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Michael Bachmann Nielsen2,4, Charlotte Mehlin Sørensen2 and Jørgen Arendt Jensen1

1Center for Fast Ultrasound Imaging, Department of Health Technology,

Technical University of Denmark, DK-2800 Lyngby, Denmark
2Department of Biomedical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark,

3BK Medical, DK-2730 Herlev, Denmark,
4Department of Diagnostic Radiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark

Abstract—Super Resolution (SR) imaging has the potential
of visualizing the micro-vasculature down to the 10 µm level,
but motion induced by breathing, heartbeats, and muscle con-
tractions are often significantly above this level. The paper
therefore introduces a method for estimating tissue motion and
compensating for this. The processing pipeline is described and
validated using Field II simulations of an artificial kidney. In vivo
measurements were conducted using a modified bk5000 research
scanner (BK Medical, Herlev, Denmark) with a BK 9009 linear
array probe employing a pulse amplitude modulation scheme.
The left kidney of ten Sprague-Dawley rats were scanned during
open laparotomy. A 1:10 diluted SonoVue contrast agent (Bracco,
Milan, Italy) was injected through a jugular vein catheter at
100 µl/min. Motion was estimated using speckle tracking and
decomposed into contributions from the heartbeats, breathing
and residual motion. The estimated peak motions and their
precisions were: Heart: Axial: 7.0 ± 0.55 µm, Lateral: 38 ± 2.5
µm, Breathing Axial: 5 ± 0.29 µm, Lateral: 26 ± 1.3 µm, and
Residual: Axial: 30 µm, Lateral: 90 µm. The motion corrected
micro-bubble tracks yielded SR images of both bubble density
and blood vector velocity. The estimation was, thus, sufficiently
precise to correct shifts down to the 10 µm capillary level. Similar
results were found in the other kidney measurements with a
restoration of resolution for the small vessels demonstrating that
motion correction in 2-D can enhance SR imaging quality.

I. INTRODUCTION

Ultrasound Super Resolution Imaging (SRI) has been in-

troduced over the last six years by a number of research

groups [1–7]. The method uses tracking of micro-bubble (MB)

contrast agents to visualize the micro-vasculature down to

vessel sizes of 2-20 µm, and should under ideal circumstances

be capable of depicting capillary networks. The images are

acquired over several minutes, over which time the object is

considered stationary. This is only possible for fixated objects

like a rat brain [5] or a fixated mouse ear [4]. Motion is

induced in the tissue from breathing, the beating heart, and

from muscle contractions [8], and it can be several times larger

than the resolution attainable in super resolution imaging. The

tissue motion is in all directions and also deforms the tissue, so

it is both spatially and temporally variant. It is, thus, important

to estimate the motion field and accurately time align it at the

precise spatial locations.

Lately, a number of groups have also addressed motion

correction to relax the requirement on tissue stationarity.

Hansen et al [9] showed that motion correction of data from

a rat kidney could increase precision from 22 to 8 µm for a

single vessel with the motion estimated at a single location

and for a single vessel example. In [10] motion effects were

reduced by excluding frames with a too high motion from

breathing yielding a resolution of 2.1 µm in the axial direction

and 6.1 µm in the lateral direction. Rigid motion was assumed

throughout the image.

In [11] a rigid motion correction for the whole image

was employed based on a phase correlation method, which

visually gave sharper images and more narrow vessels. Two

stage motion correction was applied in [8] with a combination

of affine registration for the global motion, and non-rigid

registration for estimating the local deformation of tissue. This

reduced the width of the micro-vessels by a factor of roughly

1.5. The approach was also simulated for three-dimensional

motion correction in [12]. Piepenbrock et al. [13] used a

flow approach to find the velocity field and suppress the

influence from the bubble response on the motion estimation.

The approach was tried on a single mouse tumor.

Recently, [14] investigated a more advanced imaging

technique by combining ultrasound microscopy and dual-

frequency imaging technique for obtaining a high signal-to-

noise ratio (SNR) and a high frame rate. Segments of 100

contrast images with a frame rate of 500 Hz were acquired,

followed by B-mode images with a frame rate of 5 Hz. The

B-mode frame rate was only sufficient to capture the motion

from breathing and more rapid movements had to be discarded.

None of the previous studies have addressed the importance

of the spatial and temporal difference between the motion

estimates in B-mode images and the contrast data, when the

two images are acquired at two different time points.

The approach taken in this paper is to estimate the full

motion for all frames without restrictions on the motion, and

then co-register the estimated tracks to a reference frame as

described in Section II. The paper is an expanded version

of the conference paper [15] with an optimized processing,

motion estimation as a function of both space and time, more

comprehensive statistics, and results from ten rats as described
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in Section III. The major contribution is to demonstrate the

importance of the spatial and temporal variation, how it

can be properly found through interpolation, and give the

precision of the motion components in vivo. The kidneys of

Sprague-Dawley rats were selected as scan objects, as they

both experience motion from breathing, the heartbeat, and

limited muscular motion making them suitable for controlled,

repeatable, and realistic experiments. The kidney is also a

highly perfused organ, which roughly receives 20% of the

volume flow for the rat with a vascular structure including

both large and small vessels, making it ideal for investigating

the possibility of identifying the whole vascular tree at all

levels.

The SR pipeline is validated on simulated data and on data

from the left kidney of Sprague-Dawley rats as explained in

Section IV. The final results demonstrate that resolution can

be maintained, although the motion is 5 to 10 times larger

than the precision attained. Finally the method is discussed in

Section V.

II. METHODS

This section introduces the various methods in the motion

correction SRI pipeline shown in Fig. 1. The non-linear

imaging scheme is introduced in II-A, and the basic processing

pipeline is presented. The method for determining motion and

correcting it is explained in Section II-C. Finally, the image

formation is presented in Section II-D.

A. Data acquisition and imaging scheme

The data was acquired using a modified bk5000 scanner

(BK Medical, Herlev, Denmark) equipped with a research

interface, developed specifically for this project, for the live

streaming of the data to a disk. This allowed long acquisitions

for 10 minutes of beamformed radio frequency (RF) data. A

”hockey stick” X18L5s transducer (BK 9009, BK Medical,

Herlev, Denmark) was employed for imaging. This linear array

probe with 150 elements covers an imaging width of 24 mm,

which was sufficient for scanning a full rat kidney. The height

of the aperture was 3.4 mm, and the elevation focus was at

20 mm for an elevation F-number (depth divided by active

aperture width) of 5.9.

A pulse amplitude modulation sequence was used for imag-

ing [16] with a transmit frequency of 6 MHz. It employed a

sliding aperture approach of 25 elements with a focal depth

of 10 mm. Each active aperture emitted three times, one with

full amplitude and two with half amplitude. This combina-

tion of emissions gave the amplitude-modulated response for

enhancing the non-linear signal from the contrast agent. The

active aperture then slided across the array for a total of

91 active sub-apertures. This is visualized in Fig. 2, and is

referred to as the contrast sequence. After this, a B-mode

image was acquired. It employed the same 91 active sub-

apertures, however emitted only once per active sub-aperture.

This resulted in 3 ·91+91 = 364 emissions per full sequence.

The transmit voltage was kept low with a corresponding

mechanical index (MI) of 0.2 to avoid disrupting the MBs.

Data acquisition

Contrast data B-mode data

Detection Motion Estimation

Motion Correction

Tracking

SR Image

Fig. 1. Block diagram of the processing scheme used in the paper. The blue
rectangle in the B-mode image indicates a local region used to estimate the
dynamics of the motion.

The pulse repetition frequency fpr f was 19.6 kHz for a frame

rate of 53.85 Hz.

The MB dilution of 1:10 was chosen for the individual

MBs’ point spread function to be distinguishable in each image

frame. Due to the contrast dilution, an acquisition time of 10

min was chosen, as pre-trials showed this scan duration was

needed to sufficiently fill the dense vasculature of the kidney

with MBs [17].

Three emissions of the contrast sequence corresponded to

the same image line as one emission in the B-mode sequence.

The time difference of formation of each line in the contrast

image and its next B-mode image is easily measurable from

Fig. 2. The time difference between the nth line of a contrast

image and the mth line of its next B-mode image is:

td(n,m) =
3Nlines −3n+m+1

fpr f

, (1)

where n,m ∈ {1,2, . . . ,Nlines} and Nlines is the number of lines

in the image. This time difference plays an important role in

applying the estimated motion to the correct positions in the

contrast image.

An example of B-mode and contrast images are shown in

Fig. 1. The B-mode image has a poor visualization of the

contrast agent, but clearly shows how the anatomical structures

move during the scans. The contrast image clearly shows the

different MBs with a high contrast. Thus, the combination of
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Fig. 2. Imaging scheme used in the in vivo studies. Each contrast sequence consisted of 3× 91 emissions followed by a B-mode sequence consisting of
91 emissions. While each image line, in the contrast and B-mode images refers to the same lateral position, there was a unique delay between the time of
formation of each line in the contrast images to the corresponding line of the B-mode image varying from 1/(4 fr) to 3/(4 fr).

Fig. 3. Estimated motion field for a single frame. The arrows indicate direction
and magnitude of the motion and were found from the interpolated motion
field.

the two images yields both anatomy motion and contrast agent

location.

B. Detection

Detection is required to extract the centroid of the MB’s

positions from the contrast images. This process consists of

two parts: 1) “SNR enhancement” by e.g. simple thresholding,

spatial filtering (e.g. Gaussian, Laplacian of Gaussian), spatio-

temporal filtering (e.g. singular value decomposition) [18,

19], or model fitting [20] and 2) “localization” using peak

detection, centroid estimation methods (.e.g. weighted cen-

troid) [20, 21], or learning-based methods [22, 23]. A single or

a combination of these methods can be employed for detection.

The contrast images only had a few quantization levels

yielding a low SNR. The detection threshold was experimen-

tally adjusted to reduce background noise, and the threshold

was 1.1 for these data sets, which had only positive integer

values up to 5. To improve SNR, a Gaussian filter was applied

to the contrast image after thresholding. The kernel size of

the symmetric Gaussian filter was 7 pixels with a standard

deviation of 1 pixel, where pixel size in the axial direction was

24 µm and 80 µm in the lateral direction. Then, the centroids

of the MB positions were estimated using the weighted-

centroid algorithm.

C. Motion estimation and correction

The tissue motion was estimated from the B-mode image

using speckle tracking [24] on the envelope data. Regions

in the images were correlated to corresponding regions in a

selected reference frame number, and motions in the axial and

lateral directions were found. Speckle tracking using the RF

data was also attempted, but the lateral sampling density was

too low to yield acceptable lateral estimates.

The entire kidney was in the field-of-view, and the motion

was not uniform across the whole organ as seen in Fig. 3.

Hence, two different spatial regions do not have the same

displacement, and a single local motion estimation cannot

be applied across the whole kidney. It was therefore divided

into smaller spatial blocks for block-wise processing. The B-

mode image was divided into 80% overlapped 3×3 mm2 local

regions, and the estimated motion signal was assigned to the

center of each region~rk = (zk,xk). The collection of all motion

signals in the form of ~F(tk,~rk) provided a discrete motion field

through the entire image. Fig. 3 illustrates a snapshot of the

motion field with arrows on top of the corresponding B-mode

frame. Notice how the estimated displacements vary spatially,

as opposed to a rigid structure.

The motion field was calculated with the following assump-

tions:

• The local regions were assumed small enough, so that

the motion was spatially invariant inside the regions.

This assumption depends on the type of material and

application. Although a kidney is not a rigid material,

the motion through a small local tissue region has the

same magnitude and direction.

• The frame rate was high enough to capture the fastest

variation of the motion in the temporal domain. The

acceleration of the motion depends on the source of the

motion, and the fastest source for the motion was the

heart. According to the Nyquist theorem, the frame rate

should be at least two times the maximum frequency in

the heartbeat spectrum to capture the fastest transitions

in the motion. This was investigated in Section IV-B.

The motion estimates were applied on the MB locations

found by the processing pipeline. The time point for the

motion depends on the location in the image, as a linear sweep

of the beams were conducted from the most positive lateral

locations to the most negative location as described in Section

II-A. The motion estimation only gave one estimate per frame,

and the motion time series was spline interpolated by a factor

of 20 to yield a higher time resolution. A linear interpolation

between these time points was then made to match the exact
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time location corresponding to the spatial location of the MB.

Motion from one frame to the next easily change with 100-

200 µm, and this time interpolation was therefore essential to

attain a co-registration better than 10 µm.
Finally a 2-D spline interpolation was performed on the

time interpolated motion field to yield the exact motion for

the spatial position of the detected MB, and this was used in

the motion correction to align the positions of the MB to the

reference frame. Motion estimates for one of the regions in

the medulla was used to study the dynamics and precision of

the motion estimation algorithm as described in Section IV-B.
Three different scenarios were investigated for image mo-

tion correction: 1) No motion correction where the images

were formed without compensating for motion. 2) Local

motion correction where a single region was selected for

motion estimation. The estimated motion for this region was

interpolated in time to account for the different motions at

different times. The exact acquisition time for the MB was

found, and the estimated motion for this time was used for

compensation. 3) Global motion correction entails estimation

of the motion in all image regions, time interpolation, and use

the motion found dependent on the MB image position and

thus time for acquisition.

D. Image formation

The next step was to generate MB tracks. The bubble

position was adjusted by the motion estimated in Section II-C,

and the motion corrected bubbles in the next frame were found

to determine the bubble closest to the current bubble. The

search for the next bubble was restricted to the region given

by vs/ fr, where vs was the maximum allowed MB velocity and

fr was the frame rate of the sequence. The maximum velocity

was selected to vs = 13.5 mm/s. The selected bubble was then

added to the track and removed from the list of bubbles in the

frame. The search was continued until no bubble satisfying the

criteria was found. Tracks with less than three bubbles were

considered noise outliers and were not stored.
Images were then formed from these tracks by inserting the

bubble tracks into a high resolution image with a pixel size of

5 µm. Each track was inserted into the images by drawing an

anti-aliased vector between the different positions in the track

using the algorithm developed in [25]. The vector was added

to the current content of the image, and this finally yielded a

bubble density image. The velocity of the bubbles was found

by taking the time derivative of track locations, which yielded

both the axial and lateral velocities. The velocity tracks were

inserted into an axial and a lateral velocity image by drawing

anti-aliased velocity weighted lines at the track positions. A

weighting image was also drawn, and the mean velocity at

each pixel in the velocity images were found by dividing with

the weighting image, if it was different from zero. The axial

and lateral velocity images were then combined to yield a

Vector Flow Image (VFI) of the bubble velocity. The resulting

images are presented in Section IV-C.

E. Resolution estimation

The Fourier ring correlation (FRC) criterion was used to

measure the resolution [26, 27]. Using the threshold criteria to

Fig. 4. Geometry of the in silico rat kidney phantom. The red structures have
flow up-wards and the blue down-wards.

define resolution is controversial [28], and this study therefore

uses a bit-based information threshold curves for the FRC

threshold level as discussed in [28]. The SR images are split

into two images by inserting every other track into an image.

The split images were normalized to their maximum intensity

values, and their intensity equalized using the imhistmatch.m

function in Matlab. The FRC curve of two images was calcu-

lated based on [26] without zero-padding, and the resolution

was estimated as the inverse spatial frequency, where the one-

bit threshold curve crossed the FRC curve [28].

III. EXPERIMENTAL DATA

The motion correction method was investigated using both

simulated data as described in Section III-A as well as in vivo

data from Sprague-Dawley rats as described in Section III-B.

A. Simulation phantoms

The linear part of the pulse amplitude sequence has been

simulated using Field IIpro [29–31] to generate reference data,

where the positions of the scatterers are known. The first

phantom contains a matrix of point targets located at a distance

of 2 mm in both the axial and lateral direction.
The second phantom was based on the dimensions of a rat

kidney and is shown in Fig. 4. It mimics the flow in small

arteries and veins, where the arterial flow was towards the

perimeter and the return venous flow was in the opposite

direction. A sparse distribution of scatterers were located

randomly in the individual tubes with parabolic velocity

profiles and a Gaussian distributed scattering amplitude. The

scatterers moved along the tube axis and were returned in the

adjacent tube, when they reached the tube’s end. The various

dimensions of the phantom are listed in Table I. A slice of

the tubes in the elevation direction of the probe was selected

in this simulation. Stationary scatterers surrounding the tubes

were also simulated to mimic the kidney tissue. The evolution

of scatterer position was given by

~r(i, t +Tpr f ) =~r(i, t)+Tpr f~v f (~r(i, t), t)+∆~rm(t),

where ~r(i, t) is the position of scatterer i at time t, Tpr f is the

time between pulse emissions, ~v f (~r(i, t), t) is the velocity of
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TABLE I
PARAMETERS USED IN THE IN-SILICON RAT KIDNEY PHANTOM.

Parameters Value

Tube length 10 mm
Tube radius 100 µm
Velocity 2 mm/s
Number of scatterers 20 per tube
Number of tube pairs 49
Angle between tube pairs 10o

Distance between pairs 1 mm

the scatterer due to the blood flow, and ∆~rm(t) is the motion

of the whole kidney. For the stationary scatterers surrounding

the vessel ~v f (~r(i, t), t) = 0.

A realistic motion ∆~rm(t) of the whole phantom was intro-

duced from a motion estimation on the in vivo measurement.

This ensured that both stationary tissue and tube locations

varied across the heart and breathing cycles for validation of

the motion estimation and motion correction algorithms. Only

a linear simulation of the returned signal was conducted, and

only the first harmonic was used in processing these data.

B. Animal preparation and experiment setup

The motion study was performed on 10 healthy male

Sprague-Dawley rats according to protocols approved by the

Danish National Animal Experiments Inspectorate. The ex-

periments were conducted at the University of Copenhagen.

The ethical standards of the university complies with those

of the National Institutes of Health and all procedures were

performed accordingly. The animals were housed at the animal

facility at the Department of Experimental Medicine. They

were held in a 12/12-hour light/dark cycle and could freely

access drinking water and a standard chow. Appropriately

trained caretakers were responsible for the animal welfare until

use.

Induction of anesthesia was done with 5 percent isoflurane.

After tracheotomy, the animals were connected to a ventilator

(Ugo Basile, Gemonio, Italy) with a respiration cycle of

72 respirations/minute. An adequate level of anesthesia was

maintained with 1-2 percent isoflurane, and the muscle re-

laxant Nimbex (cisatracurium, 0.85 mg/ml, GlaxoSmithKline,

London, United Kingdom) was continuously administered

at 20 µl/min. Jugular vein catheterization was done with

polyethylene catheters (PE-10), which were then used for

infusion of MBs, isotonic saline, and Nimbex. A polyethylene

catheter (PE-50) in the left carotid artery and a Statham P23-

dB pressure transducer (Gould, Oxnard, CA, USA) was used

to monitor the arterial blood pressure. With the animals in the

supine position on a heating pad, the left kidney was exposed

through open surgery. A metal retractor held the diaphragm to

expose the kidney further and reduce respiratory motion. The

transducer was placed on the lateral kidney surface and held

by a fixated stage. Gel was used for interface coupling. The

diluted (1:10) MBs (Sonovue, Bracco Imaging, Milan, Italy)

were injected at 100 µl/min., and the 10-minute data recording

started when the MBs started appearing on the scanner display.

Due to the floating of MBs in the syringe, a custom-built

device turned the syringe 180 degrees every 60 seconds.
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Fig. 5. Estimation of the motion from the B-mode image in the axial (top)
and lateral direction (bottom), where the red curve is the true motion and the
blue is the estimated motion.
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Fig. 6. Localization of a scatterer after motion compensation. The blue cross
indicates the true position and the red lines indicate the motion corrected
positions.

Each rat was scanned three times. First, a baseline scan

was conducted. Thereafter, five rats had the left renal artery

clamped, and five rats had the left renal vein clamped for

45 minutes. A second scan was performed at the onset of

reperfusion after the clamp was released. The last scan was

performed in a steady state, one hour after clamp release. The

rats were euthanized after the scans. The data has also been

used in [32] to characterize the effects of acute renal ischemia

on the renal vasculature using SR imaging.

IV. RESULTS

A. Simulation validation

The basic localization precision of stationary targets was

investigated using the matrix phantom. The axial bias is 0.48

µm and the lateral is -1.46 µm. The corresponding standard

deviations (SD) are 10.7 µm and 20.5 µm.

The motion of the in silico rat phantom has been estimated

for the B-mode data and is shown for the first 50 frames in

Fig. 5 in the axial (top) and lateral direction (bottom), where

the red curve is the true motion and the blue is the estimated

motion. The axial SD is 1.21 µm and the lateral is slightly

higher at 9.57 µm.

These motions estimates have been used to correct the

position of a non-flowing scatterer shown in Fig. 6, where

the blue cross shows the position of the scatterer in the first

reference frame. The location in the subsequent frames have

been corrected by the estimated motion and this yields the

tracks indicated by the red lines. The precision or SD of the

target location after correction is then 5.2 µm in the axial and
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the full experiment.
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Fig. 8. Spectral decomposition of the motion signal in the axial (top) and
lateral direction (bottom).

21.6 µm in the lateral direction with biases of -10.8 µm and

10.6 µm.

B. Precision of in vivo motion estimation

A single region in the top part of the kidney in the medulla

was selected for investigating the precision of the motion

estimation. The motion in both the axial and lateral directions

for all ten minutes of the experiment for a single rat is shown in

Fig. 7. This is a combination of motion from the beating heart,

the forced ventilation (breathing), smooth muscle contractions,

and over all movement, which cannot readily be separated out.

A Fourier decomposition gives the spectra shown in Fig. 8

with amplitudes in dB, where the axial spectrum is shown on

the top and the lateral on the bottom. Three distinct Fourier

series can be seen in both of them. First, a large component

around 0 Hz stems from the overall drift in the data. The

second series is from the breathing motion. This is controlled

mechanically at a fixed rate, and the harmonics of this motion

has a very narrow bandwidth around harmonics of the 70.5

Beats Per Minute (BPM), and more than 20 harmonics can be
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Fig. 9. Separation of the three motion components for the axial motion (top)
and the three components for the lateral motion (bottom).

seen in both spectra. The last series is from the heart motion,

which has a lower amplitude and the components are placed

around harmonics of the heart rate of approximately 353 BPM,

where 5 harmonics can be seen in the lateral motion signal.

The harmonics are spread over a larger bandwidth, due to the

physiological variation of the heart rate.

These three Fourier series can be separated to yield the

three independent motion signals as shown in Fig. 9, where the

top three graphs display the components for the axial motion.

The top graph is when the heartbeat components have been

kept by isolating the first four harmonics around the heart

rate. The middle graph is when isolating harmonics for the

breathing for the first 18 harmonics. The lowest graph is for

the residual signal, where the two other Fourier series have

been subtracted.

The repetitiveness of the heartbeat and the breathing can be

used for aligning all the responses and yield a mean response

and its precision. This is shown in Fig. 10 for the heartbeat

motion and in Fig. 11 for the breathing. In this example the

heart motion is around ±1µm (axial) and -15 to +20 µm

(lateral), and the precisions are 0.348 and 1.89 µm including

the physiological variation of the heartbeat. The breathing

motion spans from −20µm to +60µm with precisions of

0.271 and 1.64 µm. The residual motion shown in Fig. 9 is

larger with deviations up to nearly 100 µm. For vessels to align

up and maintain super resolution it is, thus, very important to
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Fig. 10. Mean heartbeat motion for the axial (top) and lateral (bottom)
direction. The blue solid line denotes the mean value across all cycles and
the dashed lines show one SD.

TABLE II
PRECISION ESTIMATES COMBINED FOR ALL RAT EXPERIMENTS.

ALL VALUES IN µM.

Motion type Minimum Maximum Mean

Heartbeat, axial 0.069 7.858 1.992
Breathing, axial 0.062 4.630 1.455
Heartbeat, lateral 0.431 19.923 6.562
Breathing, lateral 0.277 20.315 5.438

compensate for the combined motion.

The experiment has been repeated for the ten different rats,

with three measurements on each rat as explained in Section

III-B. A similar region and reference image were selected

for each measurement. All precision estimates for all ten rats

and all three experiments are shown in Fig. 12 for the four

different motion estimates and summarized in Table II. There

is a quite wide variation in precision with estimates reaching

20 µm. This happens in experiments where the motion is too

large for the speckle tracking to capture motion in part of the

images and can be due to motion in the out-of-plane direction,

or that the set-up has been touched inducing a significant

kidney motion. It can, however, be seen that the precision

of the motion estimation is around a factor of two lower

than the 10µm size of the capillaries and often a factor of
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Fig. 11. Mean breathing motion for the axial (top) and lateral (bottom)
direction. The blue solid line denotes the mean value across all cycles and
the dashed lines show one SD.

5 lower, indicating that a motion corrected image potentially

can visualize capillary flow.

C. Motion compensated images

The log-scaled intensity SR images without motion cor-

rection, with local motion correction, and with correction

using the motion field are depicted in Fig. 13 (top). The

corresponding velocity images are shown in the second row

with color indicating direction and intensity magnitude, e.g. a

yellow color indicates velocity from left to right in the image.

The third row shows the zoomed regions 1 - 4. Four markers

on the intensity and velocity images were selected exactly at

the same place to compare the intensity and velocity profiles

of the SR images. Polynomial fitted profiles to the pixel values

of the SR images are shown in the bottom row for comparing

diameter and flow velocities of the selected vessels. To remove

unrealistic tracks, the MBs that were not traceable for more

than 5 frames as well as those that had an overall displacement

less than 200µm for the whole track (stationary bubbles) were

removed. Only tracks with velocities from 0 to 10 mm/s are

shown.
The effect of motion correction was investigated by looking

at intensity and velocity profiles over the various cortical and
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Fig. 12. Precision estimates for the various rat experiments for the axial (top)
and lateral (bottom) direction.

medullary (inner part of the kidney) vessel structures shown in

region 1-4 in Fig. 13. The profiles of the exact same regions

on the images with and without motion correction are shown

in Fig. 13 (bottom).

The FRC curves for the images in Fig. 13 with one-bit and

half-bit information threshold curves are shown in Fig. 14,

where the left graph is without motion correction, middle is

with local motion correction, and right is with global motion

correction.

Fig. 15 shows the FRC resolution with one-bit threshold

for all 10 SR kidney images. It shows an improvement in the

image quality after motion correction using the motion field

both in the median and inter-quartile range.

V. DISCUSSION

In vivo measurements have been conducted on 10 partly

fixated rat kidneys using an amplitude modulation non-linear

imaging scheme. Estimating the motion induced from the

forced ventilation and the heartbeating showed that motion in

the 100-200 µm range in both the axial and lateral directions

were present. Such motion would limit the resolution in SR

imaging to 100-200 µm and the smallest vessel would not be

visible. Compensating the motion in reference to one selected

frame re-establishes resolution. In simulations the precision

of the target location after correction is 3.9 µm in the axial

and 17.7 µm in the lateral direction with biases of -12.4

µm and 6.5 µm. In general the lateral motion was estimated

with a lower precision than the axial motion. This is due to

employment of the signal envelope as the lateral density of

lines is too low to employ cross-correlation of the RF signals.

One obvious choice is to employ fast imaging like Synthetic

Aperture [33] or plane wave imaging [34] for high frame rates

with no restrictions on the lateral sampling density. The major

drawback of this is the increase in the amount of data, as the

full RF data for a number of transducer elements have to be

employed. This is currently difficult with the long acquisitions

used here (10 minutes), but should be implemented in future

scanners. The frame rate could also be increased, if the second

set of full emissions in the sequences shown in Fig. 2 could

be avoided. This is, however, currently not possible, due to the

processing and storage capabilities of the bk5000 scanner. The

long acquisition time can potentially be optimized by using the

quantitative assessment of vessel reconstruction suggested by

Dencks et al. [35].

The precision of the in vivo motion was also determined

by decomposing the motion signal into components from

breathing, heartbeat, and residual smooth muscle motion. The

breathing motion was in general larger than motion induced

by the heart. The precision was 217 nm (axially) and 1.64

µm (laterally). The heartbeat motion had a precision of 69

nm (axially) and 0.98 µm (laterally) including physiological

variation, and it is a factor of 10 lower than the target of 10

µm for visualizing capillary flow. For all rat experiments the

motion could be estimated with a precision from 69 nm to

20.3 µm from the linear B-mode image, with a mean axial

motion precision of 2.0 µm in the axial direction and 6.6 µm

in the lateral direction.

The effect of motion correction is shown in Fig. 13. Using

only a single motion correction for the whole image does not

fully correct for the motion, which can be seen by comparing

images in rows b and c for the zoomed regions. The effect

of motion correction on the alignment of small vessels was

especially prominent in the cortical (outer) part of the kidney

in the velocity images. The results show that having a motion

correction through the entire kidney will provide sharper

images and more smooth intensity and velocity profiles.

Both intensity and velocity for Profile 1 shows that the

diameter of the large vessel in the down-left side of the kidney

was reduced from 1.3 mm to 0.7 mm, and that profiles without

motion correction were widely spread, resulting in a blurred

image. This shows the reduction in the width of the vessel

by a factor of roughly 2. The velocity in this large vessel

was around 8 mm/s. Profile 2 was placed over two vessels

with a size of 500 µm. Profiles 3 and 4 were calculated over

four smaller vessels with a diameter of less than 50 µm and

250 µm, respectively. The intensity profiles did not show how

many vessels existed in the regions. However, the velocity

profiles showed the resolved small vessels. The velocity in

smaller vessels of the medulla (middle part of the kidney)

was measured below 1.5 mm/s, as demonstrated in Profile 3.

Profile 4 over a part of the cortical region showed a higher
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Fig. 13. Intensity and velocity SR images of a rat kidney (a) without motion correction, (b) with local motion correction, and (c) with correction using the
motion field are shown. The intensity images show on the top row is an accumulation of all bubble positions. The second row shows the velocity images with
color coded traces, where intensity is proportional to MB velocity and direction is shown as the color. Marked regions 1-4 are indicated in the top images and
the third row shows the zoomed in regions. Four markers on these images were selected exactly at the same place in the third row to compare the intensity
and velocity profiles of the SR images. Polynomial fitted profiles to the pixel values of the SR images quantify diameter and flow velocity of the selected
vessels in the bottom row.
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Fig. 15. Box plots of FRC metric with one-bit threshold for 3 methods and
10 SR images of different kidneys.

velocity of roughly 6 mm/s. The two last profiles showed how

having MB tracks, which are not compensated for the motion

appropriately, could lead to unusually narrow or wide vessels.

Estimation of microvascular blood flow deep inside organs

is difficult in vivo. Older studies using invasive video mi-

croscopy techniques have estimated the mean red blood cell

velocity in the descending (arterial) vasa recta at the tip of

the renal papilla (at the very bottom of the medulla) of rat

kidneys to be ≈1 mm/s [36–38]. This is in the range of the

velocity profile 3 from the medulla shown in Fig. 13. The

remaining velocity profiles include a mixture of differently

sized arcuate and cortical radial arteries and veins. Validation

of the velocities in the cortex will require separation and

categorization of the different types of vessels. For larger

vessels, spectral Doppler may help validate the SRI-derived

velocity estimations. For the cortical microvasculature valida-

tion is very challenging, as no other techniques are available to

make it noninvasively and in vivo. Different video microscopy

approaches have also been used in the cortex. One study in

vitro blood perfused kidneys from rats found a velocity of

≈10 mm/sec in the afferent arterioles [39]. Another study

estimated blood flow in different renal arteries and arterioles

of varying size in a split hydronephrotic kidney and reported

velocities ranging from 0.5-65 mm/s but did not describe

how the velocities related to vessel size [40]. Therefore, if

SRI can provide precise estimations of blood flow velocity

in different vascular segments of the kidney, it will fulfill an

unmet need and allow evaluation of intrarenal blood flow in

various physiological and pathological states.

The FRC resolution metric is shown in Fig. 15. The metric

is controversial because of its dependency on splitting the SR

image, threshold criteria, and pixel values (or the number of

scatterers) in each image. However, since the images from

10 rat kidneys were split, scaled, and thresholded the same

way, the metric is still helpful for quality assessment even

though they may not represent the actual resolution. The metric

showed a large improvement in introducing the local motion

correction and a less dramatic improvement, when employing

the global motion field.
The approach assumes that the out-of-plane motion is neg-

ligible. The probe used has an elevation F-number of nearly

6 at 20 mm giving that the elevation slice thickness is at least

6 λ = 1.2 mm, which is well above the estimated peak axial

and lateral motion of 100-200 µm. The change in amplitude

of motion in and out of the imaging plane will therefore be

negligible and not affect detection of the bubbles. Also note

that the detection of centroid removes the amplitude of the

bubble, so the variation in amplitude will not be seen by

the tracking algorithm. Attaining full super resolution in the

elevation direction will necessitate a full 3-D measurements

and must employ either sparse 2-D matrix probes [41] or row-

column probes [42, 43].
A few rat experiments showed a decreased precision of up

to 20 µm. This was due to parts of the estimated motion data

being out of the search range precluding motion correction.

This was found in three of the early rat experiments and might

have been from accidentally moving parts of the experiments,

and was only seen in experiment 1, 2, and 5. Excluding these

always yields a precision below 10 µm and often much lower,

indicating that this set-up and processing pipeline has the

potential of capillary flow visualization.

VI. CONCLUSION

A motion correction super resolution pipeline has been

presented and used on in vivo data from the left kidney of

Sprague-Dawley rats. It was shown that the tissue motion can

be reliably determined with a precision in the µm range, and

that is can be used for compensating for the motion from

breathing, heartbeating, and muscle contractions.
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