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Abstract

Drusen, the hallmark lesions of age related macular degeneration (AMD), are biochemically

heterogeneous and the identification of their biochemical distribution is key to the understanding

of AMD. Yet the challenges are to develop imaging technology and analytics, which respect the

physical generation of the hyperspectral signal in the presence of noise, artifacts, and multiple

mixed sources while maximally exploiting the full data dimensionality to uncover clinically

relevant spectral signatures. This paper reports on the statistical analysis of hyperspectral

signatures of drusen and anatomical regions of interest using snapshot hyperspectral imaging and
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non-negative matrix factorization (NMF). We propose physical meaningful priors as initialization

schemes to NMF for finding low-rank decompositions that capture the underlying physiology of

drusen and the macular pigment. Preliminary results show that snapshot hyperspectral imaging in

combination with NMF is able to detect biochemically meaningful components of drusen and the

macular pigment. To our knowledge, this is the first reported demonstration in vivo of the separate

absorbance peaks for lutein and zeaxanthin in macular pigment.

I. Introduction

WITHOUT improvements in preventing and treating eye diseases and blindness, the number

of blind or visually impaired Americans 40 and older will grow from 3.4 to 5.5 million in

2020. Age-related macular degeneration (AMD) is the leading cause of blindness in the U.S.

[1]. Drusen the hallmark lesions of age-related macular degeneration, are biochemically

heterogeneous and are key to the understanding of AMD. However, their composition

cannot be determined in vivo with even the current highest resolution techniques. While

standard fundus photographs are a mixture of three color channels (RGB), the full retinal

reflectance image to white light contains important spectral information that currently goes

unexplored.

Considering that it has long been known that with monochromatic light the information

contained in just two wavelengths can be used to detect macular pigment [2] or differentiate

between oxy and deoxy-hemoglobin [3], there must potentially be significantly more power

in hyperspectral imaging, which collects information from wavelengths across the visible

spectrum. One major disadvantage of current available spectral imaging techniques is that

they are fundamentally unsuitable for recording rapidly changing two-dimensional scenes as

is required for imaging the moving eye. Hyperspectral ophthalmic imaging data, now

uniquely clinically attainable with a new snapshot hyperspectral imaging device [3], offers a

vision for spectral biopsy of the retina. By dissecting the spectral reflectance and

autofluorescence signatures from drusen, other lesions, and anatomical regions, it is possible

to achieve in vivo spectral discrimination of different lesion types and anatomical regions of

interest. Identification of the distribution and biochemical signatures of the retina and its

pathologic phenotype will be uniquely instrumental in understanding AMD.

This paper reports on the analysis of hyperspectral signatures of drusen and anatomical

regions (i.e. the macula) in the presence of noise, image artifacts, and multiple mixed

sources. The contribution of the paper is two-fold. First, we report on the statistical analysis

of snapshot hyperspectral images of normal controls (n=3) and AMD patients (n=7) using

non-negative matrix factorization (NMF) [4], [5], and [16]. Second, we propose and

investigate the integration of physically meaningful priors into the NMF algorithm as well as

a log-normalized transformation by column-wise standard deviation to account for the

multiplicative reflectance in the retina and artifacts such as linear trends due to the imaging

process. We also assess the reproducibility and consistency of our analysis.
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II. Methodology

We will refer to a hyperspectral data cube with a matrix D = [x1, …, xm]. Consider a data

cube D ∈ ℝx×y×z comprising observation measurements of a scene Dx×y at different

conditions. In order to perform NMF analysis the data needs to be transformed to a two-

dimensional matrix. A conceptual overview of NMF is outlined in figure 2. The Perron-

Frobenius Theorem forms the theoretical basis for classical iterative methods in numerical

analysis. If A is an n-by-n matrix and A ≥ 0, then ρ(A) is an eigenvalue of A and there is a

non-negative vector y, with ||y|| = 1, s.t.

(3.1)

NMF finds a “parts-based” or “sum-of-parts” linear representation of non-negative data.

Given a non-negative data matrix D ∈ ℝn×m and a positive integer r = inf (n, m) the NMF

problem is to compute a factorization of the form

(3.2)

with r being the low-rank factor usually with r < < n, m, and i, j, μ matrix indices. The r

columns of W ∈ ℝn×r are basis vectors and each row of H ∈ ℝr×m the linear encoding

representing the mixing coefficients or weights. In vector notation each of the m columns of

D is a linear combination of the columns of W weighted by the coefficients of H, i.e.

(3.3)

where is wi the i-th column vector of W. The conventional approach to find a solution to

(3.2) is to solve the following constrained optimization problem

(3.4)

where || · ||F is the matrix Frobenius norm. Various strategies have been proposed to

minimize (3.4) such as alternating least-squares [6], multiplicative update rules [5],

projected gradient descent algorithms [7], and hybrid derivatives. In addition to (3.5) other

NMF derivatives have been proposed such as sparse [8], semi/convex [9], Bayesian [10],

and derivatives.

In order to compute a solution to equation (3.4), which represents the underlying physiology

of drusen or anatomic regions such as the macula we initialize NMF with physiologic

meaningful basesW0 and spectral coefficients H0. In this paper we consider two cases: i)

drusen and ii) the macula. Since spectral signatures of drusen are not known for case i) we

set W0 to be a band that captures the drusen appearance in the hyperspectral data. For case
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ii) previous in vitro studies have established the absorbance and reflectance spectra of the

macula [12], which we use as prior knowledge to set H0. To account for the multiplicative

absorbance of the macula we apply a log-normalized transformation to the data cube.

III. Experiments and Results

Seven patients with drusen and three normal controls were imaged with the snapshot

hyperspectral camera previously described [3]. 20 random ROIs were acquired for patient C

(see Fig. 3) and used for intra-patient NMF analysis. Within the 20 ROIs duplicates were

introduced in order to assess reproducibility. Experiments for single and intra-patient NMF

with and without prior knowledge were performed.

In the first experiment we analyzed all patient cubes with different NMF decompositions

from r = 2,…,10 and multiple trials t=10 using a random initialization scheme. The extracted

basis vectors and spectral coefficients however were too sensitive to random initialization

and thus will be omitted here due to space limitations.

In the second experiment we performed NMF on all patient cubes by integrating physically

meaningful prior knowledge about the data by initializing the NMF algorithm with a

meaningful basis W0 and corresponding spectral coefficients H0. No preprocessing on the

data was performed. Single NMF analysis of all patient cubes yielded spectral coefficients

that showed a general trend in increasing spectral amplitudes of the non-drusen mixing

coefficients. For all patient cubes the basis vector for mixing component 3 (drusen) depicted

a physically meaningful basis with a peak response of the spectral coefficients around the

560nm region (see Fig. 4). The optimal number of basis vectors was determined

experimentally. The recovered spectra were consistently similar for drusen and in different

areas of the macula from the same eye and also in different eyes. We further performed

statistical intra-patient analysis for patient C and n1, n2, and n3 to investigate the

reproducibility and consistency of NMF with different types of drusen and on normal

controls. Figure 4 shows the standard error of the spectral coefficients for 10 NMF trials

with and without ROI stratification. The spectrum had low variability across different ROIs

with a patient mean-standard error of σ=0.01 and between patients of σ=0.041.

In the third experiment we investigated a physically meaningful prior of the macular

pigment density as described in [12]. We compared NMF low-rank decompositions with and

without prior information to investigate the consistency of the recovered spectral

coefficients with physiologic ground truth. The data was log-normalized by column-wise

standard deviation to account for the multiplicative absorbance of the macular pigment.

Figure 5 shows the recovered macular density spectrum, which correspond well with the

physiologic ground truth reported in [12]. In all normal controls the recovered macular

density also shows the two characteristic peaks indicative of lutein and zeaxanthin the two

carotenoids that constitute macula pigment. To our knowledge, this is the first reported

demonstration in vivo of the separate absorbance peaks for both carotenoids in macular

pigment.
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IV. Related Work

Davis et al. [11] studied spectral characteristics that differentiated normal macular tissue

from various types of genetic-based macular diseases and showed that in statistical terms

hyperspectral images of the macula and other retinal tissues can be used to spectrally

differentiate different forms of AMD. Not much work has been reported on central issues on

optimal data preprocessing methods and their effect on downstream analysis of NMF. Yet

the importance of optimal data preprocessing has been emphasized by several researchers in

the field. Normalization methods include data centering, standardization and mean

subtraction of rows and columns in separation or together. Getz et al. [13] proposed a

normalization method by first dividing each column by its mean value and then normalizing

each row. Kim and Tidor [14] proposed two data folding methods. Xue et al. [15] proposed

a clustering-based initialization for NMF.

V. Conclusion

Snapshot hyperspectral images analyzed with NMF, which imposes physically realistic

positivity constraints on the mixing process recovered spectral profiles that reliably

identified drusen and the macula. Our results suggest that hyperspectral imaging can detect

biochemically meaningful components of drusen and anatomical regions. In future work we

plan to extend our analysis to other anatomic regions, as well as other drusen types.
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Fig. 1.
Central slices of hyperspectral ophthalmic imaging cubes at 568nm representing different

regions of the retina. Images are color coded.
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Fig. 2.
Conceptual view of non-negative matrix factorization (NMF) for the snapshot hyperspectral

ophthalmic image cube.
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Fig 3.
Examples of datasets. (TOP) Central slices of regions of interest (ROIs) for patient C. The

indexing from ROI c1 to c20 is from top left to bottom right. (BOTTOM) Central slices of

regions of interest (ROIs) for normal controls n1, n2, and n3 (n2 and n3 are both phakic).

The plot shows the fitted in vitro macular density prior for NMF analysis.
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Fig 4.
Intra-subject variability for different localized ROIs sampled from patient C. (LEFT)

Spectral NMF coefficients for ROIs=c1-c20. Component 3 shows a response between the

550 and 600nm interval and high variability in the upper part of the wavelength spectrum.

(CENTER) Slices at wavelength 525, 560, 690 nm. (RIGHT) Spectral NMF coefficients for

ROIs=c2,c4,c8, c11,c20. After ROI stratification component 3 only shows a response peak

around the 550nm region.

Lee et al. Page 10

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 September 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5.
Comparison of NMF on normal controls n1, n2, n5. (TOP) NMF using macula pigment

(MP) density prior. In blue the recovered low-rank macular density. (BOTTOM) Extracted

MP abundance and central slice at 568nm for each case. Red rectangle marks the two MP

peaks.
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