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Abstract

The application of a photoacoustic imaging instrument based upon a Fabry–

Perot polymer film ultrasound sensor to imaging the superficial vasculature

is described. This approach provides a backward mode-sensing configuration

that has the potential to overcome the limitations of current piezoelectric based

detection systems used in superficial photoacoustic imaging. The system has

been evaluated by obtaining non-invasive images of the vasculature in human

and mouse skin as well as mouse models of human colorectal tumours. These

studies showed that the system can provide high-resolution 3D images of

vascular structures to depths of up to 5 mm. It is considered that this type of

instrument may find a role in the clinical assessment of conditions characterized

by changes in the vasculature such as skin tumours and superficial soft tissue

damage due to burns, wounds or ulceration. It may also find application in the

characterization of small animal cancer models where it is important to follow

the tumour vasculature over time in order to study its development and/or

response to therapy.

M This article features online multimedia enhancements

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The non-invasive characterization of the structure, oxygenation and flow status of the

vasculature within a few mm of the surface of the skin is required for a broad range of clinical

and basic research studies. Clinical applications include the assessment of skin tumours,

abnormalities of the microcirculation in patients with lower limb venous disease and diabetes,

soft tissue damage such as burns and ulceration and other conditions characterized by changes

in tissue perfusion and oxygenation. There is also a need to characterize small animal models
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of these and other conditions for the pre-clinical development of new therapies. For example,

the ability to monitor non-invasively the development of the vasculature in subcutaneously

implanted tumours in mice would be of benefit to the study of antivascular drugs and other

treatments.

Optical techniques offer the prospect, at least in principle, of characterizing superficial

vascular anatomy and function. The strong preferential optical absorption of blood offers

high contrast, the spectral differences between oxy- and deoxyhaemoglobin allows blood

oxygen saturation to be determined and Doppler techniques can be used to measure flow.

In addition, the relative transparency of tissue to near-infrared (NIR) light in the range

600 nm–900 nm enables penetration depths of many mm to be achieved. However, a major

limitation is that spatial resolution degrades rapidly for depths beyond approximately 1 mm

due to overwhelming optical scattering in most tissues. Ultrasound imaging on the other hand

can readily provide spatial resolutions on a scale of tens to hundreds of microns for sub-cm

depths. This is a consequence of the much lower scattering that acoustic waves undergo in

soft tissues compared to photons. However, the low echogenicity of microvessels makes it

difficult to visualize the microvasculature without the use of contrast agents. Furthermore,

although ultrasound can be used to determine blood flow by exploiting the Doppler effect, it

cannot measure blood oxygenation.

Photoacoustic imaging is a relatively new hybrid imaging modality that combines the

physics of optical and ultrasound imaging (Xu and Wang 2006). In doing so, it provides

both the high contrast and spectroscopic based specificity of optical techniques and the high

spatial resolution of ultrasound. The technique involves delivering nanosecond pulses of NIR

or visible laser light to the surface of the skin. Absorption of the laser energy results in rapid

thermoelastic expansion and the emission of broadband (typically tens of MHz) pulses of

ultrasound. The latter propagate to the surface where they are detected at different spatial

points using either an array of ultrasound receivers or a single mechanically scanned detector.

By measuring the times-of-arrival of the ultrasound pulses at the surface and knowing the speed

of sound in tissue, an image of the absorbed optical energy distribution can be reconstructed.

Spatial resolution is defined by the physics of ultrasound propagation and is limited by the

frequency-dependent attenuating characteristics of soft tissue. Image contrast on the other

hand is based largely on optical absorption, which means that the technique is particularly well

suited to imaging blood vessels due to the strong optical absorption of haemoglobin. This has

now been demonstrated by a number of studies in which 3D images of the vasculature within a

few mm of the skin surface have been obtained with a spatial resolution of the order of several

tens of microns (Lao et al 2008, Siphanto et al 2004, Zhang et al 2006a, 2006b). Other studies

have shown that changes in tissue perfusion characteristic of skin tumours (Oh et al 2006),

dermal vascular lesions (Viator et al 2002) and soft tissue damage such as burns (Zhang et al

2006c ) can be observed using photoacoustic methods. As well as imaging vascular anatomy,

functional information in the form of blood oxygenation and flow can be obtained: the former

by acquiring images at multiple wavelengths and exploiting the spectral differences between

oxy- and deoxyhaemoglobin (Laufer et al 2007, Zhang et al 2006a), the latter by extracting

the acoustic Doppler shift encoded on to photoacoustic waves emitted by moving red blood

cells (Beard 2001, Fang et al 2007).

Despite the evident success of photoacoustic imaging for characterizing superficial

vascular structures, there are several challenges associated with its practical implementation

particularly when using piezoelectric receivers to detect the photoacoustic signals. One of

these challenges relates to the delivery of the excitation laser light. Ideally, an optically

transparent detector array that can be placed on the skin surface and the excitation laser pulses

transmitted through it and into the underlying tissue is required to provide the so-called
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backward mode detection configuration. This presents obvious difficulties when using

piezoelectric transducers, as the majority are opaque—a notable exception being that described

in Niederhauser et al (2005). Another challenge is that most image reconstruction algorithms

require the detector element size to be small compared to the acoustic wavelength. For

superficial imaging applications, where the acoustic propagation distances are of the order of a

few mm, the signal is only weakly bandlimited by frequency-dependent acoustic attenuation.

This results in very broadband signals (tens of MHz) with wavelengths as small as a few tens

of microns. Achieving adequate detection sensitivity with element sizes on this scale then

becomes problematic due to the inverse relationship between the active area of a piezoelectric

receiver and its sensitivity. The so-called photoacoustic microscopy approach (Wang 2008),

which employs a single mechanically scanned focused transducer to map the photoacoustic

signals, can overcome these limitations to some extent. With this method, backward mode

operation is achieved by locating the transducer at the centre of a conical excitation beam

that is focused on the tissue surface. Although high quality images of the vasculature have

been obtained with this approach (Zhang et al 2006a), the highest lateral spatial resolution is

achieved only at a limited range of depths, those that coincide with the non-divergent region of

the transducer focus. It also remains to be seen whether this sequential scanning approach can

be parallelized in order to overcome the limited acquisition speed associated with mechanical

scanning.

In this paper, we describe the use of an alternative detection system for imaging the

superficial vasculature that can address these limitations. In this approach, an optical

ultrasound sensor based upon a Fabry–Perot polymer film interferometer is used to detect the

acoustic signals. Since the sensor head is transparent, backward mode operation can readily be

achieved thus avoiding the difficulties of delivering the excitation light encountered when using

piezoelectric receivers. In addition, the optical nature of the transduction mechanism enables

acoustically small element sizes at MHz frequencies to be obtained with much higher sensitivity

than broadband piezoelectric receivers can provide. Furthermore because a tomographic image

reconstruction approach is employed, the concept does not suffer from the depth-limited spatial

resolution limitations that occur when using a fixed focus transducer and the sensor read-out

scheme can readily be parallelized using an optical detector array to achieve high frame rates.

The operating principles of the system and its application to imaging phantoms (Zhang

et al 2008) and the mouse brain (Zhang et al 2007) have been described previously. In this

paper, we demonstrate its ability to provide high-resolution 3D images of the vasculature in

the skin and subcutaneous tumours grown in mice. Section 2 provides an overview of the

imaging system and its performance whilst section 3 presents the images obtained in tissue.

2. Photoacoustic imaging system

2.1. Principles of operation

A full description of the imaging system is provided in Zhang et al (2008) so only a brief

overview is provided here. Figure 1 shows a schematic of the system. The excitation laser

system is a fibre-coupled type I optical parametric oscillator pumped by the 355 nm frequency

tripled output of a Q-switched Nd:YAG laser. This provides 8 ns optical pulses over the

wavelength range 410–2100 nm at a pulse repetition frequency (PRF) of 10 Hz. The output

of the laser system is directed on to the sensor head, which is placed in acoustic contract with

the skin.

The sensor head comprises a wedged PMMA substrate with a polymer film Fabry–Perot

interferometer (FPI) formed on the lower side. The FPI is fabricated by vacuum depositing a
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Figure 1. Photoacoustic imaging system. The Fabry–Perot (FP) sensor head is placed in acoustic

contact with the surface of the skin. Nanosecond excitation laser pulses emitted by a tuneable

OPO laser system are directed on to the sensor head, and transmitted through it into the underlying

tissue thereby exciting acoustic waves. A second laser operating at 1550 nm provides a focused

sensor interrogation laser beam that is raster scanned over the surface of the sensor to map the

distribution of the photoacoustic waves arriving at the sensor head. From the 2D distribution of

the photoacoustic waves, a 3D image is then reconstructed.

thin-film structure comprising a Parylene C polymer film spacer sandwiched between a pair of

dichroic soft dielectric mirrors. These mirrors are highly reflective (>95%) between 1500 and

1650 nm but highly transmissive between 600 nm and 1200 nm. Thus, excitation laser pulses in

the latter wavelength range can be transmitted through the sensor head and into the underlying

tissue. Absorption of the laser energy produces photoacoustic pulses which propagate back to

the sensor head where they modulate the optical thickness of the FPI and hence its reflectivity.

The sensor is then read-out by raster scanning a focussed interrogation laser beam at 1550 nm

(where the FPI mirrors are highly reflective) over the surface of the sensor using a galvanometer

based x–y scanner. At each point of the scan, the sensor is optimally biased by tuning the

interrogation laser wavelength to the point of maximum slope on the interferometer transfer

function (ITF), the relationship between reflected optical power and phase. It is necessary

to perform this biasing procedure at each point of the scan because the optical thickness of

the polymer film spacer, and therefore the optimum bias wavelength, varies from point to
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point. Under these conditions, the transduction mechanism can be regarded as one in which

an acoustically induced modulation of the optical thickness of the FPI produces a small phase

shift which is linearly converted, via the ITF, to a corresponding reflected optical power

modulation. This time-varying optical power modulation, which represents the photoacoustic

waveform, is detected by an ac-coupled InGas photodiode-transimpedance amplifier unit and

recorded using a digital storage oscilloscope (DSO).

Once a waveform has been acquired at a particular spatial point on the sensor, it is stored

within the onboard memory of the DSO. The interrogation laser beam is then moved to the next

scan point and the procedure repeated. At the end of the 2D scan the entire set of waveforms

are downloaded from the DSO to the PC and input to a k-space backpropagation algorithm

(Koestli et al 2001) in order to reconstruct a 3D image of the initial pressure distribution: the

photoacoustic image. The entire system is fully automated with the excitation and interrogation

lasers, the optical scanner and DSO all under the control of a PC.

2.2. System performance

The maximum area over which the interrogation laser beam can be scanned is defined by a

circle of diameter 50 mm. The 1/e2 diameter of the laser beam at its focus is 64 µm and

this represents, to a first approximation, the acoustically sensitive area (Cox and Beard 2007).

The minimum step size is 10 µm and is limited by the 12-bit resolution of the PC digital-to-

analogue conversion card that controls the optical scanner. The acquisition speed of the system

described in Zhang et al (2008) was approximately 1 s per scan step. This was limited by the

sequential nature of the waveform downloading process in which each photoacoustic waveform

was downloaded to the PC via a GPIB interface immediately following its acquisition. In this

study, a different acquisition approach was adopted whereby the complete set of waveforms

acquired over the scan were stored within the on-board memory of the DSO and downloaded

to the PC in a single step. Although this enabled the point-to-point acquisition time of the

scanner itself to be reduced to 10 ms, the average acquisition time achieved in this study was

limited by the 10 Hz PRF of the OPO laser system to 100 ms per scan step.

Two different sensors were used in this study. One employed a 38 µm thick FPI polymer

spacer and provided a −3 dB acoustic bandwidth of 22 MHz. The other had a 22 µm thick

spacer and provided a −3 dB bandwidth of 39 MHz. In both cases, the frequency response is

characterized by a smooth roll-off to zero. The frequency at which this zero response occurs

at is 58 MHz for the 38 µm sensor and 100 MHz for the 22 µm sensor. The low-frequency

response is defined by the 100 kHz −3 dB cut-off frequency of the ac-coupled photodiode.

The peak noise-equivalent pressure (over a measurement bandwidth of 20 MHz) of the 38 µm

sensor is approximately 0.2 kPa and 0.3 kPa for the 22 µm sensor. These NEP figures are

broadly comparable to the NEP of a 1 mm diameter PVDF piezoelectric receiver.

The instrument line spread function (LSF) represents a measure of the spatial resolution

that the system can provide and is discussed in detail in Zhang et al (2008). The lateral

LSF depends upon a variety of factors, among them the overall detection aperture (the scan

area), the effective element size, spatial sampling interval and the bandwidth of the sensor.

Furthermore, it depends on the angular aperture subtended by the detection aperture and

therefore the axial and lateral position of the source. For these reasons, it is difficult to provide

a single figure for the lateral LSF. However, taking into account the scan areas (between 1 cm2

and 4 cm2) used in the current study, the experimental data presented in Zhang et al (2008)

suggest a lateral LSF in the range 50 µm–100 µm for depths up to 5.5 mm at the centre of

the detection aperture for both sensors. Unlike the lateral LSF, the vertical LSF is, to a first

approximation, spatially invariant and dependent largely on the sensor bandwidth, which is
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defined by the thickness of the polymer film spacer. Again, using the measurements obtained

in Zhang et al (2008), the vertical LSF is estimated to be approximately 30 µm for the 38 µm

sensor and 20 µm for the 22 µm sensor.

3. Results

To demonstrate the utility of the system for visualizing superficial blood vessels, images of

the vasculature in the skin, and in tumours implanted in mice, were obtained. All images were

obtained non-invasively, without signal averaging and using an incident fluence below the

safe maximum permissible exposure (MPE) for skin (British Standard 1994). To aid the

visualization of deeply lying features, a depth-dependent scaling factor was applied to

the reconstructed images to compensate for optical attenuation. Apart from this and the use

of an interpolation algorithm, no other image processing was employed. The reconstructed

images in this paper are presented as maximum intensity projections or volume-rendered

representations. The latter are also available as animated volume-rendered images and can be

viewed as movie files online (or downloaded) at stacks.iop.org/PMB/54/1035 or the University

College London website3. These animations provide the most compelling demonstrations of

the 3D imaging capability of the system.

3.1. Human palm

An in vivo image of the subcutaneous vasculature in the palm of a volunteer was obtained

using the 38 µm FP sensor. The sensor head was placed over the region of interest on the palm

with a gap of few hundred microns between the surface of the skin and the sensor. A drop of

water was inserted in the gap in order to provide the necessary acoustic coupling. The OPO

was set to an excitation wavelength of 670 nm. The laser fluence incident on the skin surface

was 10 mJ cm−2 and thus below the MPE of 20 mJ cm−2 for skin at this wavelength (British

Standard 1994). The photoacoustic signals were mapped by scanning the sensor interrogation

beam over an area of 20 mm × 20 mm in steps of 250 µm and acquiring a photoacoustic

waveform at each step with a single laser pulse. The total number of waveforms acquired was

therefore 6400 and the time taken to acquire them was approximately 10 min. A 3D image of

dimensions 20 mm × 20 mm × 6 mm was then reconstructed from the detected signals using

the 3D k-space backpropagation algorithm referred to in section 2.1.

Figure 2 shows a volume-rendered representation of the reconstructed image and a series

of lateral slices at different depths. These images show the subcutaneous vasculature to a

depth of approximately 4 mm—the deepest lying vessel is indicated by the arrow ‘A’ on both

the volume-rendered image and the deepest lateral slice. Figure 3(a) shows a lateral maximum

intensity projection (MIP). This was obtained from the 3D reconstructed data set by projecting

the maximum value of voxels lying along the z-direction on to the x–y plane. Figure 3(b)

shows a single vertical slice through the centre of the lateral MIP as indicated. This vertical

slice further illustrates the depth-resolved nature of the technique with the contour of the skin

surface as well as several underlying sub-dermal blood vessels visible.

3.2. Mouse skin

An ex vivo image was obtained of the microvasculature in the skin around the abdomen of a

3 month old mouse (CL57/BL6) using the 38 µm FP sensor. The animal was prepared by

removing the hair around the region of interest using hair removal cream. As in the study

3 http://www.medphys.ucl.ac.uk/research/mle/images.htm

http://stacks.iop.org/PMB/54/1035
http://www.medphys.ucl.ac.uk/research/mle/images.htm
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Figure 2. In vivo photoacoustic image of the vasculature in the palm using an excitation wavelength

of 670 nm. Left: photograph of the imaged region, middle: volume rendered image. An animated

representation of this image can be viewed at stacks.iop.org/PMB/54/1035, and right: lateral slices

at different depths. The arrow ‘A’ indicates the deepest visible vessel, which is located 4 mm

beneath the surface of the skin.

Figure 3. (a) Lateral maximum intensity projection (MIP) of the 3D image of the human palm

shown in figure 2. (b) Vertical slice image along yellow dotted lines shown in lateral MIP. Grey

arrows indicate the contour of the skin surface.

http://stacks.iop.org/PMB/54/1035
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Figure 4. Photoacoustic image of the vasculature in the skin around the abdomen of the

mouse obtained using an excitation wavelength of 590 nm. (a) Volume rendered image. An

animated representation of this image can be viewed at stacks.iop.org/PMB/54/1035 (b) Top:

lateral maximum intensity projection (MIP). Image on the right is a vertical slice in the x–z plane

showing a cross-sectional view of the blood vessel indicated. The dimensions shown are full width

half-maximum values. Bottom: vertical MIP. The arrow ‘A’ indicates the deepest visible vessel,

which is located 2 mm beneath the skin surface.

described in the previous section, the skin was acoustically coupled to the sensor head with

a drop of water although on this occasion the skin was placed in direct contact with the

sensor head. The OPO output was set to a wavelength of 590 nm, the incident fluence was

6.8 mJ cm−2 and the photoacoustic signals were mapped over an area of 10 mm × 10 mm in

steps of 100 µm. The total time taken to acquire all 10 000 signals was approximately 16 min.

The reconstructed image is shown as a volume-rendered representation in figure 4. The higher

optical attenuation by blood at 590 nm compared to 670 nm resulted in a lower penetration

depth than obtained in section 3.1. As a consequence, the deepest observable vessel is located

at a depth of 2 mm. Figure 4(b) shows the corresponding lateral and vertical MIPs. Compared

to the image of the human palm in which the vessel diameters are of the order of a few hundred

microns, significantly smaller vessels can be seen. This is a consequence of the increased

spatial resolution achieved due to the smaller scan step size of 100 µm, and is most apparent

http://stacks.iop.org/PMB/54/1035
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Figure 5. Photoacoustic image of LS174T tumour obtained using an excitation wavelength of

650 nm. (a) Volume rendered image. An animated representation of this image can be viewed at

stacks.iop.org/PMB/54/1035, (b) Top: lateral (x–y) maximum intensity projection (MIP), left and

right: expanded views, bottom: vertical (x–z) MIP. The expanded views and the vessels marked

‘A’ and ‘B’ show peripheral supplying tumour vessels. The region marked ‘C’ shows a region

consistent with a local increase in microvascular density.

in the vertical cross-sectional image through the vessel shown in figure 4(b). The lateral and

vertical FWHM dimensions of the reconstructed feature are 130 µm and 90 µm, respectively.

The larger lateral dimension is consistent with the higher vertical resolution that a planar

detection geometry provides due to its finite detection aperture.

3.3. Implanted tumours

Mouse models are used to study the pathophysiology of a wide variety of tumours to aid

the development and refinement of new cancer therapies. A common approach is to implant

a subcutaneous tumour and study its progression over time. Characterizing the structure of

the tumour vasculature is important as it can affect the development of the tumour and its

http://stacks.iop.org/PMB/54/1035
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Figure 6. Photoacoustic image of SW1222 tumour obtained using an excitation wavelength of

650 nm. (a) Volume-rendered representation, (b) Left: lateral (x–y) maximum intensity projection

(MIP) (An animated representation of this image can be viewed at stacks.iop.org/PMB/54/1035).

Right: expanded view obtained by rescanning the area indicated with a smaller scan step.

response to treatment. To demonstrate the utility of the instrument for this purpose, two

human colorectal tumour models were imaged. The first of these, the human colorectal

adenocarcinoma xenograft LS174T, was grown to a size of approximately 8 mm × 8 mm in

the flank of a female nude MF1 mouse as indicated in the photograph in figure 5(a). The OPO

was set to a wavelength of 650 nm and the photoacoustic signals were mapped over an area of

10 mm × 10 mm in steps of 100 µm using the 22 µm sensor. The reconstructed image is shown

as a volume-rendered representation in figure 5(a) and lateral and vertical MIPs in figure 5(b).

The animated volume-rendered representation available online (stacks.iop.org/PMB/54/1035)

shows the 3D structure of the vasculature to best effect. The images in figure 5 reveal a

poorly and heterogeneously vascularized core supplied by networks of larger vessels around

its periphery: examples of these larger supplying vessels are those labelled ‘A’ and ‘B’, and

the vessels in the expanded views of the lateral MIP. Within this peripheral vascular network

lie discrete patches of contrast (for example the region marked ‘C’) that may indicate a local

increase in the density of capillaries and other microvessels—these regions do not resemble

recognisable vascular structures as the system is not able to resolve individual capillaries.

These features are broadly consistent with the heterogeneity and low microvascular density

that this type of tumour is known to exhibit (El-Emir et al 2007). Feature characteristics of

tumour vessels in general, such as tortuous paths and abnormal branching patterns, can also

be seen, most obviously in the expanded MIPs in figure 5(b). Note also that the vertical MIP

http://stacks.iop.org/PMB/54/1035
http://stacks.iop.org/PMB/54/1035
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shows that the tumour was imaged to a depth of approximately 5 mm as evidenced by the

large vessel (labelled ‘B’), which traverses the underside of the tumour.

A second human colorectal tumour model with a different pathophysiology, the SW1222,

was also imaged. This tumour was grown in the flank of a nude mouse as in the previous

case but to a larger size of approximately 20 mm × 20 mm. The excitation wavelength was

630 nm and the photoacoustic signals were mapped over an area of 16 mm × 16 mm in steps

of 100 µm using the 22 µm sensor. This tumour is characterized by a more homogeneous

vascular architecture and higher microvascular density than the LS174T tumour (El-Emir et al

2007). This can be seen in the volume-rendered image in figure 6(a), which shows patches of

relatively uniform contrast along with a number of larger supplying tumour vessels. The latter

are distributed around the body of the tumour with their peripheral nature being most apparent

in the animated volume rendered image that is available online (stacks.iop.org/PMB/54/1035).

The expanded view of the lateral MIP in figure 6(b), obtained by rescanning a 6 mm ×

2.6 mm region of the tumour with a finer sampling interval of 60 µm, shows a further example

of the chaotic and tortuous nature of tumour vessels.

4. Conclusions

The use of a novel photoacoustic imaging instrument for visualizing the vasculature in 3D

to depths of up to 5 mm with sub-100 µm spatial resolution has been demonstrated. There

are several advantages of the system over other photoacoustic imaging instruments used for

imaging blood vessels to mm depths. The transparent nature of the sensor avoids the difficulties

posed by the opaque nature of piezoelectric receivers in delivering the excitation laser light to

the skin surface, allowing a truly backward mode detection configuration to be achieved. In

addition, the sensor provides a level of acoustic performance that can be difficult to achieve with

piezoelectric-based detection methods, particularly in relation to the spatial sampling of the

incident acoustic field. Because the sensor is optically addressed using a focused laser beam,

the incident acoustic field can be spatially sampled with significantly higher (potentially optical

diffraction limited) resolution than can be achieved with piezoelectric receivers. It is this along

with the broadband uniform acoustic frequency response of the sensor and its high detection

sensitivity that are responsible for the high contrast and spatial fidelity of the reconstructed

images. As noted in Zhang et al (2008) there is also significant potential to further improve the

imaging performance in terms of penetration depth and increasing the sensor bandwidth and

optimizing the spatial sampling parameters to obtain higher spatial resolution. There is also

scope to increase acquisition speed, potentially obtaining real time image acquisition rates,

through the increasing availability of higher repetition rate laser systems (Allen and Beard

2006, Maslov et al 2007), or parallelizing the sensor read-out scheme using a photodetector

array as described in Lamont and Beard (2006).

In summary, it is considered that this system may find a role for high-resolution soft

tissue imaging applications. These could include characterizing the structure and function of

superficial vascular networks for the assessment of skin tumours, vascular lesions, soft tissue

damage such as burns and wounds and other superficial tissue abnormalities characterized

by changes in tissue perfusion. In addition, it could be used, as indicated in this study, for

characterizing tumour vasculature in small animal models.

References

Allen T J and Beard P C 2006 Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging Opt.

Lett. 31 3462–64

http://stacks.iop.org/PMB/54/1035
http://dx.doi.org/10.1364/OL.31.003462


1046 E Z Zhang et al

Beard P C 2001 Flow velocity measurements UK Patent Application WO 03/039364

British Standard 1994 BS EN60825-1

Cox B T and Beard P C 2007 Frequency dependent directivity of a planar Fabry Perot polymer film ultrasound sensor

IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 394–404

El-Emir E, Qureshi U, Dearling J L J, Boxer G M, Clatworthy I, Folarin A A, Robson M P, Konerding M A, Nagl S and

Pedley R B 2007 Predicting response to radioimmunotherapy from the tumor microenvironment of colorectal

carcinomas Cancer. Res. 67 11896–905

Fang H, Maslov K and Wang L V 2007 Photoacoustic Doppler effect from flowing small light-absorbing particles

Phys. Rev. Lett. 99 184501

Koestli K, Frenz M, Bebie H and Weber H 2001 Temporal backward projection of optoacoustic pressure transients

using Fourier transform methods Phys. Med. Biol. 46 1863–72

Lamont M and Beard P C 2006 2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry

Perot polymer film sensor Electron. Lett. 42 187–9

Lao Y, Zhou F and Wang H 2008 In vivo photoacoustic imaging of subcutaneous vasculature and vascular anomalies

in small animals Eur. Phys. J. Appl. Phys. 41 151–5

Laufer J G, Delpy D T, Elwell C E and Beard P C 2007 Quantitative spatially resolved measurement of tissue

chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood

oxygenation and haemoglobin concentration Phys. Med. Biol. 52 141–68

Maslov K, Zhang H F and Wang L V 2007 Portable real-time photoacoustic microscopy Proc. SPIE 6437 643727–1

Niederhauser J J, Jaeger M, Hejazi M, Keppner H and Frenz M 2005 Transparent ITO coated PVDF transducer for

optoacoustic depth profiling Opt. Commun. 253 401–6

Oh J T, Li M L, Zhang H F, Maslov K, Stoica G and Wang L V 2006 Three-dimensional imaging of skin melanoma

in vivo by dual-wavelength photoacoustic microscopy J. Biomed. Opt. 11 034032-1–034032-4

Siphanto R I, Kolkman R G M, Huisjes A, Pilatou M C, de Mul F F M, Steenbergen W and van Adrichem L N A

2004 Imaging of small vessels using photoacoustics: an in vivo study Lasers Surg. Med. 35 354–62

Viator J A, Au G, Paltauf G, Jacques S L, Prahl S A, Ren H, Chen Z and Nelson J S 2002 Clinical testing of a

photoacoustic probe for port wine stain depth determination Lasers Surg. Med. 30 141–8

Xu M and Wang L V 2006 Photoacoustic imaging in biomedicine Rev. Sci. Instrum. 77 041101

Wang L V 2008 Tutorial on photoacoustic microscopy and computed tomography IEEE J. Sel. Top. Quantum

Electron. 14 171–9

Zhang E Z, Laufer J and Beard P C 2007 Three dimensional photoacoustic imaging of vascular anatomy in small

animals using an optical detection system Proc. SPIE 6437 643710S-1–8

Zhang E, Laufer J and Beard P C 2008 Backward-mode multiwavelength photoacoustic scanner using a planar Fabry

Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues Appl.

Opt. 47 561–77

Zhang H F, Maslov K, Li M, Stoica G and Wang L V 2006a In vivo volumetric imaging of subcutaneous

microvasculature by photoacoustic microscopy Opt. Express 14 9317–23

Zhang H F, Maslov K, Stoica G and Wang L V 2006b Functional photoacoustic microscopy for high-resolution and

noninvasive in vivo imaging Nat. Biotechnol. 24 848–50

Zhang H F, Maslov K M, Soica G and Wang L V 2006c Imaging acute thermal burns by photoacoustic microscopy

J. Biomed. Opt. 11 054033–1

http://dx.doi.org/10.1109/TUFFC.2007.253
http://dx.doi.org/10.1158/0008-5472.CAN-07-2967
http://dx.doi.org/10.1103/PhysRevLett.99.184501
http://dx.doi.org/10.1088/0031-9155/46/7/309
http://dx.doi.org/10.1049/el:20064135
http://dx.doi.org/10.1051/epjap:2008016
http://dx.doi.org/10.1088/0031-9155/52/1/010
http://dx.doi.org/10.1117/12.702227
http://dx.doi.org/10.1117/1.2210907
http://dx.doi.org/10.1002/lsm.20100
http://dx.doi.org/10.1002/lsm.10015
http://dx.doi.org/10.1063/1.2195024
http://dx.doi.org/10.1109/JSTQE.2007.913398
http://dx.doi.org/10.1117/12.701740
http://dx.doi.org/10.1364/AO.47.000561
http://dx.doi.org/10.1364/OE.14.009317
http://dx.doi.org/10.1038/nbt1220
http://dx.doi.org/10.1117/1.2355667

	1. Introduction
	2. Photoacoustic imaging system
	2.1. Principles of operation
	2.2. System performance

	3. Results
	3.1. Human palm
	3.2. Mouse skin
	3.3. Implanted tumours

	4. Conclusions
	References

