal changes. The wall pressure
gradually decreases. Quantitative values can be assessed by
reference to the scales
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Fig. 5 Velocity-coded streamlines (m/s), WSS (Pa), and wall
pressure (Pa) in an atherosclerotic bifurcation at three different time-
steps of the cardiac cycle. The flow pattern is turbulent and
distorted, but no vortices are found. There are many regions of
elevated wall shear stress correlating either to stenotic segments or

to irregular vessel geometry caused by atherosclerosic plaques. The
wall pressure gradually decreases and is not significantly influenced
by vessel geometry. Quantitative values can be assessed by reference
to the scales
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between pure coronary artery morphology and its functional
consequence on the myocardium.

Experimental evidence suggests that hemodynamic
factors are important in the initiation and progression of
atherosclerosis [5, 34, 35]. However, the exact role of the
individual parameters could not yet be defined. Conflicting
evidence exists with regards to whether low or high WSS
may be the initiator of atherosclerosis formation. On the
one hand, atherosclerotic plaques have shown to consis-
tently and non-randomly develop in areas of low WSS at
arterial bifurcations [36, 37], while areas with higher WSS
are relatively protected from plaque development [38].
Mechanisms that are responsible for the association
between low WSS and atheroma formation have been
suggested by several authors, including the modulation of
endothelial function and structure, the regulation of gene
expression implicated in the atherogenic process [39, 40],
the modification of bulk transport of lipid [5, 41], and the
promotion of monocyte adhesion to the endothelium [42].
In contrast, high WSS has been proposed from in-vitro
studies as a cause of local endothelial injury [43] and it has
been shown that artificial stenoses produce platelet activa-
tion (i.e., a precursor to thrombus formation) at high WSS
values [44]. Therefore, the WSS rate might be a better
indicator to estimate the risk of arteriosclerosis.

The main function of wall pressure representing a map of
the pressure inside the coronary artery is to push the blood
into the capillaries and facilitate diffusion into the
myocardium. In all patients of this study, the wall pressure
decreased towards the periphery of the coronary artery tree
with elevated pressure drops in stenotic segments. The
increased pressure drop in stenoses reflects the elevated
energy needed to drive the flow through these regions. As
shown in atherosclerotic coronary arteries, regions of flow
acceleration were associated with high WSS. Relating our
CFD results to coronary artery morphology, the location of
atherosclerotic plaques correlated well with the regions of
high WSS. These results indicate that CFD offers a non-
invasive means for an in-vivo validation of the above-
mentioned experimental evidence in coronary arteries of
patients.

Highly accurate anatomy for the generation of geometric
models is a principal requirement to perform reliable flow
simulations and to make assumptions about mass flow,
WSS, and wall pressure. With the advent of 64-slice CT
[45] and the newest development of dual-source CT [46],
further improvements with regards to temporal and spatial
resolution have been made that will allow an even more
accurate depiction of coronary artery morphology and
pathology. On the other hand, parameters such as move-

ment of the wall and of the adjacent perivascular soft tissue
or parameters of blood rheology that might also influence
flow characteristics still cannot be adequately simulated.

The calculated mass flow gives an idea about the
distribution of blood volume throughout the entire coro-
nary artery system. These results are influenced by the
caliber of the vessels. Other factors such as myocardial
contraction were not taken into account. Therefore, the
absolute quantitative results are not yet suitable for exact
perfusion measurements.

The following study limitations have to be acknowl-
edged. First, 16-detector row CT does not offer the best
available image quality for imaging coronary arteries as
compared to newer scanner technology. In addition, the
geometric data for CFD was obtained from a single
reconstruction time-point in the early to mid-diastolic
phase of the cardiac to simulate pulsatile blood flow
throughout the entire cardiac cycle and the vessel contours
and diameters might be different at other reconstruction
time-points. Second, assumptions concerning in- and
outflow have been made which may be different under
pathologic conditions. Third, heart movement and the
changing pressure at the inner wall of the vessel due to
muscle tension cannot be simulated yet and was, therefore,
not included in the present calculations. Moreover, the
arterial wall was simplified as being stiff, thus, results
might differ in elastic models of the coronary artery wall.
Fourth, only CFD simulations with a steady blood flow in
the aorta have been validated so far [23]. Finally, numerical
simulation of blood flow is labor intensive and time
consuming. However, future methodological and software
development should help to enable the application of CFD
analysis in daily clinical routine.

In conclusion, our study demonstrates that the simula-
tion of pulsatile blood flow is feasible in-vivo in coronary
arteries of patients with geometric data obtained from
multi-detector row CT. CFD analysis allows the character-
ization of normal and abnormal hemodynamics in coronary
arteries and demonstrates rises of WSS within stenosic
segments. The methodology applied in this study may
provide the basis for future investigation and the validation
of causal links between hemodynamic flow variables and
myocardial ischemia beyond the assessment of coronary
artery morphology alone.
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