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IMPORTANCE Cannabis is the most commonly used illicit drug in the world. Cannabinoids

have been shown tomodulate immune responses; however, the association of cannabis with

neuroimmune function has never been investigated in vivo in the human brain.

OBJECTIVE To investigate neuroimmune activation or 18-kDa translocator protein (TSPO)

levels in long-term cannabis users, and to evaluate the association of brain TSPO levels with

behavioral measures and inflammatory blood biomarkers.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study based in Toronto, Ontario,

recruited individuals from January 1, 2015, to October 30, 2018. Participants included

long-term cannabis users (n = 24) and non–cannabis-using controls (n = 27). Cannabis users

were included if they had a positive urine drug screen for only cannabis and if they used

cannabis at least 4 times per week for the past 12 months and/or met the criteria for cannabis

use disorder. All participants underwent a positron emission tomography scan with

[18F]FEPPA, or fluorine F 18–labeled N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)

acetamide.

MAIN OUTCOMES ANDMEASURES Total distribution volumewas quantified across regions of

interest. Stress and anxiety as well as peripheral measures of inflammatory cytokines and

C-reactive protein levels were also measured.

RESULTS In total, 24 long-term cannabis users (mean [SD] age, 23.1 [3.8] years; 15 men [63%])

and 27 non–cannabis-using controls (mean [SD] age, 23.6 [4.2] years; 18 women [67%]) were

included and completed all study procedures. Compared with the controls, cannabis users

had higher [18F]FEPPA total distribution volume (main group effect: F1,48 = 6.5 [P = .01]; ROI

effect: F1,200 = 28.4 [P < .001]; Cohen d = 0.6; 23.3% higher), with a more prominent

implication for the cannabis use disorder subgroup (n = 15; main group effect: F1,39 = 8.5

[P = .006]; ROI effect: F1,164 = 19.3 [P < .001]; Cohen d = 0.8; 31.5% higher). Greater TSPO

levels in the brain were associated with stress and anxiety and with higher circulating

C-reactive protein levels in cannabis users.

CONCLUSIONS AND RELEVANCE The results of this study suggest that TSPO levels in cannabis

users, particularly in those with cannabis use disorder, are higher than those in

non–cannabis-using controls. The findings emphasize the need for more complementary

preclinical systems for a better understanding of the role of cannabinoids and TSPO in

neuroimmune signaling.
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A
lmost4%of theglobal populationused cannabis in the

past year,1 consistentwithhigher rates of cannabis use

and cannabis use disorder (CUD), alongwith a decline

in itsperceived risk.2,3Habitual cannabisuse is associatedwith

long-term changes in the brain,2 making it a growing public

health concern in youth, particularly given the legalization

trend across the world.

Adolescence is a critical period for braindevelopment, in-

cluding synaptic remodeling and maturation, and is a time

when the brain is susceptible to psychosocial and physiologi-

cal changes. Initiationof cannabis useduring adolescence co-

incides with this critical period, highlighting the importance

of the timing of cannabis exposure and subsequent vulner-

ability to CUD and other psychiatric disorders. Cannabinoids,

including Δ9-tetrahydrocannabinol (THC), the main psycho-

active component of cannabis, act as partial agonists on en-

dogenous cannabinoid receptors: cannabinoid type 1 recep-

tor (CB1R), found mainly on neural tissues, and cannabinoid

type 2 receptor (CB2R), primarily located on central and pe-

ripheral immune tissue,4 including glial cells.

Increasing evidence suggests that cannabinoid signaling

plays a critical role in the modulation of inflammatory re-

sponses. Microglia are key players in the immune surveil-

lance systemof the central nervous system, inwhich they act

asbrain-residentmacrophages5andare first responders tobrain

insults.6 In response to brain insults, microglia are trans-

formed fromasentry state intoanactive state and increase the

expression of a mitochondrial protein, the 18-kDa transloca-

tor protein (TSPO). Thus, in response to microglial activa-

tion, TSPO is overexpressed compared with its expression in

normal tissues, making it a keymarker of immune activation

in the brain. In addition to their role in inflammation,microg-

lia also play a critical role in neurodevelopmental processes

such as synaptogenesis (ie, synaptic remodeling) and in the

maintenance of synaptic plasticity.

Although preclinical studies have investigated the asso-

ciation between neuroimmune function and cannabis use,7,8

clinical evidence remains sparse. For example, several stud-

ies have reported the anti-inflammatory properties of canna-

binoids through several mechanisms, including limiting

infiltration of immune cells into the brain, preventing

blood-brain barrier dysfunction, and reducing brain

immunoreactivity.8-15 Cannabinoids may act as an immuno-

suppressant by inhibiting microglial activation,9,11,16 inhibit-

ing the releaseof free radicals andreactiveoxygenspecies from

microglia,16 decreasing proinflammatory cytokine secretion

frommicroglia,17 and increasing anti-inflammatory cytokine

release.18Moreover, 2 cannabis components, THCand canna-

bidiol, are currently being investigated as potential therapeu-

tic agents for several inflammatory or immunediseases; how-

ever, to date, it remains unknown whether cannabis plays a

role in an anti-inflammatory or proinflammatory state in the

living human brain.

In this study, we examined in vivo data that imaged neu-

roimmuneactivationorTSPO levels in long-termcannabisus-

ers after overnight abstinence by using fluorine F 18–labeled

N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)

acetamide ([18F]FEPPA) positron emission tomography (PET)

scan. On the basis of preclinical evidence suggesting the po-

tential anti-inflammatory properties of cannabinoids, we hy-

pothesized that long-term cannabis users would have lower

TSPO levels in the brain compared with non–cannabis-using

controls.Wealsoexplored theassociationbetweenbrainTSPO

levels and behavioral measures and inflammatory blood bio-

markers.

Methods

Participants

Potential participants were recruited from the Toronto (On-

tario, Canada) area at the Centre for Addiction and Mental

Health from January 1, 2015, to October 20, 2018. This study

was approved by the Research Ethics Board at the Centre for

Addiction and Mental Health. All participants provided writ-

ten informed consent after the study procedures were ex-

plained to them thoroughly.

Cannabis users were included in the study if they had a

positive urine drug screen for only cannabis and if they used

cannabisat least4 timesperweek for thepast 12monthsand/or

met the criteria for CUD. Controls were excluded if they had a

past history of or current psychoactive drug use.

All participants were screened with the Structured Clini-

cal Interview19 for DSM-IV Axis I disorders and were ex-

cluded for any of the following: past or current Axis I disor-

der, including but not limited to major depressive disorder

and/oranyanxietydisorders; currentorpast substanceusedis-

order (except for CUD in cannabis users); pregnancy or cur-

rent breastfeeding; unstable medical or neurological illness;

history of severe head trauma; and the presence ofmetal im-

plantsprecludingamagnetic resonance imaging scan.Chronic

stresswasevaluatedwith theTrier Inventory forChronicStress

(score range: 0-120,withhigher scores indicating greater self-

reported ratings of chronic stress),20 and anxiety was as-

sessedwiththeBeckAnxiety Inventory (score range:0-63,with

higher scores indicating greater self-reported ratings of

anxiety).21

Key Points

Question Is the expression of 18-kDa translocator protein altered

in long-term cannabis users?

Findings In this case-control study of 24 long-term cannabis users

and 27 non–cannabis-using controls, cannabis users showed

higher neuroimmune activation or translocator protein levels

compared with controls, with a more prominent implication for

those with cannabis use disorder. Greater brain translocator

protein levels were associated with chronic stress and anxiety as

well as higher circulating C-reactive protein levels.

Meaning The finding of higher translocator protein levels in

cannabis users is an important step forward in understanding the

role of cannabis in vivo in the brain; more complementary

preclinical systems are needed to explain the role of cannabinoids

and translocator protein in neuroimmune signaling.
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A detailed history of cannabis usewas identified for each

participant with an in-house assessment called the Drug His-

tory Questionnaire. On the basis of the information from the

DrugHistoryQuestionnaire and the StructuredClinical Inter-

view forDSM-IVAxis I disorders, we establishedwhether the

cannabis users among the participants met the DSM-5 crite-

ria for CUD. In this cohort, 15 cannabis users met the DSM-5

criteria for CUD. In addition, lifetime use and past-year can-

nabis usewere estimated for each participant. Cannabis crav-

ing was assessed with the Marijuana Craving Questionnaire

(score range: 12-84, with higher scores indicating greater lev-

els of cannabis craving),22 and the severity of dependencewas

evaluatedwith theSeverity ofDependenceScale (score range:

0-15, with higher scores indicating greater severity of canna-

bis dependence).23Cannabis userswere instructed to abstain

from cannabis for at least 12 hours (ie, overnight) before the

scheduled PET scan.

PET and Structural MRI Data

Acquisition of PET data has been described in detail

elsewhere24,25and is included in theeAppendix in theSupple-

ment. Briefly, each participant was scanned with [18F]FEPPA

for 125minutes on a high-resolution PET scanner (CPSHRRT;

Siemens).AllparticipantsweregroupedaccordingtotheirTSPO

rs6971 polymorphism as high-affinity binders (C/C), mixed-

affinity binders (C/T), or low-affinity binders (T/T), as previ-

ously described.26

Blood Serum Levels

Blood serum levels of cytokines and high-sensitivity C-

reactive protein (hsCRP) levels were available in 16 cannabis

users. Cytokines (IFN-γ, TNF-α, IL-1β, IL-2, IL-6, IL-8, IL-10,

and IL-12 from a human high-sensitivity T-cell panel (HST-

CYTOMAG60SK; Merck Millipore) were assayed using a mul-

tiplex immunoassay (Luminex MAGPIX; Luminex Corpora-

tion). ThehsCRP levelsweremeasured in serumusing ahigh-

sensitivity enzyme-linked immunosorbent assay according to

themanufacturer's instructions (IBL International) (eAppen-

dix in the Supplement).

Blood serum levels of THC, OH-THC (11-hydroxy-THC),

COOH-THC (11-nor-9-carboxy-THC), and cannabidiolmetabo-

lites were available in 14 long-term cannabis users. The can-

nabinoidsmultiplexassaywasperformedat theCentre forAd-

diction and Mental Health Clinical Laboratory by gas

chromatography coupled with mass spectrometry, as de-

scribed in the software (Varian; Agilent Technologies) appli-

cation notewith slight analytical modifications and cannabi-

diol addition to the assay (eAppendix in the Supplement).

Statistical Analysis

Demographicmeasureswere compared using χ2 tests for cat-

egoricalvariables, and independent-sample,unpaired,2-tailed

t tests were used for continuous variables. Group differences

in [18F]FEPPA total distribution volume (VT) were analyzed

using a linearmixedmodel analysis,with group and region of

interest (ROI) as fixed factors, TSPO genotype as a covariate,

and [18F]FEPPA VT as the dependent variable. The ROIs in-

cluded in themainmodel were dorsolateral prefrontal cortex

(DLPFC), medial prefrontal cortex (mPFC), anterior cingulate

cortex (ACC), temporal cortex, and cerebellum (eAppendix in

the Supplement). Gray matter as a whole (GM) was analyzed

separately using analysis of variance, controlling for TSPO

genotype. To assesswhether adifference in [18F]FEPPAVT ex-

ists between cannabis users and non–cannabis-using con-

trols, we ran a separate linear mixed model analysis, includ-

ing all gray matter regions sampled (eAppendix in the

Supplement). Effect size (Cohen d) was calculated as the dif-

ference between the estimated marginal means between

groups divided by themean SD across all prioritized brain re-

gions.

As secondary analyses, we explored the associations be-

tween [18F]FEPPAVT and stress and anxiety aswell as canna-

bis use behaviors (use, craving, and dependence) in cannabis

usersbyusingPearsonpartial correlations, controlling forTSPO

genotype. Similarly, we assessed the associations between

[18F]FEPPA VT and peripheral inflammatory biomarkers and

blood serum cannabinoid levels using Pearson partial corre-

lations, controlling for TSPO genotype. Associationswere ex-

ploratory in nature and, as such, P values were not corrected

for multiple comparisons. All statistical analyses were per-

formed using SPSS, version 22.0 (IBM), with 2-sided P < .05

considered to be statistically significant.

Results

In total, 24 long-term cannabis users and 27 controls aged 18

to35years completedall studyproceduresandhadusabledata

(eAppendix in the Supplement). Of the cannabis users, the

mean (SD) agewas 23.1 (3.8) years and 15 (63%)weremale. Of

the controls, the mean (SD) age was 23.6 (4.2) years and 18

(67%)were female.Demographicandclinicalmeasuresarepre-

sented in the Table.

Themean [18F]FEPPAVTwas significantly higher in long-

term cannabis users (12.9 mL/cm3; 95% CI, 11.5-14.3 mL/cm3)

comparedwith thecontrols (10.4mL/cm3; 95%CI, 9.1-11.8mL/

cm3; main group effect: F1,48 = 6.5 [P = .01]; ROI effect:

F1,200 = 28.4 [P < .001]; Cohen d = 0.6; 23.3% higher)

(Figure 1A). Differences across prioritized brain regions were

robust (DLPFC, 22.2%;mPFC, 23.5%; temporal cortex, 25.1%;

ACC, 25.4%; and cerebellum, 24.8%). Similar elevationswere

alsopresent inGM(maingroupeffect:F1,48 = 6.1;P = .02; 22.3%

higher) and across all gray matter regions sampled (eAppen-

dix in theSupplement).Results remainedunchangedafter con-

trolling for tobaccouse (main group effect:F1,47 = 7.2;P = .01)

and sex (main group effect: F1,47 = 11.5; P = .001). However, a

significant associationwas foundbetweensexand [18F]FEPPA

VT, such that female participants hadhigher TSPO levels than

maleparticipants (main sexeffect:F1,47 = 7.5;P = .009).A sub-

group analysis revealed that this association was primarily

driven by the cannabis user group (eAppendix in the Supple-

ment). In addition, themean [18F]FEPPAVTwas significantly

higher in the 15 cannabis users with CUD (13.8 mL/cm3; 95%

CI, 12.0-15.7 mL/cm3) compared with controls (10.5 mL/cm3;

95% CI, 9.2-11.9 mL/cm3; main group effect: F1,39 = 8.5

[P = .006]; ROI effect: F1,164 = 19.3 [P < .001]; Cohen d = 0.8;
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Table. Demographic and Clinical Measures of the Participants

Variable

Mean (SD)
t Test or
χ2 Test
Value P Value

Non–Cannabis-Using Controls
(n = 27)

Long-term Cannabis
Users (n = 24)

Age, y 23.6 (4.2) 23.1 (3.8) t: 0.4 .68

Sex

χ2: 4.3 .04Male 9 15

Female 18 9

Current drug usea

Tobacco 0 7 NA NA

Other drugs of abuse 0 0 NA NA

Cannabis 0 24 NA NA

Cannabis use and behavior

Age at first use, y NA 16.4 (3.4) NA NA

Estimated cannabis use, g

Lifetime NA 2163.6 (1641.9) NA NA

Past year NA 448.5 (262.0) NA NA

Current dose, g NA 1.4 (0.8) NA NA

CUD 0 15 NA NA

TSPO (rs6971) genotype

χ2: 0.1 .71HAB 19 18

MAB 8 6

[18F]FEPPA PET parameters

Amount injected, mCi 4.9 (0.4) 5.0 (0.3) t: −0.7 .49

Specific activity, mCi/μmol 3281.0 (3672.0) 2082.5 (2194.1) t: 1.4 .16

Mass injected, μg 1.4 (1.3) 1.4 (0.7)

t: 0.1 .93

BAI scoreb 5.7 (6.1) 9.6 (11.4)

TICS scoreb 34.0 (17.5) 43.6 (15.8)

MCQ score NA 41.5 (10.9)

SDS score NA 2.8 (2.2)

Abbreviations: [18F]FEPPA, fluorine F

18–labeled N-(2-(2-fluoroethoxy)

benzyl)-N-(4-phenoxypyridin-3-yl)

acetamide; BAI, Beck Anxiety

Inventory; CUD, cannabis use

disorder; HAB, high-affinity binder;

MAB, mixed-affinity binder;

MCQ, Marijuana Craving

Questionnaire; NA, not applicable;

PET, positron emission tomography;

SDS, Severity of Dependence Scale;

TICS, Trier Inventory for Chronic

Stress; TSPO, translocator protein.

a All participants had a negative urine

drug screen for ethanol,

methadone, benzodiazepines, and

cocaine at baseline. All cannabis

users had a positive urine drug

screen for cannabis.

bBAI was not available for 2 cannabis

users, TICS was not available for 1

cannabis user, and TICS and BAI

were not available for 12

non–cannabis-using controls.

Figure 1. Higher Fluorine F 18–LabeledN-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA) Distribution Volume

in Long-term Cannabis Users
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In the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (mPFC),

temporal cortex, anterior cingulate cortex (ACC), cerebellum, and gray matter

as a whole (GM), the total distribution volume (VT) of [
18F]FEPPAwas

statistically significantly higher in long-term cannabis users (CU) compared with

the non–cannabis-using control (CON) group (A) and in the cannabis use

disorder (CUD) group (n = 15) compared with the control group (B). Participants

were grouped based on their translocator protein rs6971 polymorphism as

high-affinity binders (HAB) or mixed-affinity binders (MAB). [18F]FEPPA VT
values represent raw values unadjusted for genotype. Horizontal bar indicates

groupmean adjusted for genotype using the estimatedmarginal means of each

region.
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31.5% higher; DLPFC, 30.2%; mPFC, 32.6%; temporal cortex,

30.9%;ACC,36.0%;andcerebellum,28.2%), suggestingamore

prominent association in theCUDsubgroup (Figure 1B). Simi-

lar elevations were also present in GM (main group effect:

F1,39 = 7.7; P = .008; 29.7% higher in CUD).

In the cannabis user group, noneof theperipheral inflam-

matorymarkers (IFN-γ, IL-10, IL-12, IL-1β, IL-2, IL-6, IL-8, and

TNF-α) had an associationwith [18F]FEPPAVT (eTable 1 in the

Supplement). One cannabis user had high hsCRP levels (10.2

μg/mL; mean [SD] CRP level in this cohort, 0.5 [0.3] μg/mL).

Reanalysis of thedata excluding this outlier revealed a signifi-

cant positive association between [18F]FEPPA VT and hsCRP

levels across all prioritized brain regions (DLPFC: r = 0.6

[P = .03]; mPFC: r = 0.6 [P = .04]; temporal cortex: r = 0.6

[P = .03]; ACC: r = 0.5 [P = .05]; cerebellum: r = 0.6 [P = .02];

GM: r = 0.6 [P = .03]) (Figure 2 and eTable 2 in the Supple-

ment).

Higher [18F]FEPPA VT in the DLPFC (r = –0.6; P = .03),

mPFC (r = –0.7; P = .007), temporal cortex (r = –0.6; P = .02),

and ACC (r = –0.6; P = .02) had a significant correlation with

lower COOH-THC (Figure 3). No significant associations be-

tween [18F]FEPPA VT and THC or OH-THC metabolite levels

were found (eTable 3 in the Supplement).

In cannabis users, higher [18F]FEPPA VT in the DLPFC

(r = 0.5; P = .02), mPFC (r = 0.5; P = .01), temporal cortex

(r = 0.5; P = .009), ACC (r = 0.6; P = .002), and GM (r = 0.5;

Figure 2. Association of Higher Fluorine F 18–LabeledN-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA) Distribution

VolumeWith Higher Circulating High-Sensitivity C-reactive Protein (CRP) Levels in Blood Serum of Long-term Cannabis Users
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The associations, adjusted for translocator protein rs6971 genotype

(high-affinity binders [HAB] or mixed-affinity binders [MAB]), are shown for the

dorsolateral prefrontal cortex (DLPFC: r = 0.6; P = .03) (A) and themedial

prefrontal cortex (mPFC: r = 0.6; P = .04) (B). Similar correlations were present

in the temporal cortex (r = 0.6; P = .03), anterior cingulate cortex (r = 0.5;

P = .05), cerebellum (r = 0.6; P = .02), and gray matter as a whole (r = 0.6;

P = .03).

Figure 3. Association of Higher Fluorine F 18–LabeledN-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA) Distribution

VolumeWith Lower 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (COOH-THC)Metabolite Levels in Blood Serum of Long-term Cannabis Users
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The associations, adjusted for translocator protein rs6971 genotype

(high-affinity binders [HAB] or mixed-affinity binders [MAB]), are shown for the

dorsolateral prefrontal cortex (DLPFC: r = –0.6; P = .03) (A) andmedial

prefrontal cortex (mPFC: r = –0.7; P = .007) (B). Similar correlations were

present in the temporal cortex (r = –0.6; P = .02) and anterior cingulate cortex

(r = –0.6; P = .02).

In Vivo Imaging of Translocator Protein in Cannabis Users Original Investigation Research

jamapsychiatry.com (Reprinted) JAMAPsychiatry December 2019 Volume 76, Number 12 1309

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.2516?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.2516
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.2516?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.2516
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.2516?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.2516
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.2516?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.2516
http://www.jamapsychiatry.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.2516


P = .02)hada significant correlationwithhigher chronic stress

scores as reported on the Trier Inventory for Chronic Stress

scale (Figure 4 and eTable 4 in the Supplement). In addition,

higher [18F]FEPPA VT in the ACC (r = 0.4; P = .04) and GM

(r = 0.5;P = .04)was associatedwith higher anxiety scores as

reported on the Beck Anxiety Inventory scale (eTable 4 in the

Supplement).No significant associationsbetween [18F]FEPPA

VT and stress and anxiety scoreswere observed in the control

group (n = 15; eTable 5 in the Supplement). A significantnega-

tive correlation between [18F]FEPPA VT and estimated life-

time cannabis use, but not past-year cannabis use,was found

in all prioritized brain regions except for a trend-level asso-

ciation in the cerebellum (eTable 5 in Supplement). However,

this association was driven by sex, given that male cannabis

users had significantly more cumulative cannabis exposure

comparedwith femalecannabisusers; after controlling for sex,

this correlation was no longer significant, although it re-

mained trend-level in some regions (eTable 6 in the Supple-

ment).No significant associationsbetween [18F]FEPPAVT and

cannabis craving and severity of dependence (eTable 7 in the

Supplement) were found.

Discussion

Toourknowledge, thisPETstudy is the first to investigateneu-

roimmuneactivationorTSPO levels in long-termcannabisus-

ers. Contrary to ourhypothesis, long-termcannabis users had

significantly higher brain TSPO levels compared with non–

cannabis-using individuals, with a more prominent implica-

tion for cannabis users with CUD.

Many studies support the immunosuppressive proper-

tiesofcannabinoidsunder inflammatoryconditions,7,8butsev-

eral reports arealsoconsistentwith theproinflammatoryprop-

ertiesof cannabinoids.Forexample,Bayazit etal27 showedthat

individuals with CUD had higher serum levels of proinflam-

matory cytokines compared with healthy controls. Further-

more, long-termTHCexposure inmice increasedcerebellarmi-

croglial activation and the expression of proinflammatory

markers as well as produced deficits in cerebellar learning,

which were prevented by the administration of minocycline

hydrochloride, an inhibitor of microglial activation.28 These

neuroinflammatory and behavioral alterations were medi-

ated by the downregulation of CB1R,28 consistent with other

PET studies that reported reducedCB1Rexpressionwith long-

term cannabis use.29-31 Similarly, THC exposure during ado-

lescence also produced a persistent neuroinflammatory state

in adult female rats and mice, characterized by altered mi-

crogliamorphologic structure, increasedproinflammatoryme-

diators, reduced CB1Rs, and increased CB2Rs.32,33 Inhibition

ofmicroglial activation during adolescent THC exposure pre-

vented the development of a prefrontal neuroinflammatory

phenotype and attenuated the short-term memory impair-

ments present in adult rats, providing a direct association

between THC and microglial activation.33 Thus, these find-

ings suggest that long-term cannabinoid exposure may be

correlated with the cognitive and behavioral impairments

associated with CUD, perhaps through neuroimmune

contributions.34,35

In addition to mediating immune responses in the brain,

microglia also have a role in neuronal development and syn-

aptic plasticity.36 Cannabis use, especially in early adoles-

cence, can alter brain structure andneural activity in prefron-

tal and temporal cortical regions,37,38 the same regions

associatedwith long-termTHC exposure–inducedmicroglia-

mediated neuroinflammation in rats.33 Consistent with this

finding, exposure to THC in adolescent rats altered neuronal

andsynapticmorphologic structureacrosscortical regions39,40

andproducedpersistent changes in synaptic plasticity.39Fur-

thermore, a study that used models of synaptic pruning de-

Figure 4. Association of Higher Fluorine F 18–LabeledN-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA) Distribution

VolumeWith Higher Stress Scores in Long-term Cannabis Users
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The associations, as measured by the Trier Inventory for Chronic Stress after

adjustment for translocator protein rs6971 genotype (high-affinity binders

[HAB] or mixed-affinity binders [MAB]), are shown for the dorsolateral

prefrontal cortex (DLPFC: r = 0.5; P = .02) (A) and themedial prefrontal cortex

(mPFC: r = 0.5; P = .01) (B). Similar correlations were present in the temporal

cortex (r = 0.5; P = .009), anterior cingulate cortex (r = 0.6; P = .002), and gray

matter as a whole (r = 0.5; P = .02).
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rived frompatientswithschizophrenia reportedexcessive syn-

aptic elimination that reflected abnormalities in microglia-

like cells.41 These findings suggest that cannabis-induced

alterations in the brainmay bemediated at least in part by in-

creasedor excessiveneuroimmuneormicroglial activation in

cannabis users.28,32-34,42However,whether TSPOcanbeused

as a proxy for microglia-mediated synaptic pruning remains

unknown.

Results of this studymay seem to contradict several stud-

ies reporting theneuroprotectivepropertiesofcannabinoids7,8;

however, these properties are often observed in experimen-

talmodelsofdisease,withanunderlying inflammatoryorneu-

rodegenerative condition. It is possible that cannabinoids can

induce either a proinflammatory or anti-inflammatory pic-

ture depending on the status of the brain. Furthermore, re-

ducedTSPOlevels inan infection-mediatedmousemodelwere

recently associatedwith increased cytokine expression, chal-

lenging the simple assumption that proinflammatory im-

mune activation ismirrored by increased TSPO expression.43

In cannabis users, no significant associations between

[18F]FEPPA VT and any of the peripheral cytokine levels were

observed. These results are consistent with previous reports,

which founda lack of correlationbetween central andperiph-

eral markers of inflammation in other disorders.44,45 How-

ever, a significant association between [18F]FEPPA VT and

hsCRP levelswasobserved, suggesting that higher brainTSPO

levels may be associated with higher levels of CRP in canna-

bis users. In addition, [18F]FEPPAVTwas inversely associated

with COOH-THC blood serum metabolite levels but not with

THCorOH-THC levels in cannabis users.However, in the only

study thatpairedbloodandpostmortembrainsamples,nocor-

relation betweenTHCmetabolite concentrations in brain and

peripheral blood was found, suggesting that peripheral THC

metabolite levels may not necessarily reflect levels in the

brain.46 The interpretation of these associations, however, is

limited by different potencies, doses, and routes of adminis-

tration, which may affect the outcome variable.

In addition, we observed a significant correlation be-

tween [18F]FEPPAVT and chronic stress and anxiety scores in

cannabis users, suggesting that higher brain TSPO levelsmay

beassociatedwithhigherstressandanxiety.This finding iscon-

sistent with previous reports of higher TSPO in illnesses with

dysregulated stress responses, including major depressive

disorder45,47,48andobsessive-compulsivedisorder.49Further-

more,preclinical evidencesuggests thatacuteandchronicpsy-

chological stress candirectly inducemicroglial activation and

cytokine release.50-55 Similarly, studies have shown an asso-

ciationbetweenactivatedmicroglia and inflammatorymedia-

tors in anxiety-like behaviors.55,56 These associations be-

tween TSPO and stress and anxiety may be secondary to

cannabis withdrawal.

All of these correlations were exploratory in nature and

thus need to be confirmed in larger samples. In addition, be-

cause correlational analyses cannot be used to infer causa-

tion, caution should be takenwhen interpreting these results

until preclinical studies can explain the mechanisms under-

lying these associations.

Limitations

The limitations of this study should be considered when in-

terpreting the results.First, althoughan increase in [18F]FEPPA

VT is mostly attributed tomicroglial activation, studies show

that astrocytes and vascular endothelial cells also express

TSPO.57 However, both astrocytes and endothelial cells are

known to be key factors in brain immunity, and the potential

role of these cells in the [18F]FEPPAVT signal does not under-

mineour conclusion. Furthermore, it has been suggested that

endogenous ligands, such as cholesterol, may also be factors

inalteredTSPO levels.58Second, thecannabisuser groupcom-

prised more tobacco users compared with the control group.

However, a [11C]DAA1106PET study reporteddecreasedTSPO

levels in cigarette smokers compared with controls,59 a find-

ing that makes it less likely that tobacco use in some of our

study participantsmight account for the detected difference.

Third, thecannabisusergrouphadmoremale than femalepar-

ticipants comparedwith the control group. In this sample, fe-

male cannabis users had higher TSPO levels compared with

male cannabis users. Several studies have reported sexdiffer-

ences in cannabinoid sensitivity: in particular, female canna-

bis users were more susceptible to the deleterious effects of

cannabinoidexposurecomparedwithmales.60This studymay

provide preliminary evidence suggesting sex-dependent al-

terations in TSPO levels in cannabis users.61,62

Fourth, although participants were instructed to abstain

from smoking cannabis 12 hours before the PET scan, the lev-

els of cannabinoids in the blood, aswell as inflammatory bio-

markers,werenotavailable forallparticipants; thus, thesesub-

setsof individualsmaynotbe representativeof the larger study

population. Fifth, a high-sensitivity enzyme-linked immu-

nosorbent assay was used to measure peripheral CRP levels,

whereas a multiplex assay was used to measure the levels of

inflammatory cytokines, whichmay account for the discrep-

ancyobserved in theassociationofTSPOwithCRPbutnotwith

other immunemarkers.

Conclusions

Findings from this study suggest higher TSPO levels in can-

nabisusers comparedwithnon–cannabis-using controls,with

a more prominent implication for cannabis users with CUD.

Greater brain TSPOwas associated with increased blood CRP

measures as well as stress and anxiety. This study empha-

sizes theneed formore complementarypreclinical systems to

inform the role of cannabinoids and TSPO in neuroimmune

signaling.
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