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Abstract2

Real-time automatic regulation of gene expression is a key technology for synthetic3

biology enabling, for example, synthetic circuit’s components to operate in an optimal4

range. Computer-guided control of gene expression from a variety of inducible promot-5

ers has been only recently successfully demonstrated. Here we compared, in-silico and6

in-vivo, three different control algorithms: the Proportional-Integral (PI) and Model7

Predictive Control (MPC) controllers, which have already been used to control gene8

expression, and the Zero Average Dynamics (ZAD), a control technique used to regulate9
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electrical power systems. We chose as an experimental test-bed the most commonly10

used inducible promoter in yeast: the Galactose-responsive GAL1 promoter. We set11

two control tasks: either force cells to express a desired constant fluorescence level of12

a reporter protein downstream of the GAL1 promoter (set-point), or a time-varying13

fluorescence (tracking). Using a microfluidics-based experimental platform, in which14

either glucose or galactose can be provided to the cells, we demonstrated that both15

the MPC and ZAD control strategies can successfully regulate gene expression from16

the GAL1 promoter in living cells for thousands of minutes. The MPC controller can17

track fast reference signals better than ZAD, but with an higher actuation effort due18

to the large number of input switches it requires. Conversely the PI controller’s perfor-19

mance is comparable to that achieved by the MPC and the ZAD controllers only for20

the set-point regulation.21

Keywords22
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24

Control Engineering aims at driving a physical system in order to attain a specific value of25

a quantity of interest (such as a boiler that needs to warm water to a desired temperature,26

or a car cruise-control maintaining a constant speed) despite the presence of disturbances.27

This is achieved by appropriately varying its inputs (switch on or off a heater in the case28

of the boiler, or accelerating or braking in the cruise-control) as a function of the difference29

between the measured value of the output and its desired target value (control error). At30

the core of most control schemes lies a negative feedback loop (1 ), as shown in Figure 1 -31

A. The variable to be controlled (system output y) is measured and its value is subtracted32

from the desired value (control reference r). The quantity that is obtained, the control error33
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e, is minimised by the controller, a set of logical and mathematical rules through which an34

appropriate value of the input u is chosen in order to guarantee that the output y matches35

the desired reference r.36

Feedback control has been extensively applied to control growing conditions of cells in37

chemostats in terms of temperature and/or CO2 and it is a current feature of bench-top and38

industrial chemostats (2 , 3 ). Only recently, however, the application of Control Engineering39

principles has been exploited to regulate molecular events in living cells, thanks to innovative40

microfludics and optogenetics platforms (4–8 ).41

In (4 , 5 ) we built a completely automated microfluidic platform to control in real-time42

gene expression in yeast cells. We demonstrated the ability of the platform to reach and43

maintain a desired value of gene expression, measured in terms of the fluorescence intensity44

of a reporter protein expressed from the endogenous GAL1 promoter.45

Other successful attempts to control gene expression, or even signaling pathways, have46

been described in the literature. They mainly differ in the control input (osmotic pressure,47

light, small-molecules) and the control strategy adopted. Optogenetics-based light inducible48

systems have been exploited to control gene expression in yeasts (8 , 9 ), to regulate intracel-49

lular signalling dynamics in mammalian cells (7 ), and to drive protein levels by using light-50

switchable two-component systems in bacteria (10 ). Microfluidic-based devices, allowing a51

tight control of cellular growing medium and the administration of inducer small-molecules,52

have been successfully employed to investigate synchronisation properties of synthetic bio-53

logical clocks in bacterial cells (11 ), to control the transcription from the HOG1 promoter54

in yeast S. Cerevisiae by varying the osmotic pressure(6 ) and, in our own work, to control55

transcription from the GAL1 promoter using Galactose and Glucose as input.56

The different control strategies proposed in the literature have never been compared57

in the same experimental model, thus making a direct comparison of their performance58

impossible. This is extremely important for practical applications where knowing advantages59

and limitations of each strategy can be useful, if not necessary, to select the most appropriate60
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and effective one. Here, we compared in-silico and in-vivo the performance of different61

control algorithms when applied to the problem of controlling gene expression from the GAL162

inducible promoter. In addition to control strategies that have already been described in the63

literature, namely the Proportional-Integral (PI) control and the Model Predictive Control64

(MPC), we also tested a different control strategy named Zero Average Dynamics (ZAD), an65

approach inspired by sliding control techniques (12 ) used to control power electronic systems,66

but that has never been applied to biological processes. Finally, practical considerations of67

the pros and cons of each control strategy are provided.68

Results and Discussion69

An experimental testbed for the assessment of control strategies.70

The GAL1 promoter is the most widely used inducible promoter in yeast genetics. Thousands71

of strains, each expressing a different yeast gene, are available to the research community,72

making this an attractive choice for practical applications of control engineering. The activity73

of the GAL1 promoter is governed by the presence of Galactose in the cells’ growing medium.74

This sugar is interpreted as a "switch on" signal for the expression of the GAL1 gene; when75

yeasts are fed with Glucose, the production of Gal1 protein is repressed (13 ). Yeast cells will76

first consume all the available Glucose in the medium before starting metabolising Galactose.77

Hence, the control input can either be Glucose (switch off signal) or Galactose (switch on78

signal), but not an intermediate concentration of the two, because cells will not respond to79

Galactose when Glucose is present.80

We thus decided to use the GAL1 promoter upstream of a reporter gene (Gfp fused with81

the Gal1 protein) as a testbed for comparing and assessing the performance of the different82

control strategies. When dealing with living cells, one of the major issues is represented by the83

uncertainty affecting transcriptional and translational processes, introducing a remarkable84

cell-to-cell variability in mRNA and protein production (14 ). Rather than trying to control85
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stochastic behaviour of cells, here we addressed the simpler problem of regulating the average86

fluorescence intensity expressed by all cells as the quantity to be controlled (y), thus averaging87

out the effects due to intrinsic and extrinsic sources of noise (15 ).88

To carry out in-vivo control experiments, we used the same integrated experimental89

set-up presented in previous works (5 , 16 ), comprising a microfluidic device, a time-lapse90

microscope, and a set of automated syringes, all controlled by a computer. As depicted in91

Figure 1 - B, the computer runs the control algorithm, which at each sampling interval: (i)92

processes images acquired by the microscope to estimate the fluorescence y; (ii) executes93

the control algorithm to derive the input u for the next sampling period; (iii) controls94

the automated syringes to provide the calculated input (i.e. Galactose or Glucose) to the95

cells. We already demonstrated that the average fluorescence level of a yeast population96

can be effectively regulated with this platform using a simple Proportional-Integral control97

strategy(5 ).98

Controlling gene expression from the GAL1 promoter: set-point and99

tracking control tasks.100

We compared the performance of three control algorithms (PI, MPC and ZAD) when per-101

forming two different tasks, as shown Figure 2: (i) set-point control, where the average Gfp102

fluorescence must reach and maintain a desired reference level, and (ii) signal tracking control103

where the average fluorescence must follow (or track) a desired time-varying signal. Specif-104

ically, in the set-point control (Figure 2 - A), the desired fluorescence r was set equal to105

50% of the initial average fluorescence expressed by the cells during the calibration phase of106

180 min. During the calibration phase, cells are kept in Galactose, in order to let cells adapt107

to the microfluidic environment, and to set the unit of measure of fluorescence, which may108

vary due to technical and biological variability in each experiment. In the signal tracking109

control, we used three different references r: (i) a descending staircase function (Figure 2110

- B) where each step lasts 500 min, beginning at 75% of the calibration phase average flu-111
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orescence, then stepping down to 50% and then 25%, (ii) a linear descending ramp of 1500112

min (Figure 2 - C) starting at the 100% of average fluorescence measured in the calibration113

phase, and decreasing down to 25%, and (iii) a sinusoidal wave of period T = 2000 min114

(Figure 2 - D) defined as s(t) = 0.5 + 0.25 sin
(
2π
T
(t− 100) + π

2

)
.115

Control algorithms.116

PI and MPC have been previously applied to control gene expression and protein activation.117

Toettcher and colleagues applied a Proportional-Integral (PI) control to regulate protein118

signaling in mammalian cells using light as control input in an optogenetics framework(7 ); we119

have applied the same PI control scheme to regulate gene expression from the GAL1 promoter120

in yeast using galactose and glucose as control input(5 ); Milias et al (8 ) implemented MPC121

to control expression from the GAL1 promoter in yeast using light as a control input to122

activate transcription. The same MPC strategy was also applied by Uhlendorf et al (6 ) to123

control expression from the HOG1 promoter in yeast using osmotic pressure as the control124

input.125

We therefore compared the performance of PI, MPC and a new ZAD controller when126

applied to the regulation of gene expression from the GAL1 promoter in yeast cells.127

We identified two major constraints affecting the control algorithms: the sampling-time128

and the admissible values of the control input. We set the sampling time T = 5 min, this is129

the time interval at which images are acquired from the microscope and it is an ideal trade130

off to avoid photo-toxicity and capture the dynamics of the Gfp protein expression (17 ). The131

control input u can assume only two values (Galactose-ON, Glucose-OFF). Thus, at each132

sampling time kT , the control algorithms can only choose the duration of Galactose pulse133

(ON), which can vary from 0 min to 5 min, and it is defined as the duty-cycle d = tON

T
, i.e.134

the percentage of the time interval during which Galactose is provided to the cells.135

The Proportional-Integral (PI) control algorithm uses the control error e(t) = r(t)− y(t)136

to choose, at each sampling time (kT ), the duty-cycle value (dk). Specifically dk has a value137
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proportional to the weighted sum of two contributions, one proportional to the actual error138

e(t) and the other proportional to the sum of the past values of the error (the integral term).139

The proportionality constants Kp and Ki are called respectively proportional and integral140

gains, and their values were chosen by simple empirical rules (Methods and Supporting141

Informations) (1 ).142

The Model Predictive Control (MPC) algorithm is an optimisation-based technique which143

uses a mathematical model of the process being controlled to predict the future values of the144

control error and to find the best value of the duty-cycle value dk that minimises it (Methods145

and Supporting Informations) (18 ).146

The Zero Average Dynamics (ZAD) algorithm relies on a feedback strategy devised for the147

regulation of power converters (19 , 20 ), it is a modified version of Sliding Mode Control (12 ).148

Specifically, the ZAD calculates, at each sampling time, the best value of dk which minimises149

the actual control error e(t) and its predicted future value (estimated by the derivative ė(t))150

over the next time interval (refer to Methods section and Supporting Informations for further151

details).152

Set-point control experiments153

We first tested in-silico the PI, MPC and ZAD control strategies described above, by sim-154

ulating the behaviour of yeast cells in a computer (Methods and Supporting Informations).155

In-silico results are shown in Figure 3. PI (Figure 3 A), MPC (Figure 3 B) and ZAD (Fig-156

ure 3 C) are able to reach and maintain the desired fluorescence value without exhibiting157

oscillations at steady-state. Performance indexes (ISE, IAE, ITAE in Figure 3 D) are of158

the same order of magnitude for all the control strategies; interestingly the ZAD controller159

is able to achieve satisfying results with a reduced number of input switches (five and six160

fold less than respectively MPC and PI). This is advantageous in the experimental setting161

because it reduces unnecessary stress to cells.162
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In-vivo control experiments, shown in Figure 4, mirror in-silico results, showing that the163

three strategies are indeed all able to reach and maintain the desired fluorescence level. As164

predicted by the in-silico simulations, the ZAD controller employs fewer Galactose pulses165

(Figure 4 C) and displays smaller oscillations around the set-point than the MPC feedback166

strategy (Figure 4 B).167

Signal tracking control experiments168

In-silico simulation of the descending staircase reference shows that the three control strate-169

gies have different performances. The PI is not able to properly follow the reference signal170

(Figure 5 A). This is to be expected, since the PI controller was designed specifically to solve171

set-point control tasks (1 ). The MPC control algorithm, with its intrinsic predictive abil-172

ity, achieves a good performance, specifically noticeable in the proximity of the steps’ edges173

(Figure 5 B). Indeed, the MPC is able to foresee changes in the reference signal and to adjust174

the control input accordingly, by starting to "switch off" the system in advance. The ZAD175

control algorithm (Figure 5 C) achieves satisfying results, comparable to the MPC controller176

(except in the proximity of the steps’ edges), but with a smaller number of Galactose pulses.177

In-vivo experiments for the descending staircase reference (Figure 6) confirm in-silico178

results. The PI controller (Figure 6 A) poorly tracks the reference r, despite the high179

number of input switches. The MPC, as already demonstrated in-silico, has a much better180

performance, quantitatively confirmed by the performance indexes (Figure 6 B and D). As181

in the case of the in-silico simulations, the ZAD controller (Figure 6 B and D) achieves a182

performance comparable to that of the MPC (even if not as good in the proximity of the183

steps’ edges) employing fewer Galactose pulses than the MPC.184

Because of the poor tracking results achieved by the PI controller, we further compared185

only the MPC and ZAD controllers when tracking the ramp and the sinusoidal signal. Both186

in-silico (Figure 7) and in-vivo (Figure 8) observations confirm that the ZAD controller is187

able to guarantee a performance (Figure 7 E and Figure 8 E) similar to that of the MPC188
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strategy, but again with a reduced number of control input switches.189

Conclusions190

Precise and quantitative regulation of gene expression from inducible promoters is a key tech-191

nology for current and future Synthetic Biology applications. It can be used to quantitatively192

characterise biological "parts" in a single experiment by generating a desired time-varying193

concentration of an effector protein and measuring the activity of the target. For example,194

the level of a Transcription Factor can be controlled to follow a descending staircase ref-195

erence while, at the same time, measuring the level of a report protein downstream of the196

promoter to be characterised, in order to derive a quantitative dose-response curve to be197

used for modelling. A second application of automatic control of gene expression is to ensure198

that a synthetic circuit works in the optimal operating conditions in terms of expression of199

its constituent proteins, similarly to what happens in a modern computer where the oper-200

ating temperature is automatically controlled by switching on/off a fan in order to keep the201

electronic circuits from overheating.202

Here we provided a comparative analysis, in-silico and in-vivo, of three different strate-203

gies to control gene expression from the GAL1 inducible promoter, whose advantages and204

disadvantages are summarised in Table 1.205

To this end we implemented and compared PI and MPC controllers, which have been206

previously reported in the literature (4–8 ) and proposed an additional strategy, the ZAD207

controller (19 ).208

We demonstrated that both MPC and ZAD control strategies can be successfully em-209

ployed to control gene expression from the GAL1 promoter to generate any desired time-210

varying concentration of the reporter protein. These controllers require a quantitative model211

of the system to be controlled. This is not a strong limitation, since it is possible to identify212

a dynamical input-output model of the biological system under investigation using standard213

system identification techniques, which work very well at least for simple inducible promoters214
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(16 ).215

The PI controller, as expected from control theory (1 ) and from our in-silico predictions,216

performs similarly to the MPC and ZAD strategies only in the set-point control task, whereas217

it is the worst performer in the case of signal-tracking experiments.218

The MPC and ZAD controller perform similarly well in all the control tasks. The main219

differences are that the MPC performs slightly better than ZAD for fast switching reference220

signals (such at the staircase signal in Figure 6), however it requires a higher number of input221

switches when compared to the ZAD controller. The ZAD technique may be advantageous222

in those applications in which a high cost is associated to the actuation such as when the223

input administration can cause stress to the cells (e.g light stimuli, antibiotic, osmotic shocks224

etc.).225

In conclusion, automatic control of gene expression from inducible promoters is mature226

enough to be applied routinely in synthetic biology and more generally in quantitative biology227

applications. Although we showed the experimental application of these control strategies to228

the GAL1 promoter, the same techniques can be applied to other inducible promoters and229

to different cellular models.230

The choice of the control strategy to employ will depend on which kind of control task231

needs to be achieved (set-point or tracking), the complexity of the synthetic circuit to be232

controlled, the availability of a descriptive mathematical model of the circuit to be con-233

trolled, the cost associated to the actuation effort and, whether a minimal stress to the cells234

is required (i.e. a small number of input switches).235

236
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Table 1: Comparative analysis summary

Control Strategy Model required Pros Cons
PI No ?Robust −Not suitable for sig-

nal tracking control
?Reduced computa-
tional complexity

MPC Yes ?Suitable for set-point
and signal tracking
control

−High number of in-
put switches

?Best performance for
fast varying references

ZAD Yes ?Suitable for set-point
and signal tracking
control

−Performs slightly
worse than MPC on
fast varying references

?Reduced number of
input switches

Methods237

Yeast strain and cell culture238

Control experiments were performed in the yeast strain (yGIL337, Gal1-GFP::KanMX,239

Gal10-mCherry::NatMX) provided to us by Lang et al. (21 ). In this strain the Gal1 protein,240

expressed by the GAL1 promoter, was fused to a green fluorescent protein (Gfp). Before241

each in-vivo control experiment started, cells were inoculated overnight in 10 mL synthetic242

complete medium + Galactose/raffinose (2%); the culture was then repeatedly diluted to243

achieve a final OD600 of 0.01 on the day the cells were injected into the microfluidic device244

(Supporting Informations for further details).245

Microfluidics246

The MFD0005a device was used for all the microfluidcs experiments(17 ). This device houses247

a micro-chamber (height: 3.5µm) which "traps" yeast cells, that can only grow in a mono-248

layer, thus allowing easier automated image analysis. Microfludics devices were fabricated as249

described in(17 ). Details of the microfludics set-up and of the galactose and glucose growing250
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medium used in the experiments can be found in (5 ) and Supporting Informations.251

Microscopy and image analysis252

To monitor cellular processes dynamics, as well as, to check for the right administration of253

external inputs to trapped cells, we took advantage of an inverted fluorescence microscope254

(Nikon Eclipse Ti) equipped with an automated and programmable stage, an incubator to255

guarantee fixed temperature and gasses to cell environment and a high sensitivity Electron256

Multiplying CCD (EMCCD) Camera (Andor iXON Ultra897). The microscope and the257

camera were programmed to acquire, at 5 min intervals, two types of images: (a) a bright field258

image (phase contrast) and (b) fluorescence images (with the appropriate filters) to monitor259

cell fluorescence and to track the dye (sulforhodamine) added to the inducer compound in260

order to evaluate the control input administered to the cells. Fluorescence was quantified261

using a previously developed custom image processing algorithm (5 ). The algorithm is able262

to locate cells within each Phase Contrast image thus identifying all pixels belonging to the263

cells. This information is used to calculate the fluorescence being expressed by the entire264

population as well as by each single cell. The actual measured fluorescence is mainly affected265

by the efficiency of the fluorescent lamp, and by the background light in the surrounding266

microscope environment. We observed that as the fluorescent lamp nears its life-time, its267

brightness decreases and this affects the measured fluorescence in the cells. Indeed, the268

measurement units for the fluorescence are considered arbitrary and, thus, a calibration269

phase at the beginning of each experiment is needed to calculate a reference value for the270

fluorescence.271

Control strategies implementation272

The control input is described as follows, where ON means galactose administration and273

OFF glucose administration:274
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u(t) =


uMAX = ON kT ≤ t < (k + dk)T

uMIN = OFF (k + dk)T ≤ t < (k + 1)T

(1)

PI: Proportional and integral gains, Kp and Ki were calculated with the Ziegler-Nichols’275

open-loop tuning method (1 ) applied to the mathematical model of the GAL1 promoter276

described in the Supporting Informations. Thus the gains were set to Kp = 13.49 and277

Ki = 0.17.278

Given the constraints on the control input as well as on the sampling time described279

above, a modulation on the PI output was implemented to calculate the duty cycle dk as:280

dk =
û− uMIN

uMAX − uMIN

. (2)

where û is the output of the PI regulator saturated between uMIN = 0 and uMAX = 2.281

To avoid delays and overshoots introduced by the saturation of the regulator output (1 )282

an anti-windup block, described in the Supporting Informations, was added to the feedback283

loop.284

MPC: The MPC strategy chooses, at each sampling time kT , the optimal control input285

that minimises the sum of the squared control error (SSE):286

SSE ,
k+N∑
i= k+1

(
N + 1 + k − i

)
ε2i =

k+N∑
i= k+1

(
N + 1 + k − i

) (
ŷi − ri

)2 (3)

where ŷ is the output provided by the dynamical model of the the GAL1 promoter287

(Supplementary Information), which is computed by a Kalman state estimator, able to288

reconstruct system states from the measured output y, as shown Figure 1 - A. The integer289

N = 12 (corresponding to 60 min) defines the length of the prediction horizon in terms of290

sampling intervals. The forgetting factor (N + 1 + k − i) weights the error samples more at291

the beginning of the prediction horizon than at the end; this guarantees faster corrections292
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of output deviations from the reference. The optimisation was carried out by adopting the293

Matlab implementation of the Genetic Algorithm described in (22 ).294

The result of the optimisation is an array of N optimal duty cycles dk+i, i ∈ [1, N ].295

In the absence of external disturbances and other sources of uncertainty, the optimal input296

computed by the MPC could, in principle, be applied to the yeast cells over the entire297

prediction horizon. However, in order to make the control action robust to any source of298

uncertainty and variability, the feedback loop is closed by applying only the first element299

of the calculated control input and at the next sampling time (k + 1)T when the entire300

procedure is repeated.301

ZAD: Zero Average Dynamics (ZAD) control relies on a feedback strategy devised for the302

regulation of power converters and allows to directly calculate the duty cycle dk of a switching303

control input (19 , 23 ). ZAD control is a practical implementation of sliding mode control304

(12 ), where the control objective consists in attracting and then maintaining onto a fixed305

surface s(x) = 0 (denoted as the sliding surface) the states of the system by appropriately306

switching the available inputs.307

In the ZAD control approach, the sliding condition has to be fulfilled only on average308

over each sampling period kT , thus allowing to directly calculate the duty cycle dk via the309

solution of the following integral equation:310

ET
[
s
(
x(t)

)]
=

1

T

∫ (k+1)T

kT

s
(
x(t)

)
dt = 0 (4)

where mathbbET indicates the operator taking the average over the time interval T.311

To control GAL1 promoter dynamics onto the desired reference signal, we considered312

the following sliding surface, which was derived using the dynamical model of the GAL1313

promoter as described in the Supplementary Information:314

s
(
x(t)

)
=
(
x2(t)− x2ref (t)

)
+
(
ẋ2(t)− ẋ2ref (t)

)
(5)
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where x2 is the state variable describing the dynamics of the fluorescent reporter note315

that ẋ2ref (t) = 0 in the case of set-point regulation.316

For further details on the implementation of the ZAD controller refer to Supporting317

Informations.318

Supporting Informations319

Additional text and figures referenced in this article.320
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Figure Legends389

Figure 1: Control scheme and experimental set-up. (A) Generalised control scheme
used to implement PI, MPC and ZAD regulators. In the case of model-free regulators (e.g.
PI), the control error e (namely the difference in between the control reference r and the
system’s output y) is minimised by the controller calculating the control input u. Model-
based controllers, i.e. MPC and ZAD, use not only the control error e but also the dynamical
model of the GAL1 promoter in the State estimator block. (B) Experimental set-up: a PC
governs the entire platform running an algorithm that during each sampling interval: (i)
processes the images acquired by the microscope to calculate the output y, (ii) runs the
state estimator (when needed) and the control algorithms to calculate the input u for the
next sampling interval. (iii) controls the automated syringes so as to provide the calculated
input to the cells.
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Figure 2: Reference signals for set-point and tracking control tasks. (A) The desired
set-point r (blue line) is equal to 50% of the average fluorescence measured during the initial
calibration phase of 180 min (black line) (B) The desired level of fluorescence (r) is a three-
step descending staircase signal, each step is set at a given percentage (75%, 50% and 25%)
of the average fluorescence measured during the initial calibration phase of 180 min. (C) The
desired level of fluorescence (r) is a linear descending ramp starting at 100% of the average
fluorescence measured during the initial calibration phase of 180 min and going down to 25%.
(D) The desired level of fluorescence (r) is a steady state signal equal to 75% of the average
fluorescence measured during the calibration phase, with a duration of 100 min; followed by a
sinusoidal wave of period T = 2000 min defined as s(t) = 0.5+0.25 sin

(
2π
T
(t − 100) + π

2

)
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Figure 3: In-silico set-point control task. The blue line is the reference signal (r).
The green line is the simulated fluorescence level (y). The red line is the control input
(u). (A-C) Three in-silico set-point control experiments performed on the GAL1 promoter
mathematical model by the means of the PI (A), MPC (B) and ZAD (C) controllers . The
initial level of fluorescence is assumed to be equal to 1. The control action starts at time
t = 0 min and ends at t = 1000 min. (D) Performance indices: Integral Square Error (ISE),
Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE), number of switches of
the control input, and the percentage of time during which the model is provided with the
’ON’ input.

21



0 200 400 600 800 1000
0

0.5

1

Set point control − PI controller

Time [min.]F
lu

o
re

sc
e

n
ce

 [
N

.u
.]

 

 r high−ss y

0 200 400 600 800 1000
0

1

2

Time [min.]G
a

la
ct

o
se

 [
w

/v
] 

%

 

 

u

0 200 400 600 800 1000
0

0.5

1

Set point control − MPC controller

Time [min.]F
lu

o
re

sc
e

n
ce

 [
N

.u
.]

 

 r high−ss y

0 200 400 600 800 1000
0

1

2

Time [min.]G
a

la
ct

o
se

 [
w

/v
] 

%

 

 

u

0 200 400 600 800 1000
0

0.5

1

Set point control − ZAD controller

Time [min.]F
lu

o
re

sc
e

n
ce

 [
N

.u
.]

 

 
r high−ss y

0 200 400 600 800 1000
0

1

2

Time [min.]G
a

la
ct

o
se

 [
w

/v
] 

%

 

 

u

ISE IAE ITAE #switches u(t) Time in Gal(%)

PI 2,76 13,69 2,75 E03 240 59,70

MPC 8,68 25,00 5,03 E03 20 31,60

ZAD 7,64 21,77 4,38 E03 11 41,50

ISE IAE ITAE #switches u(t) Time in Gal(%)

PI 0,19 3,72 378,98 136 70,06

MPC 0,55 6,19 631,56 13 32,33

ZAD 0,17 3,80 387,58 7 52,90

whole experiment

last 500 minutes

A B

C D

Figure 4: In-vivo set-point control task. The black line is the average fluorescence
intensity during the calibration phase of 180 min. The blue line is the reference signal
(r). The green line is the measured fluorescence level (y) across the yeast population. The
red line is the control input (u). (A-C) Three in-vivo set-point control experiments by the
means of the PI (A), MPC (B) and ZAD (C) controllers. The control action starts at time
t = 0 min and ends at t = 1000 min. (D) Performance indices: Integral Square Error (ISE),
Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE), number of switches of
the control input, and the percentage of time during which the model is provided with the
’ON’ input.
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Figure 5: In-silico staircase tracking control task. The blue line is the reference signal
(r). The green line is the simulated fluorescence level (y). The red line is the control
input (u). (A-C) Three in-silico staircase tracking control experiments performed on the
GAL1 promoter mathematical model by the means of the PI (A), MPC (B) and ZAD (C)
controllers. The initial level of fluorescence is assumed to be equal to 1. The control action
starts at time t = 0 min and ends at t = 1000 min. (D) Performance indices: Integral Square
Error (ISE), Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE), number of
switches of the control input, and the percentage of time during which the model is provided
with the ’ON’ input.
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Figure 6: In-vivo staircase tracking control task. The black line is the average fluores-
cence intensity during the calibration phase of 180 min. The blue line is the reference signal
(r). The green line is the measured fluorescence level (y) across the yeast population. The
red line is the control input (u). (A-C) Three in-vivo staircase tracking control experiments
by the means of the PI (A), MPC (B) and ZAD (C) controllers. The control action starts
at time t = 0 min and ends at t = 1000 min. (D) Performance indices: Integral Square Er-
ror (ISE), Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE), number of
switches of the control input, and the percentage of time during which the model is provided
with the ’ON’ input.
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Figure 7: In-silico ramp and sin wave tracking control tasks. The blue line is the
reference signal (r). The green line is the simulated fluorescence level (y). The red line is
the control input (u). (A-B) Two in-silico ramp tracking control experiments performed
on the GAL1 promoter mathematical model by the means of the MPC (A) and ZAD (B)
controllers. The initial level of fluorescence is assumed to be equal to 1. The control action
starts at time t = 0 min and ends at t = 1500 min. (C-D) Two in-silico sin wave tracking
control experiments performed on the GAL1 promoter mathematical model by the means
of the MPC (C) and ZAD (D) controllers. The initial level of fluorescence is assumed to
be equal to 1. The control action starts at time t = 0 min and ends at t = 2100 min. (E)
Performance indices: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral
Time Absolute Error (ITAE), number of switches of the control input, and the percentage
of time during which the model is provided with the ’ON’ input.
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Figure 8: In-vivo ramp and sin wave tracking control tasks. The black line is the
average fluorescence intensity during the calibration phase of 180 min. The blue line is the
reference signal (r). The green line is the measured fluorescence level (y) across the yeast
population. The red line is the control input (u). (A-B) Two in-vivo ramp tracking control
experiments by the means of the MPC (A) and ZAD (B) controllers. The control action
starts at time t = 0 min and ends at t = 1500 min. (C-D) Two in-vivo sin wave tracking
control experiments by the means of the MPC (C) and ZAD (D) controllers. The control
action starts at time t = 0 min and ends at t = 2100 min. (E) Performance indices: Integral
Square Error (ISE), Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE),
number of switches of the control input, and the percentage of time during which the model
is provided with the ’ON’ input.
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