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Abstract

Background: Although it has been widely accepted that the primary somatosensory (SI) cortex plays an important 

role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the 

single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial 

area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique.

Results: In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV). Twenty-seven out 

of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive 

field) and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22%) and nociceptive 

neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11%) and nociceptive-

specific neurons (18/27, 67%). In the majority of these neurons, a proportion of the excitatory postsynaptic potentials 

(EPSPs) reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli 

applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious 

chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and 

the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were 

usually associated with potentiated EPSP amplitudes.

Conclusions: The present study provides evidence that SI neurons in deep layers III-V respond to the temporal 

summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these 

neurons may contribute to the processing of nociceptive information, including hyperalgesia.

Background
Many studies have reported that multiple cortical areas,

including the primary somatosensory (SI) cortex, are

involved in nociception [1-3]. The processing of the SI

cortex has been analysed by non-invasive imaging tech-

niques such as magnetoencephalography, positron emis-

sion tomography and functional magnetic resonance

imaging, and the human SI cortex responds to noxious

stimuli [4]. Extracellular unit recording techniques have

demonstrated that monkey and cat SI neurons in the

deeper lamina encode the intensity of noxious mechani-

cal, thermal, chemical stimulation [5-9], and that rat SI

cortical neurons respond to noxious mechanical stimula-

tion applied to the trigeminal receptive field and these

neurons are classified as nociceptive-specific (NS) or

wide-dynamic range (WDR) neurons (either noxious or

non-noxious stimulation-responding) [10-12]. Although

it has been accepted that the SI neuron plays an impor-

tant role in the sensory discriminative aspect of pain per-

ception [6,9], the mechanism of pain processing in the SI

neuron is still unknown, unlike tactile-sensory process-

ing. In particular, imaging and extracellular recording

methods are not applicable for revealing the mechanisms

of synaptic transmission at the single neuron level.

Transient receptor potential ankyrin 1 (TRPA1) is a

member of the TRP superfamily of ion channel proteins

which have been implicated in thermo-, chemo- and

mechano-sensation [13-17]. It has recently been demon-

strated that inhibition of TRPA1 function reduces

mechanical hypersensitivity produced by inflammation
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[15,17]. The chemical irritant, mustard oil (MO), is an

agonist of TRPA1 [13,18] and has long been known to

activate somatosensory neurons, resulting in acute pain

and neurogenic inflammation through peripheral release

of neuropeptides from the primary afferent nerve termi-

nal [19]. Concerning superficial spinal dorsal horn neu-

rons in the first relay station of the pain pathway, it has

been reported that peripheral application of MO pro-

duces a prolonged increase in the responses to high-

intensity mechanical stimulus applied to the receptive

field, and this effect is characterized by a depolarization

response as well as an increased amplitude of the excit-

atory postsynaptic potentials (EPSPs) evoked by mechan-

ical stimulation [20]. There is evidence that the

application of MO into several orofacial tissues induces

hyperexcitability of the trigeminal spinal nucleus caudalis

neurons, corresponding with trigeminal hyperalgesia [21-

24]. A previous study has clearly demonstrated that a sig-

nificantly increased pinch-evoked responsiveness of SI

neurons occurs after carrageenin-induced hindpaw

inflammation in a single unit recording [25]. From these

observations, we hypothesized that SI neurons may con-

tribute to encoding the noxious stimuli applied to the

orofacial area in accordance with the temporal summa-

tion of EPSPs. To date, however, no studies have been

conducted to test this hypothesis

The aim of the present study, therefore, was to examine

whether noxious mechanical and chemical stimulation

applied to the orofacial area modulate the synaptic

response of SI neurons using in vivo patch-clamp tech-

niques, as modified by a previous study [26].

Methods
Experiments performed in the present study were

approved by the Animal Use and Care Committee of Nip-

pon Dental University and were consistent with the ethi-

cal guidelines of the International Association for the

Study of Pain [27]. Every effort was made to minimize the

number of animals used and their suffering.

Animal preparation

The experiments were performed on 21 male Wistar rats

(250-380 g body weight). They were initially anesthetized

with urethane (1.2-1.5 g/kg, ip). The animals were then

placed in a stereotaxic apparatus, and a partial cran-

iotomy was performed to expose the SI cortex (including

the barrel cortex) on the right side (3-6 mm lateral to the

midline, and from 0.5 mm anterior to 2.5 mm posterior to

bregma), as described in previous studies [11,28]. Follow-

ing removal of the cranial bone, enzymatic treatment of

the dura mater was initiated, using collagenase, in order

to obtain stable in vivo whole-cell recordings [26]. Briefly,

the 37°C enzyme solution (collagenase type II and XI, 50

mg/ml, 1:1) was applied with a small piece of filter paper

on top of the dura for 20-30 min. After treatment with the

enzymatic solution, the area was rinsed thoroughly with

warm physiological saline and the body temperature was

measured with a rectal probe and maintained with a

homeothermic blanket at 36.5 ± 0.5°C during recording.

Under urethane anesthesia, oxygen was supplied through

a nose cone as described previously [29]. Adequacy of the

anesthesia was determined by the lack of a response to

pinching a paw. Additional anesthesia was given when

pinching the paw resulted in a withdrawal reflex [30].

In vivo patch-clamp recordings from SI neurons

Whole-cell recordings were performed from the SI neu-

rons with a patch electrode (thin-walled borosilicate glass

capillary, resistance 7-12 MΩ) filled with an internal solu-

tion of the following composition (in mM): potassium

gluconate, 110; KCl, 20; HEPES, 10; EGTA, 10; MgATP, 2;

Na2ATP, 5; Na-GTP, 0.1; biocytin, 20; pH 7.3; with 100

μg/ml amphotericin B [31-33]. We conducted stable in

vivo whole-cell current-clamp recordings, as modified by

a previous study [26]. Briefly, while maintaining a positive

pressure, the electrode pipette was advanced into the cor-

tex, where close contact with a neuron was recognized by

an increase in the resistance of the electrode and/or a

sudden increase in the spontaneous discharge rate. At

this point the positive pressure was released and a small

negative pressure was applied. This often resulted in a

gradual entry into the cell interior, as indicated by a slow

increase in the membrane potential. After making a giga-

ohm seal (> 1 GΩ), access resistance was gradually

reduced by perforation (caused by amphotericin B), a

brief period of negative pressure as well as using a zap

input current to obtain the whole-cell configuration. All

in vivo data were collected when the access resistance of

the recording was < 50 MΩ [34]. Current-clamp record-

ings were conducted with an Axopatch 200B amplifier

(Molecular Devices, Foster City, CA, USA). Signals were

low-pass filtered at 1 or 5 kHz and digitized at 10 kHz. No

significant changes were found in access resistance

throughout the experiments. The input resistance was

calculated by injecting negative current (50-100 pA, 250

ms) into the soma, and determined the voltage drop after

current injection, as described in our previous studies

[31,32]. Data were stored on a computer disk for off-line

analysis. Drug effects were analyzed using one way analy-

sis of variance, followed by Dunnett's test (post hoc test).

P < 0.05 was considered statistically significant.

Noxious mechanical stimulation of orofacial area

Somatic receptive fields of the SI neurons were first

determined by applying non-noxious stimuli with a

paintbrush (< 150 mN) and response to noxious stimula-

tion was assessed by pinching the skin near a whisker pad

with forceps (calibrated forceps at an intensity of 4.0 N, 1-



Takeda et al. Molecular Pain 2010, 6:30

http://www.molecularpain.com/content/6/1/30

Page 3 of 10

3 s), a stimulus that evoked pain sensation when applied

to human subjects. The size of the mechanical receptive

field of neurons was identified by probing the skin with

von Frey filaments, as described in our previous study

[30].

Noxious chemical stimulation

In 4 neurons, we tested whether noxious chemical stimu-

lation by MO (allyl isothiocyanate, Sigma-Aldrich) alters

noxious mechanical stimulation evoked- and spontane-

ous- SI neuronal activities. In order to stimulate the noci-

ceptors in their receptive field, 10 μl of 5% MO in paraffin

oil was injected into the receptive field by means of a

blunt Hamilton syringe. After noxious chemical stimula-

tion of the receptive field, we evaluated the changes in

membrane potential, spontaneous, pinch-evoked dis-

charge rates and EPSP amplitude to noxious stimulation

at 5 min intervals for 40 min, since our previous study

indicated the duration of significant change in the

mechanical receptive field properties of upper cervical

spinal dorsal horn neurons was 40 min. In a control

experiment, vehicle (paraffin oil, same volume of MO)

was administered to the receptive field and any signifi-

cant change in SI neuronal activity was recorded for 60

min.

Histological identification of SI neurons

The location and morphological features of recorded SI

neurons were further confirmed in some instances by an

intracellular injection of biocytin (2% in the electrode

solution). At the end of experiments, the animal was

deeply anesthetized with supplemental urethane, and

perfused transcardially with heparinized saline in 0.01 M

phosphate buffered saline (PBS) followed by 4% para-

formaldehyde in 0.1 M phosphate buffer (pH 7.3). The

cortex was removed and incubated in 4%, 10% and 20%

sucrose solution for 3 × 5 min, 1 h and 2 h, respectively,

and then placed in 30% sucrose for incubation overnight.

The tissue was sectioned on a cryostat (Leica, Germany)

at a thickness of 80-150 μm. The sections were thor-

oughly washed in PBS followed by Tris-buffered saline

and were pretreated for 1 h in a 0.3% solution of Triton

X100 in PBS. Biocytin-labeled neurons were identified by

incubating the tissue overnight at 4°C in avidin-biotin-

horseradish peroxidase complex, diluted 1:500 in PBS.

The enzymatic reaction was revealed with diaminobenzi-

dine (0.06%) and H2O2 (0.003%) in Tris-buffered saline

for 15 min. Sections were rinsed and then mounted on

silan-coated glass slides. The sections were viewed and

photographed with a microscope (Leica, Germany).

Results
General properties of SI cortical neurons

Stable whole-cell patch-clamp (current-clamp) record-

ings were obtained from 63 SI neurons located in the SI

cortex which received sensory inputs from the contralat-

eral whisker pad area. Most of these neurons (61/63, 97%)

showed spontaneous discharges (Fig. 1A). As shown in

Fig. 1A, the background activity was entirely subthresh-

old in some neurons, consisting of composite EPSPs. In

the majolity of these neurons, a proportion of these

EPSPs reached the threshold, generating random dis-

charges of action potentials with an average frequency of

0.5-17 Hz (5.2 ± 1.9 Hz, n = 61). These SI neurons showed

oscillatory property (up and down states of membrane

potential at same frequency), as described in previous

studies [34]. All of the SI neurons examined had mem-

brane potentials more negative than -50 mV. The series

resistance was between 20 and 50 MΩ.

Response properties of SI neurons responding to noxious 

mechanical stimulation

Twenty-seven out of 63 neurons were identified in the

mechanical receptive field of the orofacial area (36 neu-

rons showed no receptive field) and they were classified

as both non-nociceptive and nociceptive neurons. A typi-

cal example of non-nociceptive neurons (low-threshold

mechanoreceptive [LTM]; 6/27, 22%) is shown in Fig. 2A.

These neurons responded to only non-noxious stimuli

(brush), with weak membrane depolarization. The noci-

ceptive neurons were further classified as WDR (3/27,

11%) or NS neurons (18/27, 67%); Fig. 2B shows a typical

example of WDR neurons. Both noxious and non-nox-

ious stimulation applied to the orofacial area evoked

spikes discharges with membrane depolarization. These

nociceptive neurons however were more sensitive to

pinch stimuli than brush stimuli. Since the present study

focused on the SI neurons encoding noxious stimulation,

we examined the characterization of NS neurons

responding to noxious stimulation of the orofacial area. A

total of 15 SI neurons were successfully identified by bio-

cytin injection. They were located at a depth of 750-900

μm, corresponding to layers III-V. Fig. 1B shows the loca-

tion of cell body of each type of neurons. A typical mor-

phological example of recorded NS neurons (pyramidal

neuron: characteristic apical and basal dendritic trunks,

7/9, 78%) identified by biocytin is shown in Fig. 1C.

While, a small number of NS neurons show morphologi-

cal characteristics of non-pyramidal (multipolar) neurons

(2/9, 22%). Also WDR neurons were identified in the

pyramidal (2/3, 67%) and non-pyramidal (1/3, 33%) neu-

rons. A typical example of noxious mechanical stimula-

tion-responding SI neurons (NS neurons) is shown in Fig.

2C. Noxious pinch stimuli applied to the orofacial skin

(blackened area) produced a barrage of EPSPs accompa-

nied by action potentials in SI neurons under current-

clamp conditions. The increased pinch-evoked discharge

frequency was due to temporal summation of EPSPs (Fig.

2C). These neurons did not respond to non-noxious stim-

ulation (brush) (Fig. 2C). The electrophysiological mem-
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brane properties (the resting membrane potential, input

resistance and spontaneous background activity) of each

type of neurons are summarized in Table 1. There is no

significant difference of membrane properties among

each types of neurons, as described in previous studies

using the spinal dorsal horn neurons [35,36]. Although in

this study, we found that both types of background firing,

such as regular and burst firing in the LTM, WDR and NS

neurons (for example, Fig 2A, regular firing; Figs. 2B, C,

bursting firing), the majority of NS neurons (12/18, 67%)

showed oscillatory bursting activity.

Response properties of nociceptive SI neurons responding 

to chemical stimulation applied to the receptive field

We next tested the effect of noxious chemical stimulation

of the receptive field on both spontaneous and noxious

pinch-evoked discharges. As shown in Fig. 3A, before

application of MO (10 μl of 5%), noxious pinch stimuli

applied to the orofacial skin produced a barrage of EPSPs

accompanied by action potentials in SI neurons. After

subcutaneous application of MO into the receptive field

area, membrane potential shifted depolarization and

spontaneous discharges of SI neurons gradually

increased. An example of the spontaneous discharges and

noxious pinch stimulation in response to MO application

is shown in Fig. 3B. As shown in Fig. 3B, the SI neurons

show clear oscillation which initiate bursting spike firings

after MO application. After MO administration, the

mean membrane potential in the SI neurons was signifi-

cantly decreased (10 min, -53.3 ± 1.2 mV before MO vs. -

39 ± 1.8 mV after MO, P < 0.05; Fig. 3C), and the mean

spontaneous discharge frequency of the SI neurons was

significantly increased (10 min, 5.3 ± 1.5 Hz before MO

vs. 23.1 ± 2.2 Hz after MO, P < 0.05). In a similar fashion,

the noxious pinch-evoked discharge rate was increased

after MO application (10 min, 24 ± 2.9 Hz before MO vs.

52.1 ± 5.3 Hz after MO, P < 0.05; Fig. 3D), and was

accompanied by augmented EPSP amplitudes. The mean

EPSP amplitude and noxious pinch-evoked discharge fre-

quency were significantly increased after MO application,

compared to before application (10 min, 10.7 ± 2.3 mV

before MO vs. 27.7 ± 5.3 mV after MO, P < 0.05; Fig. 3E).

The size of the receptive field was expanded after MO

injection (8.6 ± 2.3 mm2 vs. 16.8 ± 3.4 mm2, n = 4, p <

0.05). The MO-induced changes in membrane potential,

discharge rates and EPSP amplitude returned to control

levels within 40-50 min.

Discussion
Methodological considerations

In this study, we examined the synaptic response proper-

ties of SI neurons to noxious stimulation applied to the

orofacial area in urethane-anesthetized rats using in vivo

patch-clamp analysis. For obtaining stable in vivo whole-

cell recordings, we used a simple and effective method of

applying collagenase locally over the dura at the record-

ing site [26]. Since it is known that the dura acts as a

physical barrier and keeps the integrity of the cerebral-

spinal fluids and microenvironment surrounding the

Figure 1 In vivo patch-clamp recording from rat SI neurons. A: Typical example of spontaneous discharges of SI neurons. The excitatory postsyn-

aptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) are shown by fluctuations above and below the resting membrane potential. 

Arrow head shows resting membrane potential. B: Location of each type of SI neurons successfully identified by biocytin injection. LTM: low-threshold 

mechanoreceptive, WDR: wide-dynamic range, NS: nociceptive specific. Values in parentheses are the number of neurons. C: Typical example of a bi-

ocytin-injected noxious specific SI neuron in layer IV with spontaneous discharges. Right panel, higher-power photomicrograph of left.
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Figure 2 Response properties of SI neurons responding to noxious mechanical stimulation. A: Low-threshold mechanoreceptive (LTM) neu-

rons only responding to non-noxious stimulation (brush). B: Example of wide-dynamic range (WDR) SI neurons responding to both noxious and non-

noxious stimulation (blackened area). Arrow heads and broken horizontal line show resting membrane potential. C: Example of nociceptive-specific 

(NS) neurons - noxious pinch stimuli applied to the orofacial skin (blackened area) produced a barrage of excitatory postsynaptic potentials (EPSPs) 

accompanied by action potentials in a SI neuron under current-clamp conditions. This neuron did not respond to non-noxious stimulation (brush). 

Arrow heads and broken horizontal line show resting membrane potential.
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brain tissue, our approach using the retention of the dura

mater provides significantly improved stability, as well as

improved success in obtaining a high-quality seal. In

addition, we performed a rapid perforated patch-clamp

method, by using amphotericin B [31-33], to facilitate a

rapid reduction in access resistance (for the whole-cell

current-clamp recording). Indeed, we obtained the fol-

lowing results in this study: (1) All the SI neurons exam-

ined in this study had membrane potentials more

negative than -50 mV; (2) spontaneous EPSPs and IPSPs

were observed in most neurons recorded; and (3) the

series resistance was between 20 and 50 MΩ. When con-

sidering all these observations, our in vivo patch-clamp

recording techniques are valid for examining the synaptic

response properties of SI neurons in urethane-anesthe-

tized rats.

Synaptic response properties of nociceptive SI neurons

It has been previously demonstrated that monkey and cat

SI neurons in the deeper lamina encode the intensity of

noxious thermal stimulation [5-9]. Rat SI cortical neurons

also respond to noxious mechanical stimulation of the

trigeminal receptive field and these neurons are classified

as either NS or WDR neurons [10-12]. Recently, Peng et

al. [37] reported that peripheral noxious stimulation in

anesthetized rats produced an immediate electroenceph-

alogram desynchronization resembling cortical arousal,

while membrane potentials of SI neurons switched into a

persistent depolarization state. In this study, we found

that noxious pinch stimuli applied to the orofacial skin

near the whisker produced a barrage of EPSPs accompa-

nied by action potentials in SI neurons under current-

clamp conditions. Most of the neurons recorded in this

study showed that the characteristic of the pinch-evoked

increase in discharge frequency was due to the temporal

summation of EPSPs.

There is evidence that the primary sensory cortex

responds to noxious stimuli, as revealed by imaging

methods such as magnetoencephalography, positron

emission tomography and functional magnetic resonance

imaging [4]. Histological confirmation in our study

showed that noxious pinch-responding neurons were

located in the deeper layers III-V of the SI cortex. Major-

ity of NS and WDR neurons had morphological charac-

teristics indicative of pyramidal neurons, and some of

these neurons were found in non-pyramidal neurons, as

reported by previous studies [38,39]. This is also sup-

ported by evidence that NS neurons in the rat SI cortex

are found almost exclusively in layers V and VI [40]. Since

the location of nociceptive neurons is mainly concen-

trated in the deeper layer and these neurons do not

respond to non-noxious stimulation, it can be assumed

that functional pure-column nociceptive processing may

not exist, in contrast to the tactile information processing

system [6]. Actually, this is also supported by a human

study showing that nociceptive processing apparently

does not share the complex and hierarchical organization

of tactile processing that is required by our elaborate sen-

sory capacities [41].

Previously, Yoshimura et al. [42] reported that noxious

pinch stimulation near a whisker pad did not produce any

significant response in SI neurons located at 100 to 1000

μm from the surface of the cortex in urethane-anesthe-

tized rats. In the present study, only 33% (21/63) of the SI

neurons tested (at a depth of 750-900 μm) responded to

noxious stimulation applied to the orofacial area. It has

been shown that the spontaneous firing patterns and sen-

sory responsiveness of the rat somatosensory cortex

changes in a systematic way across progressive stages of

urethane anesthesia [43]. Thus, the difference between

our data and the previous report may be explained by a

different depth of anesthesia. Indeed, there is evidence

demonstrating that under light urethane anesthesia, SI

cortical neurons are closely related to the spike threshold,

exhibiting responsiveness to inputs from the thalamus

and neighboring cortical columns [44]. Other factors also

need to be considered - for example, the recording depth

and stimulation site contribute to differences in SI neu-

Table 1: Electrophysiological membrane properties of SI neurons.

Neuron type No. of neurons RMP (mV) Rin (MΩ) Spontaneous activity

Firing pattern Firing frequency (Hz)

LTM 6 -58.3 ± 3.5 34.1 ± 4.5 R (4), B (2) 2.6 ± 0.3

WDR 3 -55.1 ± 4.9 36.2 ± 3.1 R (1), B (2) 4.5 ± 1.2

NS 18 -61.5 ± 5.8 39.1 ± 5.2 R (6), B (12) 4.2 ± 0.8

LTM, Low- threshold mechanoreceptive; WDR, wide-dynamic range; NS, nociceptive specific. Resting membrane potential (RMP), the values 

reported refers to that taken during the hyperpolarized period (down-state) between ongoing spontaneous depolarization (up-state). The 

input resistance (Rin) was calculated by injecting negative current into the soma and determing the voltage drop after current injection. Firing 

pattern of spontaneous activity: R, Regular pattern; B, bursting pattern. Values in parentheses are number of neurons.
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Figure 3 Effect of noxious chemical stimulation of the receptive field on the spontaneous discharges and noxious pinch-evoked responses. 

A: Noxious pinch stimuli applied to the orofacial skin (blackened area) produced a barrage of excitatory postsynaptic potentials (EPSPs) accompanied 

by action potentials in SI neurons (NS-type). Blackened area indicates the location and size of the receptive field responding to noxious pinch stimu-

lation. Arrow heads show resting membrane potential. B: Example of responses of spontaneous discharges and of noxious pinch stimulation after 

subcutaneous injection of mustard oil (MO) into the receptive field area. Note that after MO injection (5 min), spontaneous discharges of SI neurons 

increased, lasting for 10-15 min. Noxious pinch-evoked discharge rate was increased and the response was accompanied by augmented EPSP ampli-

tudes. C: Change in the mean membrane potential of SI neurons after MO administration (10 min). *, P < 0.05. D: Change in the mean noxious pinch 

evoked discharge of SI neurons after MO administration (10 min). *, P < 0.05. E: Change in the mean noxious pinch evoked EPSP amplitude of SI neu-

rons after MO administration (10 min). *, P < 0.05.
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ron responses. However, further studies are needed to

clarify these possibilities.

In this study, we also found a higher proportion of NS

neurons than WDR neurons, as described in previous

studies using several anesthetic agents (e.g., pentobarbi-

tal, ketamine, urethane and halothane) [5-12]. Although

the precise reason for the difference between our data

and previous reports is unclear, the difference may be

explained by the different types of anesthetic agents and/

or the depth of anesthesia [43-45]. Another possibility is

the electrophysiological recording conditions, such as

extracellular unit recordings vs. in vivo patch-clamp

recordings.

Functional significance of SI nociceptive neurons

MO is an agonist of the TRP ion channel family member,

TRPA1 [13,18]. This agonist is known to activate soma-

tosensory neurons, resulting in acute pain and neuro-

genic inflammation through the peripheral release of

neuropeptides from the primary afferent nerve terminal

[19]. Kerstein et al. [17] recently reported that acute phar-

macological blockade of TRPA1 at the cutaneous recep-

tive field inhibits formalin-evoked activation and

markedly reduces mechanically-evoked C-fibre action

potential firings. They concluded that functional TRPA1,

at the level of the sensory afferent nerve terminals in the

skin, plays an important role in the responsiveness to

both noxious chemical and mechanical stimuli, including

acute and chronic pain [17].

Woolf and King [20] reported that in the spinal cord,

peripheral application of the chemical irritant MO pro-

duces a prolonged increase in the responses to low- and

high-intensity mechanical stimuli applied to the receptive

field and these effects are characterized by a depolariza-

tion response as well as increased amplitude of the EPSPs

evoked by mechanical stimulation. In agreement with

these findings, in the present study, after chemical stimu-

lation of the mechanical receptive field of SI neurons, we

observed the following findings: (1) the membrane

potential gradually shifted depolarization; (2) the rates of

spontaneous discharges gradually increased; and (3) nox-

ious pinch-evoked discharge rates increased and the

responses were associated with augmented EPSP ampli-

tudes. Previous studies have reported a significantly

increased pinch-evoked responsiveness for SI neurons

after carrageenin-induced inflammation [25,46], which is

in accordance with our findings. These results are quite

similar to the responsiveness of neurons located in the

ventrobasal nucleus of the thalamus [47]. Previous

reports have also shown that the application of MO into

several orofacial tissues induces hyperexcitability of the

trigeminal spinal nucleus caudalis neurons and these

changes contribute to the trigeminal hyperalgesia [21-

24]. In this study, we also found that under urethane

anesthesia the majolity of NS neurons (12/18, 67%) shows

oscillatory bursting activity associated with thalamo-cor-

tical activity [48] and these neurons show clear oscilla-

tion, which initiates bursting firing, after chemical

stimulation of the mechanical receptive field. Recent

human study shows that short-term sensitization of the

esophagus resulted in central neuroplastic changes (e.g.

evoked potential) involving the cingulate gyrus, which

also showed pathological activation in functional diseases

of gut, thus reflecting the importance of this region in vis-

ceral pain and hyperalgesia [49]. Our findings may indi-

cate that the sensitization of peripheral receptor triggers

an increase in the neuronal excitability of each relay sta-

tion of neurons as well as SI neurons, and as a result, the

increase of synaptic inputs of NS neurons in the SI cortex

subsequently results in the central sensitization (neuro-

plastic changes) of NS neurons in the SI cortex. Taken

together, these findings suggest that the excitability of SI

cortical neurons are associated with trigeminal inflam-

matory hyperalgesia which may be due to both the mech-

anisms underlying peripheral and central sensitization.

Our findings may have potential usefulness because

treatment for acute or chronic pain includes mechanical

hypersensitivity; however further studies are needed to

elucidate this possibility.

Conclusions
This is the first study to provide evidence that rat SI neu-

rons in deep layers III-V respond to the temporal summa-

tion of EPSPs due to noxious mechanical and chemical

stimulation applied to the orofacial area. These findings

suggest that rat SI neurons in the deeper layers contribute

to the processing of nociceptive information, including

hyperalgesia.
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