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Abstract 
 

The thousands of disease risk genes and loci identified through human genetic studies far outstrip 

our current capacity to systematically study their functions. New experimental approaches are 

needed for functional investigations of large panels of genes in a biologically relevant context. 

Here, we developed a scalable genetic screen approach, in vivo Perturb-Seq, and applied this 

method to the functional evaluation of 35 autism spectrum disorder (ASD) de novo loss-of-function 

risk genes. Using CRISPR-Cas9, we introduced frameshift mutations in these risk genes in pools, 

within the developing brain in utero, and then performed single-cell RNA-Seq in the postnatal 

brain. We identified cell type-specific gene signatures from both neuronal and glial cell classes 

that are affected by genetic perturbations, and pointed at elements of both convergent and 

divergent cellular effects across this cohort of ASD risk genes. In vivo Perturb-Seq pioneers a 

systems genetics approach to investigate at scale how diverse mutations affect cell types and 

states in the biologically relevant context of the developing organism. 
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Human genetics has now uncovered strong associations between genetic variants in tens 

of thousands of loci and complex human diseases ranging from inflammatory bowel disease to 

psychiatric disorders (Jostins et al., 2012; Schizophrenia Working Group of the Psychiatric 

Genomics, 2014; de la Torre-Ubieta et al., 2016). In particular, analysis of trio-based whole-exome 

sequencing (WES) has implicated a large number of de novo variants in contributing to risk of 

several neurodevelopmental pathologies, including autism spectrum disorders (ASD) (Sanders et 

al., 2012; Satterstrom et al., 2018). Compared to common variants identified by Genome-Wide 

Association Studies, such de novo risk variants often have large effect sizes, are highly penetrant 

and are in the gene’s coding region, thus providing a crucial entry point for disease modeling and 

mechanistic studies. However, a major challenge remains for functional genetics: the identification 

of the point of action of these risk genes, each of which can, in principle, affect any of a massive 

number of different tissues, cell types, and molecular pathways. High-resolution and high-content 

phenotyping methods to identify tissue- and cell-type specific effects of genetic perturbations are 

needed, as generating and analyzing individual knockout animal models for long lists of risk genes 

as a first line of functional investigation is prohibitively time consuming and costly. 

To address these challenges, we developed in vivo Perturb-Seq, a scalable, in vivo genetic 

screen, to investigate the function of large sets of genes at single-cell resolution in complex tissue 

in vivo. We applied in vivo Perturb-Seq in utero to study the effect of autism spectrum disorder 

(ASD) risk genes on mouse brain development. ASD comprises a broad collection of 

neurodevelopmental disorders with highly heterogeneous genetic contributions, including 

hundreds of highly penetrant de novo risk variant genes (Chen et al., 2015). Moreover, there is 

substantial diversity in the function of the gene products that risk genes encode, precluding a clear 

prediction about the underlying brain cell types, developmental processes, and molecular 

pathways affected during neurodevelopment (Mullins et al., 2016). By combining in utero genome 

editing in neural progenitors of the forebrain with postnatal single-cell RNA-Seq (scRNA-Seq), we 

studied how perturbing each of 35 ASD de novo variant genes affected brain development in a 

cell-type specific manner. 

 

In vivo Perturb-Seq to assess the function of ASD risk genes  

We chose ASD candidate genes from a recently published WES study of 11,986 cases with 6,430 

ASD probands, the largest published cohort in neural developmental disorder (NDD) and ASD 

genetics to date (Satterstrom et al., 2018) (Table S1). We initially prioritized 38 candidate genes 

(of which 35 were retained in the final analysis, Supplemental Information) that harbor a de 

novo variant specific to ASD patients within the broader class of neurodevelopmental disability 

(NDD) (Figure S1A, Supplemental Information, Table S1). These ASD risk genes are 

expressed in human brain tissue, as assessed by the Allen BrainSpan bulk RNA-Seq dataset 

(Miller et al., 2014); some are highly expressed at embryonic stages, and others highly expressed 

from early postnatal to adult stages (Figure S1B). Based on mouse cortical scRNA-Seq data, 

their orthologs are expressed in diverse cell types (Figure S2) (E18.5 data from the 10x Genomics 

public dataset, see Supplemental Information; P7 data from this work). Thus, these ASD genes 
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could in principle act in many different cell types and temporal frames, emphasizing the 

importance of using scalable methods to test gene function across a range of cell types and 

developmental events.  

For in vivo Perturb-Seq, we used Cas9-mediated genome editing (Adamson et al., 2016; 

Dixit et al., 2016; Jaitin et al., 2016) in a pooled approach to introduce mutations in each of the 

ASD risk genes within progenitor cells of the developing forebrain in utero, followed by scRNA-

Seq at P7 to read out both a barcode of the perturbation and the perturbed cell’s transcriptomic 

profile (Figure 1A). Specifically, we used a transgenic mouse line that constitutively expresses 

Cas9 (Platt et al., 2014), and delivered pools of gRNAs by lentiviral infection into the lateral 

ventricles of the developing embryo in utero. Each lentiviral vector contained two gRNAs targeting 

the 5’-end coding exons of one ASD gene and a blue fluorescent protein (BFP) reporter with a 

barcode corresponding to the perturbation identity (Adamson et al., 2016; Dixit et al., 2016; Jaitin 

et al., 2016). To minimize vector recombination, we packaged each lentivirus independently and 

then pooled them at equal titers. We injected a pool of lentiviruses with equal gRNA representation 

into the ventricular zone at E12.5 (Figure 1A). In this approach, lentiviral infection will label neural 

progenitors lining the ventricle, and since the virus integrates into the genome, their progeny will 

likewise be labeled by BFP and carry a perturbation barcode corresponding to the targeted ASD 

gene. The lentiviral administration allows a sparse labeling of less than 0.1% of cells in the cortex 

(Figure S3A-C). On P7, we micro-dissected and dissociated cortical and striatal tissue, FACS-

enriched the perturbed cells by selecting for BFP expression, and used massively parallel scRNA-

Seq to obtain each cell’s expression profile along with its perturbation barcode. The cell survival 

rate after FACS was 78%, and we confirmed a 40-70% frameshift insertion/deletion for each 

gRNA target among the infected cells (Figure S3D-E). 

In vivo Perturb-Seq targets diverse cell types without affecting overall cell composition 

Targeting of the gRNA library to the lateral ventricle of E12.5 embryos results in infection 

of neural progenitors of the cortex, striatum and hippocampus. This allowed us to examine the 

effects of each perturbation across a wide range of progeny cell types (i.e. projection neurons, 

interneurons, astroglia, oligodendroglia, etc.) from distinct brain regions. In agreement 

immunohistochemical analysis and scRNA-Seq showed that the Perturb-Seq vector was 

expressed across a variety of neuronal and glial cell types (Figure 1B, Figure S3A-B). 

We performed the experiment with 18 different cohorts of pregnant mice, for a total of 163 

embryos, each subjected to the entire pool of perturbations. This multiplexed experimental design 

allowed us to test the cell-autonomous effect of all perturbations against a negative control 

construct targeting the endogenous GFP in the Rosa26 locus, a construct that was included in 

the same pool thus minimizing batch-dependent variation (Figure S3F). After quality control, we 

retained for further analysis a total of 46,770 cells from the neocortex across 17 high-quality 

experimental batches, and 7,118 striatal cells from 6 experimental batches. We grouped the cells 

into major subsets using Louvain clustering (Blondel et al., 2008) and annotated them by known 

marker gene expression (Zeisel et al., 2018) (Figure 1D). We then focused on five broad cell 
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populations for downstream analysis: cortical projection neurons, cortical inhibitory neurons, 

astrocytes, oligodendrocytes, and microglia (thus excluding vascular, endothelial, hippocampal 

and striatal cells (Figure S3F)). After filtering some remaining low-quality cells in these groups 

(Supplemental Information), we retained 35,857 high quality cells (median of 2,436 detected 

genes per cell overall, and 4,084 genes in the projection neuron cluster (Figure S3G)). We 

subclustered each of these five major cell types separately and annotated biologically meaningful 

subclusters (Figure S6).  

Based on the perturbation barcodes from the lentiviral constructs, 92% (33,231 cells) of 

the cells in these five major cell types had at least one perturbation read assigned to them 

(Supplemental Information), and 50% had a single gene perturbation identity (Figure S4A-C, 

18,044 cells), reflecting the low multiplicity of infection (Figure S4D). We assigned 18,044 cells 

to a single perturbation at a median of 338 cells per perturbation. After excluding genetic 

perturbations with <70 perturbed cells detected, we retained 35 ASD risk gene perturbations in 

the final analysis. BFP from the lentiviral vector was robustly detected as one of the most highly 

expressed genes in all cells retained for analysis (Figure S4E), and the BFP detection rate in 

each cell type was correlated to the average number of genes detected (Figure S4F).  

Relative to the negative control (which targeted the GFP gene), ASD risk gene 

perturbations had a very modest effect on the composition of the five main cell types. Only loss 

of Dyrk1a had a significant effect on cell type composition, increasing the proportion of 

oligodendrocytes and reducing microglia [(FDR-corrected P<0.05 using Poisson regression 

(Haber et al., 2017)] (Figure 1D, Figure S5). 

ASD gene perturbations affect gene programs and cell states within and across sub-

populations of cells  

To assess whether molecular changes and alterations in cell state were caused by ASD 

genetic perturbations, we next defined modules of genes within each of the five cell types that co-

varied as a group across the cells within each cluster (Figure 2A). Such modules may reflect 

common biological processes (e.g., cell cycle, differentiation, cell identity) whose activity either 

varies naturally across the cells within a given subset (Bielecki et al., 2018; Smillie et al., 2019), 

and/or is affected by the introduced perturbation. As previous work has shown (Adamson et al., 

2016; Dixit et al., 2016; Jaitin et al., 2016; Duan et al., 2019), focusing on gene modules instead 

of individual genes provides more power to detect biologically meaningful perturbation effects 

using fewer cells than would be required for single gene-level analysis. To recover these gene 

expression modules, we applied two algorithms: Weighted Gene Correlation Network Analysis 

(WGCNA) and structural topic modeling (STM) (Supplemental Information, Figure S6-7, Table 

S2-3) (Roberts et al.; Langfelder and Horvath, 2008). As the modules selected by WGCNA were 

highly correlated with one or more topics (the STM analogue of modules) (Figure S7), we focused 

on 14 WGCNA modules extracted from the five major cell types. 

Within each cell category, some modules were specific to one subcluster within a cell type, 

whereas others ranged across cells in multiple subclusters, reflecting association with a specific 
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subtype or a cell state, respectively. For example, within the projection neuron cluster, some of 

the modules are specific to subclusters matching a subtype of projection neurons, Layer 4 

projection neurons (module PN1) (Figure 2B,C). Conversely, module PN2, associated with genes 

involved in neurite development and varied across cells in multiple subclusters, regardless of 

subtypes (Figure 2D). 

We next tested whether perturbation of individual ASD risk genes was associated with 

changes of expression in each module. For each of the 14 WGCNA gene modules, we fit a joint 

linear regression model to estimate the effect size of each perturbation on that module. This 

allowed us to measure how module gene expression in each perturbation group deviated from 

the GFP control group (Figure 2E). We estimated the significance of these deviations by 

permuting the perturbation labels across cells within each experimental batch separately and 

comparing the resulting effect size to that in the unpermuted data. To ensure that no single 

perturbation or batch had a dominant effect on the linear model, we down-sampled cells in each 

cell category such that no perturbation had more than two times the median number of cells over 

all perturbations (Supplemental Information).  

Perturbations in 15 ASD genes (Adnp, Ank2, Ash1l, Chd8, Ctnnb1, Gatad2b, Kdm5b, Mll1, 

Pogz, Pten, Scn2a1, Setd5, Spen, Stard9, and Upf3b) had significant effects across six modules 

(Figure 2E, circles, compared to the GFP control, FDR corrected P<0.05, Table S4): the 

projection neuron Layer 4 module (PN1), all three astroglia modules (Astro1, Astro2, and Astro3), 

the oligodendrocyte progenitor module 1 (ODC1), and the interneuron Ndnf+ module (IN1). 

Perturbation of three additional ASD risk genes, Ctnnb1, Dscam, and Setd2, resulted in nearly 

significant (FDR corrected P<0.09) decreases in the projection neuron neurite development 

module (PN2) (Figure 2D-E). This is consistent with previous work showing that Dscam regulates 

presynaptic assembly and arborization size in Drosophila sensory neurons (Kim et al., 2013), and 

that loss of function of Ctnnb1 signaling impairs synaptic vesicle diffusion, decreases vesicle 

number, and decreases dendritic arborization (Bamji et al., 2003; Yu and Malenka, 2003; Gao et 

al., 2007).  

We further used the non-parametric van der Waerden test to ask which modules had a 

significant amount of their variation across the relevant cell types explained by the ASD 

perturbations overall. The oligodendrocyte progenitor module (ODC1) was a significant hit (FDR 

corrected P<0.05), while two other modules, Astro2 and Astro3 (corresponding to astroglia 

progenitors and astrocyte activation, respectively), were nominally significant (P<0.05, FDR 

corrected P>0.05) (Figure S5C). In order to determine whether changes in module expression 

observed in neocortical cells may also occur in cells of other brain regions, we performed in vivo 

Perturb-seq in the striatum and analyzed a total of 7,118 cells (5,933 of which are in glia clusters) 

from 6 independent batches. We find that the direction of effect of most perturbations largely 

agrees with those in the cortical data (see Supplemental text and fig S10, Supplemental 

Information), indicating that at least some of the ASD gene perturbation effects appear to 

generalize in cells of more than one brain region  
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Collectively, the data indicate that a selected group of perturbations was able to affect 

specific gene expression modules with cell-type specificity and point to convergent effects on such 

modules by a subset of perturbations.  

Single perturbation of Ank2 confirms effect on interneuron gene expression module  

In our multiplex in vivo Perturb-seq results, Ank2 perturbation leads to an increase in the 

interneuron Ndnf+ module (IN1) (FDR corrected P<0.05, Figure S8). Ank2 encodes an ankyrin 

protein, which interacts with ion channels and can stabilize GABAergic synapses (Tseng et al., 

2015). To validate our finding, we tested this result in a simplex setting, by performing a single 

perturbation targeting either Ank2 or GFP (control), followed by scRNA-Seq of neocortical cells at 

P7, collecting 2,943 and 1,716 high quality cells, respectively.  

The individual simplex perturbation confirmed the results from the multiplexed in vivo 

Perturb-Seq screen. First, Ank2-perturbed cells were present across all cell types and their overall 

proportions were not significantly changed (Figure S8B). The IN1 module was strongly correlated 

with a subcluster of inhibitory neurons, which expressed Ndnf (Figure S8C,D), and within those 

cells Ank2 loss-of-function perturbation led to upregulation of the module (FDR corrected P<0.05, 

Figure S8E), confirming the in vivo Perturb-Seq result. 

The ASD risk genes Chd8 and Gatad2b alter gene programs in oligodendrocyte 

progenitors 

Chd8 and Gatad2b perturbations significantly decreased the expression of the ODC1 

module in the oligodendrocyte cluster (Figure 3A-D, FDR corrected P<0.05). The ODC1 module 

is expressed highly in cycling cells and oligodendrocyte precursor cells (OPC), and lowly in newly 

formed oligodendrocytes (nODC) and myelinating oligodendrocytes (mODC), suggesting a link to 

oligodendrocyte maturation (Figure 3A). 

We further investigated and validated this result by examining oligodendrocyte 

development in a Chd8 germline heterozygous mutant model (as homozygous mutation is 

embryonic lethal (Nishiyama et al., 2004)), using several orthogonal methods. First, we used in 

situ hybridization for two canonical OPC marker genes, Pdgfra and Cspg4, one of which (Cspg4) 

is in the ODC1 module. Both were downregulated in P7 Chd8+/- cortex (Figure 3E, Figure S9A-

C), consistent with our in vivo Perturb-Seq results. Immunohistochemistry against PDGFRA did 

not show significant differences in OPC cell numbers between the WT and Chd8+/- littermates at 

P7 and P12, also consistent with in vivo Perturb-Seq; however, cells positive for the myelinating 

protein MBP were increased in numbers and displayed elevated MBP protein levels in the Chd8+/- 

mutant in both P7 and P12 (FDR corrected P<0.05, nonparametric ANOVA test) (Figure 3F, 

Figure S9D-G). These results also agree with previous findings that Chd8 loss of function is 

connected to abnormal OPC development (Marie et al., 2018). Collectively these data indicate 

that in vivo Perturb-Seq can identify cell-type specific molecular changes that agree with single 

gene perturbations. 
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Discussion 

In vivo Perturb-Seq can serve as a scalable tool for systems genetic studies of large gene 

panels to reveal their function at single-cell resolution in complex tissues. In this work, we 

demonstrated the application of in vivo Perturb-Seq to ASD risk genes in the developing brain; 

more generally, this method can be applied across diverse diseases and tissues. 

ASD affects brain function profoundly, but its cellular and molecular substrates are not yet 

defined. The large number of highly penetrant de novo risk genes implicated through human 

genetic studies offer an entry point to identify the cell types, developmental events, and 

mechanisms underlying ASD origin. However, this requires scalable methods to define the 

function of genetic hits, with cell-type specificity. Here, we observed different cell types and 

processes affected by distinct ASD risk genes as well as distinct molecular pathways which are 

differentially affected across cell types. In addition to effects in neurons, oligodendrocyte 

development was affected by certain perturbations. Oligodendrocytes modulate and consolidate 

neural circuit refinement, and abnormal maturation of oligodendrocytes may be linked to long-

lasting changes in neural wiring and brain function (Bercury and Macklin, 2015). One of the risk 

genes, Chd8, encodes a protein that binds directly to b-catenin and negatively regulates the Wnt 

signaling pathway, which plays a crucial role in progenitor proliferation and differentiation in the 

forebrain (Sakamoto et al., 2000; Durak et al., 2016; Katayama et al., 2016; Platt et al., 2017). 

Our results showed that Chd8 modulates gene programs for oligodendrocyte differentiation and 

maturation, consistent with previously reported ChIP-Seq results showing that CHD8 interacts 

directly with OPC maturation genes in the neonatal stage (Marie et al., 2018; Zhao et al., 2018). 

Other cell types may be altered at different developmental stages, through cell-autonomous 

(intrinsic) or non-cell autonomous (extrinsic) mechanisms, which should be investigated further in 

the future.  

Although we focused on the neocortex in this study, in vivo Perturb-Seq can be applied to 

study gene functions systematically across other tissues, to reveal tissue-specific as well as 

broadly-distributed gene functions, and uncover both the impact of individual disease-associated 

genes and the overall set of processes that they affect. Our findings underscore the importance 

of using single-cell profiles as a rich, comprehensive and interpretable phenotypic readout. With 

advances in other single cell profiling approaches (e.g., single-cell ATAC-Seq (Rubin et al., 

2019)), single-cell multi-omics (Bian et al., 2018), and spatial genomics (Wang et al., 2018; 

Rodriques et al., 2019), we expect in vivo Perturb-Seq to be coupled in the near future with diverse 

readouts to better define the function of disease-risk associated variants from molecular 

mechanisms to non-cell autonomous effects in tissues. Spatial transcriptomics in particular should 

be well suited for use with in vivo Perturb-Seq, and should help uncover non-cell autonomous 

effects. In vivo Perturb-Seq can enable discoveries of pathways and cell types affected in 

heterogenous genetic pathologies, directing downstream studies and informing the development 

of refined models for genetic disorders and mechanistic studies as we move from genetic variants 

to function. 
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Figure 1. In vivo Perturb-Seq to investigate functions of a panel of ASD risk genes harboring de 

novo variants.  

(A) Schematics of the in vivo Perturb-Seq platform, which introduces mutations in individual genes 

in utero lentivirally at E12.5, followed by transcriptomic profiling of the cellular progeny of these 

perturbed cells at P7 via scRNA-Seq. (B) TSNE of five major cell types identified in the Perturb-

Seq cells.  (C) In vivo Perturb-Seq lentiviral vector with an mCherry expression starts within 24h, 

and can sparsely infect brain cells across many brain regions. Scale bar is 1000µm. (D) Cell type 

analysis of in vivo Perturb-Seq of ASD de novo risk genes. Canonical marker genes were used 

to identify major cell clusters (left), and cell type percentage representation in each perturbation 

group (right). Negative control (GFP) is highlighted by a black rectangle. 
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Figure 2. In vivo Perturb-Seq reveals cell-type specific effects of ASD risk gene perturbations.  

(A) Schematic illustration of the Perturb-Seq analysis pipeline, using co-varying gene module 

analysis in each cell cluster to estimate perturbation-associated effects on gene modules using 

linear modeling. (B) Subtypes of projection neurons (left), identified by expression of key marker 

genes (right). (C-D) Examples of projection neuron co-varying gene modules associated with 

Layer 4 projection neuron subtype identity and neurite development, respectively. (E) ASD risk 

gene perturbation effects in different WGCNA gene modules compared to GFP controls. Dot color 

corresponds to effect size, dot size corresponds to log(P-values). Module gene lists are in Table 

S2. P-value was calculated using a permutation-based approach; Padj was calculated using 

Benjamini & Hochberg FDR correction. 
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Figure 3. Perturbation effect in oligodendrocytes and validation in Chd8+/- mouse models.  

(A) TSNE of oligodendrocyte subtypes from the Perturb-Seq data. (B) The ODC1 gene module 

expression score in each cell (left) and in each subcluster (right). (C) Average expression of genes 

in the ODC1 gene module (by row) in each perturbation group (by column), scaled by row. (D) 

Effect size of each perturbation on the ODC1 gene module compared to the control group. Error 

bars represent 95% confidence intervals. (E) In situ hybridization for Pdgfra, a marker of 

oligodendrocyte precursor cells (OPC), in the somatosensory cortex of P7 Chd8+/- and wild-type 

littermates. Right: quantification of Pdgfra expression in P7 cortex of Chd8+/- and wild-type 

littermates. Each dot represents the gene expression measurement from one cell; error bars 

represent standard error of the mean (n=2-3 animals per genotype). Scale bar on the left top 

panel is 1000µm, left bottom panel is 200µm and right panel is 50µm. (F) Immunohistochemistry 

for PDGFRA and MBP, markers for immature OPC and mature oligodendrocytes, and cell counts 

in the somatosensory cortex of P7 Chd8+/- animals and wildtype littermates. Scale bar is 250µm. 
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Supplemental Information 
 

Tables 

Table S1. ASD risk gene list and their effect in ASD/NDD patient cohort. 

Table S2. WGCNA gene module gene lists. 

Table S3. Structural topic modeling fitted model. 

Table S4. Effect size estimate of each ASD risk gene perturbation and nonparametric ANOVA 

analysis in the cortex in WGCNA modules and STM topics. 

Table S5. Effect size estimate of each ASD risk gene perturbation and nonparametric ANOVA 

analysis in the striatum in WGCNA modules. 

Table S6. gRNA design for the ASD risk gene perturbations. 

Table S7. Parameters used in Seurat for cell type clustering. 
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Figures S1-S10 

 

 

Figure S1. (A) The frequency of de novo loss-of-function variants in ascertained Autism Spectrum 

Disorders (ASD) and ascertained neurodevelopmental delay (NDD) cases for the 35 risk-

associated genes included the Perturb-Seq analysis. Q value was calculated based on the de 

novo and case control (dncc) data. This data comes from Satterstrom et al. (B) Gene expression 

of a panel of selected ASD de novo risk genes in human somatosensory cortex (S1C), striatum, 

and thalamus across the Allen Brain Atlas BrainSpan postmortem samples from various ages. 

Dendrogram indicates hierarchical clustering by the rows. 

  

Supp. Fig. 1 
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Figure S2. (A-B) Cell type clusters from E18.5 (public data from 10x Genomics) and WT P7 (data 
generated from this work) neocortex, as well as expression of cell type marker genes across 
identified cell clusters. (C) Expression of the 38 initially-selected risk-associated genes in the cell 
clusters from E18.5 and P7 wildtype cortex. 

Supp. Fig. 2 
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Figure S3. (A-B) Lentiviral injection at E12.5 can sparsely infect neurons (NeuN+), astrocytes 

(Glutamine Synthase [GS]+), oligodendrocyte precursor cells (PDGFRA+), and microglia and 

macrophages (IBA1+) in the P7 neocortex. Scale bar is 50µm. In vivo Perturb-Seq lentiviral vector 

with an mCherry expression allows immunohistochemistry and identification of the targeted cell 

types. (C) The proportion of live cells after FACS purification is 78.2%, and <0.1% of total 

dissociated cortical cells are BFP+. (D-E) Frameshift insertion/deletion rates of the targeted loci 

by CRISPR/Cas9 genome editing (D) in the infected cells in vivo, and (E) in mouse embryonic 

stem cells in vitro, for each gRNA. (F) Five major cell types from the Perturb-Seq cells, composed 

of 17 different libraries (independent experimental batches) (left) and representing 35 different 

perturbation groups (right). (G) Number of genes detected in each cell type in the Perturb-Seq 

single-cell RNA-Seq data. Quality control cutoffs for each cell type are marked by black vertical 

bars. 
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Figure S4. (A) The distribution of each perturbation vector in the lentiviral pool. (B) The distribution 
of cell numbers from each ASD perturbation group. (C) Estimated doublet score in the Perturb-
Seq data using the Scrublet package; the black vertical bar represents the cutoff above which a 
“cell” is declared as a doublet. (D) The distribution of the number of perturbation barcodes 
detected per cell. (E) BFP is one of the genes with the highest expression level, detected in all 
five cell types. (F) BFP expression level is correlated with the number of genes detected in each 
cell type. 

 

  

Supp. Fig. 4 
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Figure S5. (A) Proportion of the five major cell types in each perturbation group. (B) Poisson 

regression for differences of cell type composition compared to the GFP control group. The size 

of the dots corresponds to log p-value, the color to effect size. (C) Nonparametric ANOVA analysis 

shows that perturbation status explains a significant portion of the variation in one module, ODC1, 

and nominally significant amounts in Astro2 and Astro3, all of which are identified from glial 

clusters. 

Supp. Fig. 5 
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Figure S6. Subtypes of each major cell cluster, and feature plots of scores of gene modules 

identified by WGCNA, labelled by associated cell subtypes or biological processes. 

Supp. Fig. 6 
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Figure S7. Modules identified by structural topic modeling (STM) and their correlation with 

WGCNA modules. Gene score indicates the lift score from STM analysis; a gene with high gene 

score means it is highly representative of the given topic. 
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Figure S8. (A) Schematics of simplex Perturb-Seq of the GFP control and the ASD risk gene 

Ank2. (B) Cell type clusters from P7 neocortical simplex Ank2 Perturb-Seq. (C) Subtype clusters 

of inhibitory neurons from the simplex Ank2 Perturb-Seq. (D-E) Simplex dataset expression of the 

gene module IN1 identified in the pooled Perturb-Seq analysis.   

Supp. Fig. 8 
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Figure S9. (A) In situ hybridization for Cspg4, a gene in the ODC1 gene module and a marker of 

oligodendrocyte precursor cells, in the somatosensory cortex of P7 Chd8+/- animals and wild-type 

littermates. White dotted lines indicate individual Cspg4-positive nuclei. Scale bar is 50µm. (B-C) 

Quantification of Pdgfra expression in P4, P7, and P15 somatosensory cortex of Chd8+/- and 

wildtype littermates. Each dot represents the gene expression measurement from one cell; error 

bars represent standard error of the mean. (n=2-3 animals per genotype) (D-G) 

Immunohistochemistry of PDGFRA and MBP, markers for immature OPC and mature 

oligodendrocyte, and their quantification in the somatosensory cortex of P12 Chd8+/- and wild-

type littermates (n=3 animals per genotype). Scale bar is 250µm. 

  

Supp. Fig. 9 
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Figure S10. (A) Cell clusters from the striatal Perturb-Seq. (B) Number of genes detected in each 

cell type in the striatal Perturb-Seq data. (C) Left: Effect size for ASD risk gene perturbations in 

the striatum on the glial WGCNA modules identified in the cortical data, compared to the 

population mean. Size corresponds to log p-values, color corresponds to effect size. Right: 

ANOVA test identified modules significantly affected by the ASD perturbations, taken as a group, 

in the striatal dataset. 

Supp. Fig. 10 
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Methods 

 

Lentiviral vector construction and production 

The lentiviral vector was constructed following the Perturb-Seq publications (Adamson et al., 2016; 

Dixit et al., 2016; Jaitin et al., 2016). The backbone contains antiparallel cassettes of two gRNAs 

(Table S6) under mouse U6 and human U6 promoters, and EF1a promoter to express puromycin, 

BFP, and a polyadenylated barcode unique to each perturbation. Cloning of the 38 vectors were 

done individually. Association of each gRNA set and perturbation barcode was established by 

Sanger sequencing. The gRNA designs were designed using the online tool at benchling.com 

(Doench et al., 2016) (Table S6). Each lentivirus was packaged individually with the V2 helper 

plasmids (Joung et al., 2017), and the functional titer was measured individually through HEK293 

cell infection and FACS measurement of BFP+ population before pooling equally for 

ultracentrifugation. The functional titer of the final lentivirus was > 5 x 109 U/mL for in utero 

ventricular injection and transduction. 

 

In vivo Perturb-Seq experiment 

This analysis comprises 18 independent libraries of Perturb-Seq cells. In utero lentiviral injection 

into the ventricular zone was performed at E12.5 in Cas9 transgenic mice (Platt et al., 2014), and 

each library was made by combining the BFP+ cells from 1-3 litters (4-20 animals) of P7 animals 

harvested on the same day. 

P7 mice were anesthetized and sacrificed by decapitation, then disinfected with 70% ethanol and 

decapitated. The brains were quickly extracted into ice-cold PBS and cortices were micro-

dissected in ice-cold Hibernate A medium (BrainBits, #HA-Lf) with B27 supplement 

(ThermoFisher, #17504044) under a dissecting microscope. Tissue dissociation was performed 

with the Papain Dissociation kit (Worthington, #LK003152). Cortices were transferred into ice-cold 

papain solution with DNase in a cell culture dish and cut into small pieces with a blade. The dish 

was then placed onto a digital rocker in a cell culture incubator for 30 mins with rocking speed at 

30 rpm at 37°C. The digested tissues were collected into a 15 mL tube with 5 mL of EBSS buffer 

(from the Worthington kit). The mixture was triturated with a 10 mL plastic pipette 20 times and 

the cell suspension was carefully transferred to a 15 mL tube. 2.7 mL of EBSS, 3 mL of 

reconstituted Worthington inhibitor solution, and DNAse solution were added to the 15 mL tube 

and mixed gently. Cells were pelleted by centrifugation at 300 g for 5 mins at RT. Cells were 

resuspended in 0.5 mL ice-cold Hibernate A with B27 supplement (ThermoFisher, A3582801) and 

10% fetal bovine serum (FBS) and subjected to FACS purification. The FACS collected cells were 

sorted in cold Hibernate A/B27 medium with 10% FBS (VWR, #97068). After collection the cells 

were centrifuged and resuspended in ice-cold PBS with 0.04% BSA (NEB, B9000S) for single-

cell RNA sequencing library preparation (10x Genomics v2 chemistry). We performed the FACS 

purification and resuspension within 1.5 h while keeping the cells on ice to prevent necrosis, a 

crucial step for this experiment. 
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Shared perturbation phenotypes between cortical and striatal glial cells 

In order to determine whether changes in module expression observed in neocortical cells may 

also occur in cells of other brain regions, we tested whether the glia modules identified by in vivo 

Perturb-Seq in the neocortex were also affected in striatal glia cells. To this end, we collected 

striatal samples at P7, following Perturb-Seq lentiviral injection at E12.5, from 6 independent 

batches that passed quality control, and a total of 7,118 cells (5,933 of which are in glia clusters) 

with a median detection rate of 2,972 genes per cell. As before, we used Louvain clustering and 

known markers to identify and annotate the major cell categories as neurons, astrocytes, 

oligodendrocytes, and microglia (Figure S10, Table S5), as well as a cluster of cycling cells 

comprised of both interneuron progenitors and astroglia cells. Given the small number of cells in 

this test dataset, we included perturbations in the analysis if they had > 5 perturbed cells per 

perturbation group, recognizing that this could increase the noise in effect estimates.  

Using the same nonparametric ANOVA approach, we find that perturbation status explained a 

significant amount of the total variation in the astrocyte progenitor module (Astro3) in the striatal 

dataset, similar to the cortical dataset (FDR corrected P<0.01) (Figure S10, Figure 2F). The 

ODC1 module is nearly significant (P<0.06, FDR corrected P<0.11), likely reflecting limited power 

due to the small number of ODC cells profiled. Moreover, the direction of effect of most individual 

gene perturbations largely agreed with those in the cortical data. In particular, both Gatad2b and 

Chd8 perturbations showed decreased expression of the ODC1 module in this striatal data, as 

observed in the cortex (Figure S10). Thus, at least some of the ASD gene perturbation effects 

appear to generalize in cells of more than one brain region.   

 

 

RNA in situ hybridization 

RNAscope fluorescent in situ hybridization was performed on fixed-frozen tissue. Mice were 

anesthetized and transcardially perfused with ice-cold PBS followed by ice-cold 4% 

paraformaldehyde in PBS. Dissected brains were postfixed overnight in 4% paraformaldehyde at 

4°C, and cryoprotected in 30% sucrose. Brains were then embedded in optimal cutting 

temperature (OCT) compound (Tissue-Tek, #4583) and 15-20μm tissue sections were prepared.  

Multiplex RNAscope v1 was performed based on manufacturer’s instructions. Probes against the 

following mRNA were used: Pdgfra, Cspg4, and Fezf2 (ACDBio). Quantification were performed 

by StarSearch; gene expression copy number were normalized to pixel area 

(https://www.seas.upenn.edu/~rajlab/StarSearch/launch.html). 

 

Immunohistochemistry 

Mice were anesthetized and transcardially perfused with ice-cold PBS followed by ice-cold 4% 

paraformaldehyde in PBS. Dissected brains were postfixed overnight in 4% paraformaldehyde at 

4 °C, and cryoprotected in 30% sucrose. The brains were embedded in OCT compound (Tissue-

Tek, #4583) and 15-20μm tissue sections were prepared. The slides with tissue sections were 

incubated with blocking media (6% donkey serum in 0.3% Triton with PBS) for 1hr, then incubated 
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with primary antibodies in a 1:3 dilution of blocking media in PBS with 0.3% Triton overnight at 

4 °C. Slides were washed with PBS  with 0.3% Triton 4 times to remove the excess primary 

antibody. Secondary antibodies were applied at 1:800 dilution in blocking media and incubated 

for 2hr at room temperature. Slides were then washed 4 times with PBS with 0.3% Triton, and 

incubated with DAPI for 10 mins before mounting with Fluoromount G (Invitrogen, #00-4958-02). 

The antibodies and dilutions were: Mouse anti-NeuN antibody (mab377, 1:500; Millipore), Mouse 

anti-GS antibody (mab302, 1:500; Millipore), Goat anti-Pdgfra antibody (AF1062, 1:200; R&D 

System), Rabbit Iba1 antibody (019-19741, 1:400; Wako), Chicken anti-GFP antibody (ab16901, 

1:500; Millipore),  Mouse anti-Satb2 (ab51502, 1:50; Abcam), Rat anti-Ctip2 (ab18465, 1:100, 

Abcam), Rabbit anti-Sox6 (ab30455, 1:500; Abcam), Rat anti-Mbp (mab386, 1:100; Millipore). 

All images were acquired using either a custom-built spinning disk confocal microscope equipped 

with image acquisition NIS-Elements software, or a Carl Zeiss epifluorescent microscope with Zen 

software. 

 

Perturb-Seq profiling 

Single-cell RNA sequencing libraries were created using the Chromium Single Cell 3' Solution v2 

kit (10x Genomics) following the manufacturer’s protocol. Each library was sequenced with 

Illumina NextSeq high-output 75-cycle kit with sequencing saturation above 70%. Reads were 

aligned to the mm10 mouse genome reference using the Cell Ranger package (10x Genomics). 

 

To sequence the perturbation barcode, dial-out PCR was performed to extract the perturbation 

barcode in each cell. This is modified from Dixit et al (Dixit et al., 2016) to be compatible with the 

10x Genomic V2 chemistry instead of V1. The PCR product was sequenced with the 10x libraries, 

and demultiplexed to extract the perturbation information. 

 

Forward primer: 

CAAGCAGAAGACGGCATACGAGAT-TCGCCTTA-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-TAGCAAACTGGGGCACAAGC 

Reverse primer (i5): 

AATGATACGGCGACCACCGAGATCTACAC 

 

Data Analysis 

 

Data pre-processing 

BCL files were transformed into fastq files using the cellranger mkfastq command, using 

CellRanger V2.1.0. Bam files and expression matrices were generated from these fastq files using 

the cellranger count command, using force_cells=8000. 

 

Identification of perturbation barcode 
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In order to extract perturbation information from the dial-out reads, we modified code from the 

original Perturb-Seq paper (Dixit et al., 2016) to work with 10x V2 chemistry, and applied it to our 

data (original code at https://github.com/asncd/MIMOSCA). This resulted in a cell-by-perturbation 

UMI count matrix. To extract perturbation information from the 10x reads, a fasta file was first 

created with one entry for each perturbation, containing the sequence of the perturbation barcode 

and the surrounding sequence. This fasta file was turned into a STAR reference (Dobin et al., 

2013), referred to as the PBC reference. Unmapped reads containing either AGAATT or CCTAGA 

as a subsequence were extracted from the Cell Ranger bam file, and then mapped to this new 

reference. Low quality reads were filtered out using the following filters: (i) used “samtools view -

F 2820” to filter out unmapped, multimapped, and low quality reads from the PBC mapped bam 

file, (ii) removed reads with quality scores <255, (iii) removed reads whose 5’ end did not map 

between 655 and 714bp into the PBC reference, to help exclude reads that did not overlap enough 

bases in the perturbation barcode for proper identification of the perturbation, and (iv) removed 

reads whose edit distance from the PBC reference was >2. Reads were then assigned to the 

perturbation they mapped best. Cell barcodes and UMIs were extracted, and a cell-by-

perturbation UMI count matrix was created. This matrix was used to assign cells to perturbations 

in the same way as with the dial-out data. As with the dialout data, if a cell had one perturbation 

with >1.3x the number of UMIs assigned to it than the next best perturbation based on the 10x 

sequence, that cell was assigned to that perturbation in the 10x data; otherwise, the cell was 

declared to have multiple perturbations. We then only kept cells for which either i) the assigned 

10x and dialout perturbations agree or ii) the cell was assigned to a perturbation by one method 

but not assigned to a perturbation in the other. 

 

Cell type clustering analysis 

UMI count data was loaded into R and processed using the Seurat v 2.2 package (Butler et al., 

2018). Data were scaled to counts per million and log normalized. Cells expressing less than 500 

genes were removed. Variable genes were found using FindVariableGenes with x.low.cutoff=1 

for each batch separately. Genes that were found to be variable in at least 4 batches were 

combined into a final combined list of variable genes. The normalized data was scaled with 

ScaleData on the variable genes, regressing out the effects of nUMI, and PCA was performed. 

Clustering was performed with the FindClusters function (with default parameters, except for 

resolution=1.2 and using 28 PCs). tSNE plots were generated with RunTSNE (RunTSNE (with 

default parameters, except with 28 PCs and pca=F). Clusters were assigned to cell types based 

on marker genes from the literature, mousebrain.org (Zeisel et al., 2018), and DropViz (Saunders 

et al., 2018). For each cell type a more refined nGene cutoff was identified (Figure S3), and cells 

of that cell type with less than that filter were removed from further consideration. We focused 

only on cells of 5 key types (projection neurons, inhibitory neurons, oligodendrocytes, microglia, 

and astroglia) and removed the rest.  
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For subclustering individual cell types, the cells of that cell type were extracted from the larger 

Seurat object. Variable genes were chosen as above, and data was scaled with ScaleData, 

regressing out the effects of nUMI and batch, followed by PCA. Clustering was performed with 

FindClusters (with default parameters except for varying resolutions and number of PCs, Table 

S7). tSNE was performed with RunTSNE (with default parameters, except with different numbers 

of PCs and pca=F).  

 

Testing WGCNA Gene Sets 

WGCNA was performed for each cell cluster based on the published pipeline (Langfelder and 

Horvath, 2008). We manually removed modules that were driven by outlier cells. For a given cell 

type, each WGCNA gene set was input into moduleEigengenes to calculate a gene-set score for 

that set of genes. All cells without an assigned perturbation were removed.  

 

Linear regression was used to test the relationship between perturbations and WGCNA gene 

scores, correcting for batch and number of genes with the lm function in R, using the formula: 

 

Gene Score ~ perturbation + batch + nGene 

 

Associated p-values and effect sizes were extracted. In addition, a permutation-based approach 

was used to calculate an empirical p-value to ensure the model-based p-values reported by lm 

were accurate. Specifically, the perturbation labels of cells were randomly permuted within each 

batch, and the absolute effect size for each perturbation was calculated as above on this permuted 

data. This was repeated 10,000 times. The empirical p-value was the proportion of permutations 

(including the original data) with absolute effect size larger than that of the original data. FDR 

correction was performed using the Benjamini & Hochberg procedure. 

 

Structural Topic Modelling 

Structural topic modelling (STM) was performed separately on each cell type of interest using the 

STM package in R (Roberts et al.). Count data from cells of a given type were extracted from the 

Seurat object, along with corresponding meta data. Genes that occurred in <5% or >90% of cells 

were removed, as were mitochondrial and ribosomal genes. In addition, only genes that were 

expressed in at least one cell in all batches were retained in order to help reduce batch effects. 

The resulting count matrix was provided as input to the STM function, along with the meta data 

and with parameters LDAbeta=T, interactions=F. The formula used by the STM function was  

 

~ perturbation + batch + nGene  

 

This specifies a model that assumed topic proportions were dependent on perturbation, number 

of genes, and batch. We ran this model on each dataset with 5 topics. Top 10 genes for each 

topic were extracted with the labelTopics function. 
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To test for correlations between perturbations and topics, the theta matrix (the matrix containing 

proportions of topics per cell) was extracted from the STM matrix. For each topic, linear regression 

was used to test how the per-cell proportions for each topic related to perturbations (after setting 

GFP to be the reference perturbation), correcting for nGene and batch. In particular, the lm 

function in R was used, with the formula: 

 

Proportion Topic ~ perturbation + batch + nGene 

 

Effect sizes were extracted from the resulting lm object. An empirical p-value was calculated, as 

for WGCNA. FDR correction was performed using the Benjamini & Hochberg procedure.  

 

Cell Type Gene Expression 

Expression data for the E18.5 mouse brain (9k dataset) was downloaded from the 10X website 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neuron_9k). The 

WT P7 data were generated from this paper. The P7 fastq files were run through the standard 

Cellranger pipeline. The data from both datasets were loaded into Seurat separately and 

transformed to log counts per million. Cells with <500 genes were removed in both datasets. 

Variable genes were found using FindVariableGenes with x.low.cutoff=1, and the data was scaled 

with ScaleData, correcting for nUMI. PCA was performed, followed by TSNE and clustering with 

FindClusters. Cell types were identified with marker genes, and contaminating/ vascular cell types 

were removed.  

In each dataset MAST (Finak et al., 2015) was used to find the differentially expressed genes in 

each cluster, relative to all cells outside that cluster. This was done correcting for the scaled nUMI 

and removing genes that occurred in less than 10 cells. Average expression was calculated for 

each gene in each cluster. 
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