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In Vivo Imaging of Transport and Biocompatibility of Single Silver

Nanoparticles in Early Development of Zebrafish Embryos

Kerry J. Lee1,¶, Prakash D. Nallathamby1,¶, Lauren M. Browning1, Christopher J.
Osgood2, and Xiao-Hong Nancy Xu1,*

1Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529

2Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529

Abstract

Real-time study of transport and biocompatibility of nanomaterials in early embryonic development

at single-nanoparticle resolution can offer new knowledge about their delivery and effects in vivo,

and provide new insights into molecular transport mechanism of developing embryos. In this study,

we directly characterized transport of single silver (Ag) nanoparticles into an in vivo model system

(zebrafish embryos) and investigated their effects on early embryonic development at single-

nanoparticle resolution in real-time. We designed highly purified and stable (not aggregated and non-

photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to

enable the study. We found that single Ag nanoparticles (5–46 nm) transport in and out of embryos

through chorion pore canals (CPCs), and exhibit Brownian diffusion (not active transport) with ~26

times lower diffusion coefficient (3×10−9 cm2/s) inside the chorionic space than in egg water

(7.7×10−8 cm2/s). In contrast, nanoparticles were trapped inside CPCs and inner mass of embryos,

showing restricted diffusion. Individual Ag nanoparticles were observed inside embryos at each

developmental stage, and in normally developed, deformed, and dead zebrafish, showing that

biocompatibility and toxicity of Ag nanoparticles and types of abnormalities of zebrafish highly

depend on the dose of Ag nanoparticles with a critical concentration of 0.19 nM. Rates of passive

diffusion and accumulation of nanoparticles in embryos are likely responsible for the dose-dependent

abnormalities. Unlike other chemicals, single nanoparticles can be directly imaged inside developing

embryos at nanometer (nm) spatial resolution, offering new opportunities to unravel the related

pathways that lead to the abnormalities.

Keywords

Biocompatibility; diffusion; embryos; in vivo imaging; silver nanoparticle; single nanoparticle

optics; toxicity; transport; zebrafish

Introduction

Nanomaterials possess unique physical and surface properties, which have inspired plans for

a wide spectrum of applications, such as target-specific vehicles for in vivo sensing, diagnosis,

and therapy (e.g., nanomedicine, drug delivery).1–5 These unique properties may also incite

toxicity, damaging in vivo systems of interest and posing risks to human health and the

environment.6 Thus, we select an effective in vivo model system (zebrafish embryos) and one

type of nanomaterials (Ag nanoparticles) and focus on probing the transport mechanism and

*To whom correspondence should be addressed: Email: xhxu@odu.edu; www.odu.edu/sci/xu/xu.htm; Tel/fax: (757) 683-5698.
¶These authors contributed equally to this work.
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dose-dependent biocompatibility of the nanomaterials in vivo, targeting the initial entry step

of nanomaterials into embryos, and aiming to demonstrate its potential applications and address

its potential adverse effects. Real-time study of transport and biocompatibility of single

nanoparticles in early development of embryos will provide new insights into molecular

transport mechanism and structure of developing embryos at nanometer (nm) spatial resolution

in vivo, as well as assessing the biocompatibility of single nanoparticle probes in vivo.

Currently, fluorescent probes, such as fluorescent dyes and proteins, are commonly used probes

for in vivo imaging. Unfortunately, fluorescence probes suffer photodecomposition, offering

limited lifetime for probing dynamic events of interest. Recently, nanoparticle probes such as

semiconductor quantum dots (QDs) and noble metal nanoparticles are becoming popular and

powerful probes for living cellular and in vivo imaging.7–12 QDs have unique optical

properties in comparison with fluorescence dyes and proteins, such as tunable narrow emission

spectrum, broad excitation spectrum, high photostability, and long fluorescence lifetime.8, 9,

13 Nevertheless, QDs still suffer a certain degree of photodecomposition, and it remains a

challenge to prevent intracellular QDs from aggregation.

Noble metal nanoparticles (Ag, Au and their alloys) have unique optical properties, such as

surface plasmon resonance (SPR), showing the dependence of optical properties on their size,

shape, surrounding environment, and dielectric constant of the embedding medium.14–17

Recent research has demonstrated the feasibility of using intrinsic optical properties of the

nanoparticles for imaging single living cells in real-time with sub-100 nm spatial resolution

and millisecond time resolution.10–12 Among noble metal nanoparticles, Ag nanoparticles

offer the highest quantum yield (QY) of Rayleigh scattering. For example, the QY of Rayleigh

scattering of 2 nm Ag nanoparticles is about 104 times higher than that of a single fluorescent

dye molecule (e.g., Rhodamine 6G). The scattering intensity of noble metal nanoparticles is

proportional to the volume of nanoparticles.14–17 Thus, Ag nanoparticles are extremely bright

and can be directly observed using dark-field single nanoparticle optical microscopy and

spectroscopy (SNOMS). Unlike fluorescent probes and QDs, these noble metal nanoparticles

do not suffer photodecomposition and can be used as a probe to continuously monitor dynamic

events for an extended period of time. Furthermore, the localized surface plasmon resonance

(LSPR) spectra (color) of nanoparticles show size-dependence.14–16 Thus, one can use the

color (LSPR spectra) index of these multicolor nanoparticles as a nanometer-size index (CASI)

to directly measure membrane transports of nanoparticles and size the change of membrane

pores at the nanometer scale in real-time. 10–12

Nevertheless, like other nanoparticle probes (e.g., QDs), the biocompatibility of Ag

nanoparticles awaits further and systematic study.6, 12 Thus, it is important to develop in
vivo model systems to effectively screen biocompatibility of nanoparticle probes in real-time

while exploring the potential of nanoparticles for in vivo imaging.

Zebrafish (Danio rerio) have unique advantageous features over other vertebrate model

systems (e.g., mouse, rat, human).18–22 For example, its early embryonic development is

completed rapidly within 120 h with well-characterized developmental stages. The embryos

are transparent and develop outside of their mothers, permitting direct visual detection of

pathological embryonic death, mal-development phenotypes, and study of real-time transport

and effects of nanoparticles in vivo. Therefore, zebrafish embryos offer a unique opportunity

to investigate the effects of nanoparticles upon intact cellular systems that communicate with

each other to orchestrate the events of early embryonic development. Genetic screens of

zebrafish phenotypes indicate similarities to human diseases, and protein sequences of drug-

binding sites in zebrafish and human show a high degree of identities.18, 22 Thus, zebrafish

have served as a vital model system for screening drug targets for curing human diseases. Large

numbers of embryos can be generated rapidly at low cost, which can serve as an ideal in
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vivo assay for screening biocompatibility, pharmacological efficacy, and toxicity of

nanoparticle probes. Fish are renowned for their ability to bioconcentrate trace contaminants

in the environment. Human consumption of fish suggests a direct impact to human health by

potential releases of nanomaterials into the environment.

Although the zebrafish has been a popular model for screening chemical toxicity19 and

drugs22, it has not yet been reported for screening the biocompatibity, therapeutic effects and

toxicity of nanoparticles. Furthermore, in all reported nanotoxicity studies, conventional

toxicological assays were primarily used, which cannot characterize dose of nanoparticles in
vivo and in real time. Typically, nanoparticles were injected into in vivo systems6, 23, which

is highly invasive. Many of these studies used unpurified nanoparticles or functionalized

nanoparticles and did not consider effects of residual chemicals produced during nanoparticle

synthesis persisting in nanoparticle solutions, leading to inconclusive results.6

Currently, biocompatibility of nanoparticles used as labeling agents for imaging of cells and

organisms quite often is not well-characterized. The primary challenges of using nanoparticle

probes for in vivo imaging and probing the effects of nanoparticles on living cells and organisms

are (i) to maintain the stability (prevent aggregation and photodecomposition) of nanoparticles

in physiological medium and in vivo, (ii) to develop real-time imaging tools for tracking the

diffusion and location of individual nanoparticles in vivo, and (iii) to invent powerful means

to characterize individual nanoparticles in vivo and in real time. In this study, we have

accomplished all of these objectives, achieving a major advance in the study of single

nanoparticles in vivo.

Results and Discussion

Synthesis and characterization of Ag nanoparticles

We synthesized spherical Ag nanoparticles with average diameter of (11.6 ± 3.5) nm by

reducing AgClO4 with reducing agents (sodium citrate and sodium borohydride) using well-

tuned synthesis conditions as described in Methods. We then carefully washed nanoparticles

to remove trace chemicals from their synthesis using centrifugation, generating highly purified

nanoparticles. We characterized the stability, size and optical properties of these purified Ag

nanoparticles incubated in egg water (1.2 mM NaCl) for 120 hr using UV-vis absorption

spectroscopy, SNOMS, dynamic light scattering (DLS), and high-resolution transmission

electron microscopy (HR-TEM) (Fig. 1).

The absorption spectra of freshly prepared and washed nanoparticles before and after

incubating with egg water for 120 hr (Figs. 1A: a & b) show an absorbance of 0.736 at a peak

wavelength of 396–400 nm, indicating that Ag nanoparticles are very stable (not aggregated)

in egg water (1.2 mM NaCl). We determined the effect of salt concentration (the positive

control experiment) by increasing NaCl concentration and found that nanoparticles are stable

in the presence of NaCl up to 10 mM, but begin to aggregate in 100 mM NaCl, showing a red

shift of peak absorbance wavelength (~2–3 nm) and a decrease in absorbance. The size of

nanoparticles measured by DLS increased from (10.1 ± 2.0) nm to (24.4 ± 2.7) nm in the

presence of 100 mM NaCl. The presence of sufficiently high concentration of NaCl (100 mM)

appears to reduce the thickness of electric double-layer on the surface of nanoparticles and

decrease the zeta potential below its critical point, leading to aggregation of nanoparticles.

We characterized the size of Ag nanoparticles using HR-TEM and DLS before and after

incubating with egg water for 120 hr, showing that the size of nanoparticles remained

unchanged with an average diameter of 11.6 ± 3.5 nm.
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Furthermore, we characterized the optical properties of individual nanoparticles using SNOMS

(Figs. 1: C–F). A representative optical image of single nanoparticles in Fig. 1C illustrates that

the majority of nanoparticles are blue with some being green and few are red. The representative

LSPR spectra of single blue, green and red nanoparticles show a peak wavelength at 488, 532

and 607 nm (Fig. 1D), respectively. The correlation of the color distribution of individual

nanoparticles with their size measured by HR-TEM, shows the majority (74%) of single

nanoparticles with diameters of 5–15 nm are blue, 23% of single nanoparticles with diameters

of 16–30 nm are green, and a very small fraction (1%) of nanoparticles (31–46 nm) are red

(Fig. 1E). Thus, the color-index of single nanoparticles can be used as a size-index to directly

distinguish and determine the size of nanoparticles (5–46 nm) using SNOMS, even though the

size of nanoparticles cannot be directly measured due to the optical diffraction limit. We also

found that the distribution of color and size of nanoparticles remained unchanged as

nanoparticles were incubated in egg water for 120 hr, suggesting that nanoparticles are stable

(not aggregated) in egg water at single-nanoparticle resolution.

To determine the photostability of Ag nanoparticles, we acquired sequence images of single

Ag nanoparticles while these nanoparticles were constantly radiated under a dark-field

microscope illuminator (100 W halogen) for 12 hr. The illumination power at the sample stage

(focal plane of dark field) was 0.070 ± 0.001 Watt. Representative plots of scattering intensity

of single nanoparticles and background (in the absence of nanoparticles) versus illumination

time in Fig. 1F indicate that the scattering intensity of individual single nanoparticles remains

unchanged over 12 hr, showing that single Ag nanoparticles resist photodecomposition and

blinking. Note that the small fluctuations of intensity of single nanoparticles (Fig. 1F: i) are

similar to those observed from the background (Fig. 1F: ii), suggesting that the intensity

fluctuations are attributable to the illuminator and the noise level of the CCD camera.

Probing diffusion and transport of single nanoparticles in cleavage stage embryos

Representative developmental stages of the zebrafish embryos in 120 hour-post-fertilization

(hpf) in Fig. 2 show the cleavage stage (8–64 cell stages), segmentation stage, hatching stage,

and pharyngula stage embryos, and a fully developed zebrafish in the absence of nanoparticles.

At the cleavage-stage (8–64 cell stage; 0.75–2.25 hpf) (Fig. 2A–B), embryos undergo dramatic

changes (e.g., rapid cellular division and distinct fate establishment) to lay down the foundation

for developing the different parts of organs and a variety of interesting but not yet well-

understood biochemical and biophysical events (e.g., cell migration signaling and embryonic

pattern formation) occur. This stage is crucial in development as the foundation and

organization of the embryos are being assembled.24, 25 Thus, it is important to understand the

diffusion and transport mechanisms among the various parts of embryos at this particular stage.

The cleavage stage embryos may also be most sensitive to foreign substances26, offering an

ultrasensitive in-vivo model system to study the biocompatibility and subtle effects of

nanoparticles on the embryonic development.

To study diffusion and transport of single nanoparticles into cleavage stage embryos, we

incubated Ag nanoparticles with the embryos and directly observed and characterized their

transport, showing that Ag nanoparticles (blue, green and red) transport into the chorionic space

(cs) via chorion pore canals (CPCs) and enter into the inner mass of embryo (ime) (Fig. 3 and

Movie 1–Movie 2). We used our optical imaging system to directly measure the diameters of

chorion pore canals, showing them to be approximately 0.5–0.7 µm in diameter with distances

between the centers of two nearby chorion pore canals are at ~1.5–2.5 µm, which agrees well

with those reported using TEM.27 To our knowledge, this study demonstrates for the first time

direct observation of chorionic pore canals of single living embryos using optical microscopy.

We show that the sizes of chorion pore canals are larger than the size of nanoparticles,
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permitting the passive diffusion of individual nanoparticles into the chorionic space of

embryos.

To determine the transport mechanism of Ag nanoparticles, we utilized the concept of 2D

mean-square-displacement (MSD) and diffusion models (e.g., directed, simple and stationary

Brownian diffusion)28, 29 to investigate each diffusion trajectory of single nanoparticles in

egg water, entry into embryos, and inside embryos. To follow the diffusion of single

nanoparticles inside various parts of embryos in real-time, we used real-time square-

displacement (RTSD) (diffusion distance at a given time interval), instead of average (mean)

of square-displacement over time, because the diffusion coefficient could vary as single

nanoparticles diffuse in embryos. This approach allowed us to probe the diffusion of single

nanoparticles and viscosity of the different parts of embryonic fluids (e.g., chorionic space,

inner mass of embryo) in real-time. The diffusion coefficient (D) of single nanoparticles in

simple Brownian motion is calculated by dividing the slope of a linear plot of real-time square-

displacement versus time by 4 (Note: RTSD = 4DΔt) (Fig. 4B).

Representative diffusion trajectories of single Ag nanoparticles trapped inside chorion pore

canals, in chorionic space and near the inner mass of embryo, and analysis of these diffusion

trajectories using the real-time square-displacement method are shown in Fig. 4. The results

illustrate that single Ag nanoparticles inside the chorionic space (either near the chorion layers

or inner mass of the embryo) exhibit simple Brownian diffusion (not active transport) with ~26

times slower diffusion rate (3×10−9 cm2/s) than those in egg water (7.7×10−8 cm2/s), showing

that single Ag nanoparticles diffuse into the chorionic space via passive diffusion and that the

viscosity of chorionic space is about 26 times higher than that of egg water.

As nanoparticles make several attempts to enter the chorion layers and inner mass of the

embryo, their diffusion patterns are restricted (Fig. 4B: a–i, steps in a-ii and a-iii), suggesting

that the nanoparticles dock into the chorion pore canals, which halts their normal diffusion. By

tracking the entry of individual nanoparticles into chorion pore canals, we measured the period

of time that individual nanoparticles stay in the pores, which ranges from 0.1 to 15 s.

We characterized the diffusion coefficient of blue, green and red nanoparticles in egg water

(Fig. 4B: b) to determine the possible variation of diffusion coefficients due to the different

sizes (radii) of single nanoparticles, showing simple Brownian diffusion with D of 8.4

×10−8, 6.0 ×10−8 and 5.5 ×10−8 cm2/s, respectively. The diffusion coefficients are inversely

proportional to their radius, as described by the Stoke-Einstein equation, D = kT/(6πηa),

showing that the diffusion coefficient (D) depends on the viscosity of medium (η) and the

radius (a) of solute (nanoparticle).30, 31 The diffusion coefficients of the given color (radius)

of nanoparticles in embryos were studied and compared with those in egg water, showing that

the various diffusion coefficients observed in three different parts of embryos (Fig. 4B: a) were

indeed attributable to the viscosity gradient inside embryos, but not the different radii of

individual nanoparticles.

Characterization of transport and embedded nanoparticles

Images of single nanoparticles transporting into the chorionic space were recorded using dark-

field SNOMS equipped with a color camera, instead of CCD, showing that nanoparticles of

multiple colors transport into the chorionic space (Fig. 5A). Note that single Ag nanoparticles

exhibit colors (LSPR), which depends on its size, shape and surrounding environments.14–

17 This feature allowed us to distinguish single Ag nanoparticles from any possible tissue

debris or vesicle-like particles in embryos, which do not exhibit surface plasmon and hence

appear white under dark-field microscope (Fig. 3 & Fig. 4). We found that the majority of

nanoparticles transported into the chorionic space and some of them overlapped with chorion

pore canals (Fig. 5A: a). The representative LSPR spectra (colors) of individual nanoparticles
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inside chorionic space (Fig. 5A: b) show similar peak wavelengths as those observed in egg

water in Fig. 1D. The results indicate that the majority of nanoparticles remained non-

aggregated inside embryos. Otherwise, we would have observed a significant red shift of LSPR

spectra of individual nanoparticles.

Although the majority of single nanoparticles can freely diffuse into embryos and remain non-

aggregated, some single nanoparticles stay in chorion pore canals for an extended period of

time. These trapped nanoparticles serve as nucleation sites and aggregate with incoming

nanoparticles to form larger particles (dark-red nanoparticles) (Fig. 5B), clogging chorion pore

canals and affecting the embryo’s transport. Note that, embryos at this developmental stage

are free of pigmentation.

As the cleavage (8-cell) stage embryos chronically treated with lower concentrations of Ag

nanoparticles (< 0.08 nM) completed their embryonic development at 120 hpf, we

characterized Ag nanoparticles embedded in fully developed zebrafish using SNOMS and

found that these Ag nanoparticles embedded in multiple organs (retina, brain, heart, gill arches,

and tail) of normally developed zebrafish (Fig. 6), demonstrating that Ag nanoparticles are

biocompatible to embryos at lower concentrations (< 0.08 nM). The LSPR spectra of these

embedded nanoparticles are similar to those observed in Fig. 5A:b. We also performed blank

control experiments by imaging 120-hpf zebrafish that developed in the absence of

nanoparticles and did not observe the signature LSPR spectra (color) of Ag nanoparticles in

these fully developed zebrafish.

Dose-dependent biocompatibility and toxicity

To determine the effect of dose of Ag nanoparticles on the embryonic development, we treated

the cleavage stage (8-cell stage) embryos chronically with various concentrations of Ag

nanoparticles (0 – 0.71 nM) and carefully monitored and characterized their vital

developmental stages (24, 48, 72, 96, and 120 hpf). The results in Fig. 7 show that

biocompatibility of Ag nanoparticles and the types of abnormalities in treated zebrafish are

highly dependent on the dose of Ag nanoparticles. In the presence of lower concentrations (<

0.08 nM) of nanoparticles, a higher percentage of normally developed zebrafish is observed

than that of dead and deformed zebrafish. Note that both normal and deformed zebrafish

developed from the cleavage (8-cell) stage embryos that had been simultaneously incubated

with the same nanoparticle solution. Thus, the results suggest that some embryos might be

more tolerant to the nanoparticles than others. The results also suggest that Ag nanoparticles

might affect the development of embryos stochastically due to the random diffusion of

nanoparticles.

As nanoparticle concentration increases, the number of normally developed zebrafish

decreases, while the number of dead zebrafish increases (Fig. 7A: a). As nanoparticle

concentration increases beyond 0.19 nM, only dead and deformed zebrafish are observed,

showing a critical concentration of Ag nanoparticles on the development of zebrafish embryos

(Fig. 7A). The blank (negative) control experiments, conducted by replacing nanoparticles with

the supernatant resulting from washing Ag nanoparticles, show that the survival rate of

zebrafish is independent of the dose of supernatant (Fig. 7A: b), demonstrating that residual

chemicals from nanoparticle synthesis are not responsible for the deformation and death of

zebrafish, but rather the nanoparticles that were used to treat the zebrafish embryos (Fig. 7A:

a).

The number of deformed zebrafish increased to its maximum as nanoparticle concentration

increased to 0.19 nM, and then decreased as nanoparticle concentration increased from 0.19

to 0.71 nM (Fig. 7A: c) because the number of dead zebrafish increased. Interestingly, the types

of viable deformities exhibit high dependence on the nanoparticle concentration (Fig. 7A: d).
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For example, the fanfold abnormality and tail/spinal cord flexure and truncation were observed

in zebrafish treated with all tested nanoparticle concentrations (0.04–0.71 nM) with the highest

occurrences at 0.19 and 0.38 nM, respectively. Cardiac malformation and yolk sac edema were

observed in zebrafish treated with the slightly higher nanoparticle concentrations (0.07–0.71

nM) with the highest occurrences at 0.66 nM. In contrast, head edema and eye deformity were

only observed in the higher concentrations of nanoparticles, 0.44–0.71 and 0.66–0.71 nM,

respectively. Among all types of observed deformities, finfold abnormality occurred at the

highest rate, followed by tail and spinal cord flexure and truncation, then cardiac malformation

and yolk sac edema, and finally head edema and eye abnormality, which were rarely observed

deformations of zebrafish and quickly led to zebrafish death.

Representative deformed zebrafish induced by nanoparticles are illustrated in Fig. 7B:b–g and

summarized in on-line supporting information (SI). In comparison with the normally developed

zebrafish in Fig. 7B-a, we found characteristics of finfold abnormality (Fig. 7B-b), tail and

spinal cord flexure and truncation (Fig. 7B-c), cardiac malformation (Fig. 7B-d), yolk sac

edema (Fig. 7B-e), head edema (Fig. 7B-f), and eye abnormality (Fig. 7B-g) of zebrafish that

developed from the 8-cell embryos treated chronically by Ag nanoparticles. Interestingly,

multiple deformities occurred in one zebrafish at the higher nanoparticle concentrations (> 0.38

nM). For example, in yolk sac edema zebrafish, we also observed tail/spinal cord flexure,

finfold abnormality, and cardiac malformation (Fig. 7B: c-iv & e-ii), head edema (Fig 7B: e-

ii, e-iv and f-ii), and eye abnormality (Fig 7B: g-i). These findings suggest that specific

embryonic developmental pathways might be co-regulated, and that some deformities (e.g.,

finfold, tail, spinal cord) are much more sensitive to the nanoparticles than others (e.g., head

edema, eye abnormality).

To determine the possible targets for further genomic and proteomic studies and evaluate the

toxicity of Ag nanoparticles against well-studied toxic chemicals, such as cadmium,

dichloroacetic acid (DCA), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and ethanol, we

compare the characteristics of deformation of zebrafish induced by Ag nanoparticles with those

generated by well-known toxic chemicals. We found that the observed finfold abnormality and

tail/spinal cord flexure and truncation induced by Ag nanoparticles (Fig. 7B: b & c) are similar

to those treated by DCA and cadmium32, 33, indicating possible common targets of

malformation during development. The observed cardiac malformation and yolk sac edema in

this study (Fig. 7B: d & e) are also similar to those treated with DCA and cadmium.32, 33 The

shrunken ventricular myocardium observed in cardiac malformed zebrafish induced by

nanoparticles (Fig. 7B: d) is similar to those treated with TCDD.34 Head edema and eye

abnormality in Fig. 7B: f & g-i have also been found in treatment of zebrafish with cadmium.
32

Although the eye malformation (a cycloptic eye development) had been observed in zebrafish

treated by ethanol,35 the deformation is unlike what we have observed (eyeless, no formation

of retina or lens) in Fig. 7B: g-ii. Thus, the eyeless deformation (Fig. 7B: g-ii), an undeveloped

set of optic cups with no retina or eye lens, to our knowledge, is a new occurrence of

malformation that has not been reported previously. This abnormality may be related to the

nanoparticles disrupting the regulators or signaling cascades involved with the normal

development of the neural retinal layers and the lens of the zebrafish’s eye. A transcription

factor, Pax-6, has been studied and shown to affect the development of the eye retinal layers.

In Pax-6 mutants, the lens fails to develop.35, 36 However, another transcription factor, Six-6,

regulating neural retinal development in zebrafish has not been studied in detail and it may

also play the role in eye deformation as well.36 Further studies are needed to determine whether

Ag nanoparticles inhibit or regulate the expression of transcription factors (e.g., Pax-6 and

Six-6), leading to the eyeless deformation.
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Plausible explanations for the high dependence of embryonic abnormalities on the dose of

nanoparticles include the following: (i) The rate of passive diffusion (permeability) and

accumulation of nanoparticles in chorion pore canals and embryos highly depends on the

concentration gradient of nanoparticles. Thus, the dose of nanoparticles plays a vital role in

determining the rate and amount of nanoparticles that can penetrate into particular

compartments of embryos, and the rate and number of chorion pore canals blocked by the

aggregation of nanoparticles (Fig. 3–Fig. 5). (ii) The accumulated nanoparticles inside embryos

can also alter the charge, diffusion, and interactions of biomolecules (e.g., nucleic acids,

proteins such as transcription factors, signaling molecules) in a dose-dependent manner,

leading to interference or malfunctioning of signaling cascades.

Taken together, these results suggest that specific pathways of embryonic development respond

to Ag nanoparticles in a dose dependent manner, and demonstrate that the nanoparticles may

elicit unique response from embryonic neural development pathways. The study demonstrates

the possibility of fine-tuning the dose of nanoparticles to (i) selectively target specific pathways

to create particular phenotypes, (ii) selectively generate specific mutations in zebrafish, and

(iii) serve as potential therapeutic agents to treat specific disorders in embryonic development.

Unlike other chemicals, single nanoparticles can be traced and imaged inside developing

embryos and developed zebrafish with nanometer spatial resolution in real-time, offering new

opportunities to unravel the related pathways that lead to the abnormalities. Work is in progress

to identify the related specific pathways and signaling cascades at the genomic and proteomic

levels and to further explore potential therapeutic effects of nanoparticles.

Summary

In summary, we have designed, synthesized and characterized single nanoparticle optical

probes (individual Ag nanoparticles) for probing their transport, biocompatibility and toxicity

in early development of zebrafish embryos in real-time. We have shown that single Ag

nanoparticles resist photodecomposition and blinking and can be directly monitored in embryos

for an extended period of time. Furthermore, individual Ag nanoparticles exhibit size-

dependent LSPR spectrum (color), which permits us (i) to distinguish them from tissue debris

and vesicles in embryos, (ii) to directly image and characterize the sizes of individual

nanoparticles in solution and in living embryos in real time, (iii) to probe their diffusion,

transport mechanism and biocompatibility in living embryos in real time, and (iv) to investigate

the embryonic fluids (e.g., viscosity) at nm spatial resolution in real time. We found that

individual Ag nanoparticles can passively diffuse into developing embryos via chorion pore

canals, create specific effects on embryonic development and selectively generate particular

phenotypes in a dose-dependent manner. The early embryos are highly sensitive to the

nanoparticles, showing the possibility of using zebrafish embryos as an in vivo assay to screen

the biocompatibility and toxicity of nanomaterials. This study represents the first direct

observation of passive diffusion of nanoparticles into an in vivo system (an important aquatic

species), suggesting that the release of large amounts of Ag nanoparticles into aquatic

ecosystems (e.g., rivers) may have drastic environmental consequences, should the sizes of

nanomaterials remain unchanged during environmental transport. This study also represents

the first most rigorous study and characterization of nano-toxicity and nano-biocompatibility

ever performed by investigating the effect of highly purified nanoparticles in vivo in real time

and considering the effect of possible trace chemicals from nanoparticle synthesis.

Methods

Synthesis and characterization of silver (Ag) nanoparticles

Silver nanoparticles were synthesized by reducing a 0.1 mM silver perchlorate solution with

a freshly prepared ice-cold solution of 3 mM sodium citrate and 10 mM sodium borohydride
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under stirring overnight, and filtered through a 0.22 µm filter.11, 37 The nanoparticles were

washed twice with nanopure water using centrifugation to remove the chemicals involved in

nanoparticle synthesis, and the nanoparticle pellets were resuspended in nanopure water before

incubating with embryos. The washed Ag nanoparticles are very stable (non-aggregated) in

nanopure water for months and remain stable in egg water throughout the entire experiments

(120 hpf). The supernatants of nanoparticle solutions after the second washing were collected

for control experiments to study the effect of trace chemicals involved in nanoparticle synthesis

on the development of embryos. The concentration, optical properties, and size of nanoparticles

were characterized using UV-vis spectroscopy, dark-field single nanoparticle optical

microscopy and spectroscopy (SNOMS)10–12, high-resolution transmission electron

microscopy (HR-TEM) (FEI Tecnai G2 F30 FEG), and dynamic light scattering (DLS)

(Nicomp 380ZLS particle sizing system), respectively. Our dark-field SNOMS has been well

described previously for real-time imaging and spectroscopic characterization of single

nanoparticles in single living cells and for single molecule detection.10–12, 31, 38, 39 The

detector, EMCCD or LN back-illuminated CCD camera coupled with a SpectraPro-150 (Roper

Scientific), was used in this study. All chemicals were purchased from Sigma and used without

further purification or treatment.

To determine the photostability of single Ag nanoparticles, we acquired sequence images of

single Ag nanoparticles using EMCCD camera with exposure time at 100 ms and readout time

of 40.6 ms while these nanoparticles were constantly radiated under dark-field microscope

illuminator (100 W halogen) for 12 hr. The illumination power at the sample stage (focal plane

of dark field) is 0.070 ± 0.001 Watt. The integrated scattering intensity of single nanoparticles

and background (in the absence of nanoparticles) within a 20×20 CCD pixel area was measured.

The integrated scattering intensity of background is subtracted from that of same size of

detection area in the presence of individual nanoparticles to calculate the scattering intensity

of single nanoparticles. The experiments were repeated at least three times. The average

subtracted integrated intensity of the single nanoparticles and background was plotted as a

function of time (Fig. 1F). The fluctuations of intensity of single nanoparticles were used to

compare with those of background to determine the photostability (photodecomposition and

blinking) of single nanoparticles.

Breeding and monitoring of zebrafish embryos

Wildtype adult zebrafish (Aquatic Ecosystems) were maintained, bred, and collected, as

described previously.40 Embryos were collected and transferred into a petri dish containing

egg water (1.2 mM stock salts in DI water), washed twice with egg water to remove the

surrounding debris, and placed into 24-well plates with each well containing two embryos in

egg water. Each developmental stage of embryos in the wells was directly imaged by bright-

field optical microscopy using an inverted microscope equipped with a 4x objective and a

digital camera.

In vivo characterization and analysis of transport and dose-dependent biocompatibility and

toxicity of nanoparticles

Cleavage-stage living embryos (8–64 cell stage; 0.75–2.25 hpf) that had been incubated with

0.19 nM nanoparticles for a given time (0–2 hours) were either immediately imaged to

investigate the transport of nanoparticles into embryos or carefully rinsed with DI water to

remove external nanoparticles, and placed in a self-made microwell containing DI water to

image the diffusion and transport of nanoparticles inside the embryos in real-time using our

SNOMS.

To study the dose-dependent effects of nanoparticles on embryonic development, a dilution

series of washed Ag nanoparticle solutions (0, 0.04, 0.06, 0.07, 0.08, 0.19, 0.38, 0.57, 0.66,
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and 0.71 nM) were incubated chronically with cleavage (8-cell) stage embryos in egg water

for 120 hpf. Each experiment was carried out at least three times and total number of embryos

at 35–40 was studied for each individual concentration to gain representative statistics.

Nanoparticle concentrations were calculated as described previously.41 Embryos in egg water

in the absence of nanoparticles and in the presence of supernatant were placed in two rows of

the 24-well plates as control experiments of untreated embryos and probing the effect of

possible trace chemicals from nanoparticle synthesis, respectively. The embryos in the 24-well

plates were incubated at 28.5°C, and directly observed at room temperature using an inverted

microscope equipped with a digital camera at 24, 48, 72, 96, and 120 hpf.

Characterization of nanoparticles embedded inside embryos and fully developed zebrafish

To characterize the embedded nanoparticles in the tissues of treated zebrafish, we selected

living developed zebrafish that had been chronically incubated with a given concentration (0.04

nM) of nanoparticles for 120 hpf since their cleavage (8-cell) stage, and carefully rinsed the

zebrafish with DI water to remove external nanoparticles. The fixed zebrafish were prepared

using 10% buffered formalin via a standard histology protocol of tissue sample preparation.
42 The thin-layer microsections (~5 µm thickness) of its tissues were prepared by carefully

dissecting the tissues of interest (e.g., eye retina, brain, heart, gill arch, tail and spinal cord)

under microscopy using microtome. The embedded nanoparticles in the tissues were directly

characterized using SNOMS (Fig. 6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of optical properties and stability of Ag nanoparticles

(A) Representative UV-vis absorption spectra of 0.71 nM Ag nanoparticles well-dispersed in

egg water at 28°C for (i) 0 and (ii) 120 hours show that the peak absorbance and wavelength

at 396 nm remain unchanged for 120 hours;

(B) Representative HR-TEM images of Ag nanoparticles show the size and spherical shape of

single Ag nanoparticles. Scale bar = 5 nm;

(C) Representative dark-field optical image of single Ag nanoparticles shows the majority of

nanoparticles are blue with some being green and few are red;

(D) Representative LSPR spectra (color) of single Ag nanoparticles exhibit peak wavelength

at 452, 531, and 601 nm, respectively;
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(E) Histogram of size and color distribution of individual Ag nanoparticles shows the average

size of nanoparticles to be 11.6 ± 3.5 nm, with 74% of 5–15 nm (blue), 23% of 16–30 nm

(green), and 1% of 31–46 nm (red) Ag nanoparticles;

(F) Representative plots of scattering intensity of single nanoparticles (i) and background (ii)

versus illumination time show that single Ag nanoparticles resist photobleaching and blinking.
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Figure 2.

Optical images of the representative developmental stages of normally developed zebrafish in

egg water (in the absence of nanoparticles) show an embryo at (A) 1.25–1.50 hpf (8-cell stage);

(B) 2–2.25 hpf (64-cell stage); (C) 24 hpf (segmentation stage); (D) 48 hpf (hatching stage);

(E) 72 hpf (pharyngula stage); and (F) a completely developed zebrafish at 120 hpf. Scale bar

= 500 µm. hpf = hour post fertilization.
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Figure 3. Real-time monitoring and characterization of transport of individual Ag nanoparticles
in a cleavage-stage living embryo (64-cell stage; 2–2.25 hpf)

(A) Optical image of a cleavage-stage embryo shows chorionic space (cs), yolk sac (ys), and

inner mass of embryo (ime). The transport of single Ag nanoparticles at the interface of egg

water with chorionic space, interface of chorionic space with inner mass of embryo, and inside

chorionic space, as marked by B, C and D, are shown in Movie 1–Movie 3 of online supporting

information (SI), respectively. The snap shots of transport of single nanoparticles at the

interfaces of egg water/chorionic space and chorionic space/ inner mass of embryo are

illustrated in (B) and (C). LSPR spectra (color) of individual nanoparticles were used to

distinguish them from tissue debris or vesicles in embryos.
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(B) Sequence dark-field optical images illustrate the transport of single Ag nanoparticles, as

indicated by the circle, from the egg water (extra embryo) into the chorionic space via an array

of chorion pore canals (CPCs) highlighted by a rectangle.

(C) Sequence dark-field optical images illustrate the transport of single Ag nanoparticles, as

indicated by the circle, from chorionic space into inner mass of embryo. The straight and curved

dashed-lines illustrate the interface of inner mass of embryo with chorionic space, and chorionic

space with egg water, respectively.

The time interval of each sequence image in both (B) and (C) is 25 s. Scale bar = 400 µm in

(A) and 15 µm in (B–C).
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Figure 4. Characterization of transport and diffusion of single Ag nanoparticles in a cleavage (64-
cell) stage living embryo

(A) Diffusion trajectories of single Ag nanoparticles: (i) a red nanoparticle inside the chorion

layers, (ii) a blue nanoparticle inside chorionic space, and (iii) a green nanoparticle at the

interface of inner mass of embryo and chorionic space. Their real-time videos are shown in SI

(Movie 3–Movie 4).

(B) Plots of real-time square-displacement (RTSD) as a function of time:

(a) single nanoparticles from the diffusion trajectories shown in A (i–iii) illustrate that (i) a red

nanoparticle in a restricted and stationary diffusion mode with a diffusion coefficient (D) <

1.9×10−11 cm2/s, due to entrapment inside chorion pore canals; (ii) a blue nanoparticle in

chorionic space away from the inner mass of embryo; and (iii) a green nanoparticle inside

chorionic space near the surface of inner mass of embryo, both in a simple Brownian motion

with D of 3.4×10−9 cm2/s and 2.6×10−9 cm2/s, respectively;

(b) a representative single (i) blue, (ii) green and (iii) red nanoparticle in egg water. All show

simple Brownian diffusion with D of 8.4 ×10−8, 6.0 ×10−8 and 5.5 ×10−8 cm2/s, respectively.
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Figure 5. Characterization of Ag nanoparticles embedded in embryos using dark-field SNOMS

(A) Representative (a) color image and (b) LSPR spectra of single Ag nanoparticles embedded

in chorion layers show that single Ag nanoparticles with multiple-colors (blue, green, red) are

present inside chorion layers, and some nanoparticles are overlapped with the chorion pore

canals (note that an array of chorion pore canals are highlighted by a triangle). Scale bar = 1

µm

(B) Representative images of individual Ag nanoparticles embedded in the chorion layers

illustrate those Ag nanoparticles (as indicated by a circle) trapped in the chorion pore canals

outlined by ellipses. The CCD image in (a) is enlarged and shown in (b). The zoom-in color

image of (b) is shown in (c), indicating that the dark-red nanoparticles clog the chorion pore

canals. Scale bar = 10 µm in (a); 2 µm in (b). OC = outside chorion
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Figure 6. Characterization of individual Ag nanoparticles embedded inside a fully developed (120
hpf) zebrafish using dark-field SNOMS

(A) optical image of a fixed normally developed zebrafish. The rectangles (i–v) highlight

representative areas: (i) retina, (ii) brain (mesencephalon cavity), (iii) heart, (iv) gill arches,

and (v) tail.

(B) Zoom-in optical images of single Ag nanoparticles embedded in those tissue sections

outlined in (A). Dashed circles outline the representative embedded individual Ag

nanoparticles. Scale bar = 400 µm in (a); 4 µm in (b).
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Figure 7. Biocompatibility and toxicity of nanoparticles show high dependence on nanoparticle
concentration

(A) Histogram of distribution of normally developed ( ) and dead ( ) zebrafish, (a) versus

concentration of Ag nanoparticles; (b) versus concentration of supernatants resulting from

washing Ag nanoparticles (negative control); (c) histogram of distribution of deformed

zebrafish (120 hpf) ( ) versus concentration of Ag nanoparticles; (d) histogram of distribution

of five representative types of deformities of the zebrafish versus concentration of Ag

nanoparticles: finfold abnormality ( ), tail and spinal cord flexure and truncation ( ), cardiac

malformation ( ), yolk sac edema ( ), head edema ( ), and eye abnormality ( ).
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(B) Representative optical images of (a) normally developed and (b–g) deformed zebrafish:

(a) the normal development of (i) finfold, (ii) tail/spinal cord, (iii) cardiac, (iii–iv) yolk sac,

cardiac, head and eye; and (b–g) deformed zebrafish: (b) finfold abnormality; (c) tail and spinal

cord flexure and truncation; (d) cardiac malformation; (e) yolk sac edema; (f) head edema: (i)

head edema; (ii) head edema and eye abnormality; (g) eye abnormality: (i) eye abnormality;

(ii) eyeless. Scale bar = 500 µm. More deformed zebrafish observed from these experiments

are summarized in Table I of on-line SI.
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