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Abstract

The metabolism of bromine in marine brown algae remains poorly understood. This contrasts with the recent finding 

that the accumulation of iodide in the brown alga Laminaria serves the provision of an inorganic antioxidant – the 

first case documented from a living system. The aim of this study was to use an interdisciplinary array of techniques 

to study the chemical speciation, transformation, and function of bromine in Laminaria and to investigate the link 

between bromine and iodine metabolism, in particular in the antioxidant context. First, bromine and iodine levels in 

different Laminaria tissues were compared by inductively coupled plasma MS. Using in vivo X-ray absorption spec-

troscopy, it was found that, similarly to iodine, bromine is predominantly present in this alga in the form of bromide, 

albeit at lower concentrations, and that it shows similar behaviour upon oxidative stress. However, from a thermo-

dynamic and kinetic standpoint, supported by in vitro and reconstituted in vivo assays, bromide is less suitable than 

iodide as an antioxidant against most reactive oxygen species except superoxide, possibly explaining why kelps 

prefer to accumulate iodide. This constitutes the first-ever study exploring the potential antioxidant function of bro-

mide in a living system and other potential physiological roles. Given the tissue-specific differences observed in the 

content and speciation of bromine, it is concluded that the bromide uptake mechanism is different from the vanadium 
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iodoperoxidase-mediated uptake of iodide in L. digitata and that its function is likely to be complementary to the 

iodide antioxidant system for detoxifying superoxide.

Key words: Antioxidant, brown algae, electron paramagnetic resonance, halocarbons, reactive oxygen species, X-ray 
absorption spectroscopy.

Introduction

Two centuries ago, the elements bromine and iodine were dis-

covered in seawater and seaweed ashes, respectively (Balard, 

1826; Gay-Lussac, 1813). Due to their unique evolution-

ary history and phylogenetic distance from other impor-

tant eukaryotic lineages (Bhattacharya et al., 1991; Baldauf, 

2003), brown algae present some remarkable chemical and 

physiological adaptations which are also re�ected at the 

genome level (Cock et  al., 2010), making them fascinat-

ing experimental models, not only for phycologists, but for 

a community of interdisciplinary researchers. This includes 

the recently described function of iodide as an extracellu-

lar antioxidant protecting the surface of Laminaria digitata 

(Hudson) Lamouroux against oxidative stress (Küpper et al., 

2008). In fact, this constituted the �rst documented case of an 

inorganic antioxidant in a living system – and the chemically 

simplest antioxidant known.

Indeed, brown algae of the genus Laminaria are the 

strongest accumulators of iodine in life on Earth (Saenko 

et al., 1978; Küpper et al., 1998; Ar Gall et al., 2004), and 

they are a major contributor to the biogeochemical �ux 

of iodine (McFiggans et  al., 2004) and, to a lesser extent, 

brominated and iodinated halocarbons to the atmosphere 

(Carpenter et al., 2000). However, while the uptake, metabo-

lism, and biogeochemical cycling of iodine by Laminaria are 

well studied (Küpper et al., 2011), hardly anything is known 

about bromine in this context. The uptake of iodide from 

seawater in Laminaria involves vanadium haloperoxidases 

(VHPOs) (Küpper et al., 1998) and its strongest accumula-

tion in this species seems to be linked to the presence of a 

particular VHPO subclass, the iodoperoxidases, speci�c 

for iodide oxidation (Colin et al., 2003, 2005). Most of the 

iodine is accumulated in the apoplast of the cortical cell layer 

(Verhaeghe et  al., 2008b). Following a hypothesis from the 

biomedical �eld about a potential ancestral role of iodide as 

an antioxidant in the evolution of the thyroid in vertebrates 

(Venturi and Venturi, 1999), it was shown that iodide is the 

accumulated form of iodine in Laminaria, and that it indeed 

serves as a simple, inorganic antioxidant, protecting the apo-

plast and thallus surface against both aqueous and gaseous 

oxidants (Küpper et al., 2008). This study also revealed that 

the iodide in the liquid microlayer on the emerged Laminaria 

thallus surface can ef�ciently scavenge ozone from the gas 

phase, resulting in atmospheric particle formation, which can 

act as cloud condensation nuclei (McFiggans et  al., 2004; 

Palmer et al., 2005). In this study, X-ray absorption spectros-

copy (XAS) has proven to be a suitable, non-invasive tool to 

probe the chemical state and solution environment of accu-

mulated iodine. However, this technique is equally suitable to 

investigate the speciation of bromine in kelps (Feiters et al., 

2005a,b; Strange and Feiters, 2008).

The �rst line of defence against pathogens in Laminaria is 

an oxidative burst (Küpper et al., 2001), which is considered a 

central element of eukaryotic defence in general (Wojtaszek, 

1997) and which, in the case of kelp species, serves to control 

bacterial bio�lms (Küpper et al., 2002). Among its triggers 

are oligoguluronates (GG) (Küpper et al., 2001, 2002), bacte-

rial lipopolysaccharides (Küpper et al., 2006), prostaglandin 

A2 (Zambounis et al., 2012), methyl jasmonate, and polyun-

saturated free fatty acids (Küpper et al., 2009). In L. digitata, 

early transcriptional defence responses are similar to those in 

land plants but also involve tightly regulated halogen metabo-

lism which might play roles in more sophisticated chemical 

defence reactions including distance signalling (Cosse et al., 

2009; Thomas et  al., 2011). In brown algae, bromide and 

VHPOs have also been shown to catalyse oxidative cross-

linking between cell-wall polymers, suggesting a role in spore 

and gamete adhesion and cell-wall strengthening (for reviews, 

see Potin and Leblanc, 2006;  La Barre et al., 2010).

This study addresses the biological signi�cance of bromine 

versus iodine metabolism in Laminaria. First, iodine and bro-

mine levels in different types of tissues of Laminaria were 

investigated using inductively coupled plasma (ICP) MS. 

Then K-edge XAS was applied to probe the stored chemi-

cal state of these elements under different physiological con-

ditions in vivo (both steady-state unstressed and oxidatively 

stressed) in the different tissue types of Laminaria and to 

draw comparisons and potential functional links between 

bromine and iodine metabolism. Finally, the potential anti-

oxidant properties of bromide and iodide were compared in 

whole-blood oxidative burst assays and in vitro electron para-

magnetic resonance (EPR) assays.

Materials and methods

Oxidative stress experiments for XAS

Oxidative stress experiments for XAS were conducted as described 
previously (Küpper et  al., 2008). L.  digitata sporophytes (approx. 
2–100 cm in size) were collected in the sublittoral at Roscoff 
(Brittany) and Helgoland (Germany) and kept in tanks with aer-
ated, running seawater between 4–10 °C until use. Oligoguluronate 
elicitors (GG) were applied at a �nal concentration of 100 μg ml–1. 
Typically, experiments were conducted with around 5 g Laminaria 
fresh weight in 100 ml natural seawater, from which both tissue sam-
ples of approximately 0.5 g and aliquots of seawater medium of 
15 ml were removed directly at the onset of the stress, and then at 
intervals of 1, 3, 5, 10, 15, 30, 45, 60, 180 minutes, and 24 hours, 
respectively. L. digitata tissue samples were cut out of the phylloid 
blade and blotted dry on paper tissue. They were immediately �tted 
into a plexiglass frame and sealed with Capton tape. All samples 
were immediately frozen in liquid nitrogen. This experiment was 
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repeated around 15 times with minor variations in sample volume, 
total algal biomass, and seawater volume.

Preparation of different Laminaria tissue samples, extracts, and 

enzymes for XAS

Isolated cell walls and a polyphenol-enriched fraction were prepared 
from L. digitata sporophytes collected in the sublittoral at Roscoff 
(Brittany), as described previously (Mabeau and Kloareg, 1987; 
Connan et al., 2006). The polyphenol-enriched fraction is a metha-
nol/water extract (50:50) of Laminaria blades at 40 °C followed by 
vacuum drying. An industrial alginate sample was obtained from a 
major alginate manufacturer (DANISCO); the production followed 
a well-established technique (McHugh, 1987). The other tissue sam-
ples were prepared as described before (Küpper et al., 2008), by dis-
secting, blotting/drying, and sealing in a plexiglass frame sealed with 
Capton tape, followed by �ash-freezing in liquid N2. The extraction 
and puri�cation of the native VHPOs from L.  digitata have been 
described previously (Colin et al., 2003).

ICP-MS analysis of total iodine bromine

Iodine and bromine contents in freeze-dried L. digitata tissue and 
cell-wall samples were analysed by ICP-MS after pyrohydrolysis sep-
aration, as described previously (Schnetger and Muramatsu, 1996; 
Chai and Muramatsu, 2007). Concentrations obtained are given in 
ppm (i.e. μg halogen per g of freeze-dried material).

X-ray absorption spectroscopy

Bromine and iodine K-edge XAS measurements and extended X-ray 
absorption �ne structure (EXAFS) data reduction were carried out at 
the EMBL Outstation Hamburg at DESY, Germany, as described pre-
viously (Feiters et al., 2005a). PDB �les for the multiple scattering units 
of the aromatic amino acids were generated using ChemBio3D Ultra.

Neutrophil oxidative burst assay for determining the antioxidant 

potential of bromide

Blood was withdrawn from healthy volunteers into blood collec-
tion tubes containing sodium citrate (Sarstedt). Neutrophils were 
isolated using density gradient centrifugation and resuspended in 
Hanks Balanced Salt solution at a density of 1,000,000 cells ml–1. 
Neutrophils were mixed 1:1 with 20  μM 2',7'-dichloro�uorescein 
diacetate and incubated (37  °C, 5% CO2) for 30 minutes prior to 
seeding into a 96-well plate. Test compounds were added to triplicate 
wells at a range of concentrations (0.01–100 mM). Oxidative burst 
was stimulated by addition of 0.1 nM phorbol myristate acetate 
(Repine et al., 1974). The plate was incubated at 37 °C with �uores-
cence readings taken every 10 minutes. Vmax was calculated for each 
test group over four data points. Percentage activity was calculated 
by comparing test group Vmax to control Vmax.

EPR antioxidant assay

The antioxidant potential of KBr and KI was determined by EPR. 
Stock solutions of KI and KBr (0.10 M in H2O) were diluted as 
required to the �nal working concentration. Both compounds were 
tested with the radical-generating systems menadione (in DMSO) 
and pyrogallol (in H2O) at a �nal concentration of 150 μM in the 
presence of the spin trap, tempone-H (50 μM). Both menadione and 
pyrogallol undergo auto-oxidation under oxic (atmospheric oxygen) 
conditions to generate oxygen-centred radicals. The spin-trap cho-
sen is recognized to be selective for oxygen-centred radicals (Meja 
et al., 2008). Menadione incubation was performed in double-dis-
tilled H2O, and pyrogallol incubation in PBS, with appropriate vehi-
cle controls (i.e. PBS or H2O only) run as blanks. Incubations were 
performed at 37 °C with readings taken at 0, 15, 30, 45, and 60 min 

using a benchtop MS200 X-Band EPR spectrometer (Magnettech, 
Berlin, Germany) set with the following parameters: microwave fre-
quency 9.30–9.55 GHz; B0 �eld 3344 Gauss; sweep width 50 Gauss; 
sweep time 60 s; modulation amplitude 2.0 Gauss; microwave power 
10 mW. Formation of the spin-adduct (4-oxo-tempo) by oxidizing 
radical species was measured and the amplitude of the �rst deriva-
tive spectra obtained (arbitrary units) was plotted against time fol-
lowing subtraction of appropriate blank measurements. Radical 
generation was estimated by measuring the area under the resultant 
linear plot for each individual 60-min incubation, prior to mean and 
standard error calculations (Graphpad Prism version 5.0).

Results and discussion

Very little is known about the chemical biology and atmos-

pheric chemistry of bromine, despite the accumulating wealth 

of knowledge for iodine regarding physiology and biochemis-

try of animal and algal systems and its importance in biogeo-

chemical cycles (Carpenter et  al., 2009; Küpper et  al., 2011). 

Brominating oxidants are formed by eosinophils, capable of 

destroying a wide range of prokaryotic and eukaryotic tar-

gets (Weiss et al., 1986) and marine macroalgae are known to 

emit bromocarbons at high rates (Carpenter and Liss, 2000; 

Carpenter et al., 2000). The recent discovery that the accumula-

tion of iodide serves the provision of a simple, inorganic anti-

oxidant in the kelp Laminaria (Küpper et al., 2008) prompted 

the current investigation of the chemical speciation and biologi-

cal signi�cance of bromine in this important model system with 

a similar, interdisciplinary array of approaches and techniques.

The �rst objective was to determine bromine levels in 

various types of Laminaria tissues by ICP-MS. Most of the 

samples studied had previously served for XAS analyses 

reported below. Overall, the ICP-MS results of bromine lev-

els in L.  digitata blades and stipes (Table  1; for Laminaria 

anatomy, see Supplementary Fig. S1, available at JXB online) 

were consistent with previous results measured in freeze-dried 

and chemically �xed tissues using neutron activation analy-

sis (Verhaeghe et al., 2008b). The highest bromine levels were 

encountered in the holdfast (≈ 2000 ppm) and cortical stipe tis-

sues (≈ 1800–1900 ppm), while the lowest concentrations were 

found in foliar blade (966 ± 77 ppm) and medullary stipe tis-

sues (654 ± 26 ppm). The highest iodine levels (also measured 

by ICP-MS), up to more than 57,000 ppm, were observed in 

outer cortical tissues of Laminaria stipes, followed by the inner 

cortex (≈40,000 ppm) while the lowest tissue concentrations 

were found in the medulla of stipes (≈1000 ppm). Foliar blade 

tissues contained close to 5000 ppm (but due to the anatomy 

of the blade, it was not possible to separate cortical from med-

ullary tissue; it is assumed that the cortex would show much 

higher iodine levels than the medulla). There was a clear pat-

tern of higher bromine and iodine concentrations in cortical, 

foliar blade and holdfast tissues as opposed to the thallus 

medulla, underlining the characteristics of halogen accumula-

tion as a brown algal surface process. Overall, accumulation 

of iodine was much more pronounced than that of bromine 

with total concentrations up to over an order of magnitude 

higher. Considering the much lower concentration of iodine in 

seawater (0.5 μM in total, with about equal levels of iodide and 

iodate) in comparison to bromide (0.8 mM), the accumulation 
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factor of iodine from seawater to Laminaria tissues (around 

�ve orders of magnitude) was much more extreme than for 

bromine (less than 1 order of magnitude). In contrast, indus-

trial sodium alginate from L. digitata contained very low and 

similar bromine (12 ± 4 ppm) and iodine levels (20 ± 3 ppm).

XAS was used to elucidate the in vivo speciation of bromine 

and to compare it to that of iodine. Representative Br K-edge 

X-ray absorption near-edge spectra are shown in Supplementary 

Fig. S2 and Br K-edge extended X-ray absorption �ne structure 

(EXAFS) and corresponding Fourier transforms are shown 

with their simulations in Figs. 1–3. As described in detail in the 

supporting information (available at JXB online), three types 

of contributions to the biological Br EXAFS spectra obtained 

with Laminaria thallus samples could be distinguished, which 

were representative of three different chemical environments, 

viz. Br– surrounded by hydrogen-bonding molecules (Fig.  1), 

Table 1. Total non-volatile iodine and bromine content of samples of various tissue parts and cell-wall components of Laminaria 

digitata. Determined by ICP-MS. Algal tissue samples were freeze-dried and ground in liquid nitrogen. n, technical replicates.

Sample Iodine 

concentration 

(mean ppm)

n Standard  

deviation (%)

Bromine 

concentration 

(mean ppm)

n Standard 

deviation (%)

Foliar blade tissues from Laminaria digitata

 1st whole blade 15505 2 16 714 1  –
 2nd whole blade 4834 4 1 966 4 8
Stipe tissues from Laminaria digitata

 Whole stipe sections (about 0.4 cm in diameter) 12790 2 6 1465 1  –
 1st dissected medullary tissues 1188 4 6 1019 4 6
 2nd dissected medullary tissues 1670 3 5 654 3 4
 Dissected inner cortex tissues 39708 4 6 1940 2 1
 Dissected outer cortex and epidermis tissues 57717 4 16 1794 1
Holdfast tissues from Laminaria digitata

 1st whole holdfast 8057 4 22 2016 4 14
 2nd whole holdfast 9715 4 3 1864 4 9
Industrial sodium alginate batch extracted from 
Laminaria digitata (Danisco, Landerneau, France)

20 3 15 12 3 37

Fig. 1. Laminaria tissues versus NaBr solution and seawater. Br K-edge experimental (grey line) and simulated (black line) EXAFS (left) 
and phase-corrected Fourier-transforms (right): (A) NaBr solution (number and type of atoms @ distance in Å (Debye-Waller factor as 
2σ2 in Å2): 9.5 O @ 3.335 (0.030)), (B) seawater (9.5 O @ 3.300 (0.028)), (C) L. digitata stressed with oligo-GG (5.0 O @ 3.262 (0.039)), 
(D) fresh L. digitata blotted (1.8 O @ 3.254 (0.023)), (E) lyophilized L. digitata (2.2 H @ 1.283 (0.002) and 2.1 O @ 3.238 (0.006)), and (F) 
L. digitata holdfast (1.7 O @ 3.443 (0.009)). See also Supplementary Table S1.
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Fig. 2. Brown algal haloperoxidases and brominated amino acids. Br K-edge experimental (grey line) and simulated (black line) EXAFS 
(left) and phase-corrected Fourier-transforms (right): (A) 3,5-dibromotyrosine/BN (number and type of atoms @ distance in Å (Debye-
Waller factor as 2σ2 in Å2): 1.0 diBrTyr with C @ 1.882 (0.003)), (B) A. nodosum bromoperoxidase (1.0 diBrTyr with C @ 1.906 (0.002)), 
(C) 4-bromophenylalanine/BN (1.0 phenyl with C @ 1.856 (0.004)), (D) L. digitata iodoperoxidase (1.0 indolyl with C @ 1.847 (0.003)), 
and (E) aqueous 5-bromotryptophan (1.0 indolyl with C @ 1.862 (0.006)). See also Supplementary Table S1.

Fig. 3. Different Laminaria extracts and tissues. Br K-edge experimental (grey line) and simulated (black line) EXAFS (left) and phase-
corrected Fourier-transforms (right): (A) polyphenol-enriched extract (number and type of atoms @ distance in Å (Debye-Waller factor as 
2σ2 in Å2): 1.4 K @ 3.173 (0.008)), (B) cortical tissue (1.8 K @ 3.203 (0.010) and 0.5 C @ 1.907 (0.008)), (C) stipe (2.0 K @ 3.211 (0.007) 
and 0.1 C @ 1.864 (0.008)), and (D) meristem (2.4 K @ 3.207 (0.010) and 1.890 (0.007)). See also Supplementary Table S1.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jx
b
/a

rtic
le

/6
4
/1

0
/2

6
5
3
/5

4
0
6
8
9
 b

y
 g

u
e

s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/ert110/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/ert110/-/DC1


2658 | Küpper et al.

Br covalently incorporated into aromatic moieties (Fig.  2), 

and Br– incorporated in solid KCl (Fig. 3), with examples of 

the corresponding edge X-ray absorption near-edge spectra in 

Supplementary Fig. S2 (traces A, C/D, and B, respectively). 

Bromine and iodine K-edge EXAFS and corresponding 

Fourier transforms are given in Supplementary Figs. S3 and S4, 

and all iterative re�nement parameters of the simulations for 

Br and I are given in Supplementary Tables S1 and S2, respec-

tively. The XAS results in Fig. 1 clearly show that bromide is the 

dominant form of bromine in Laminaria, and that it is present 

in a non-covalently bound form, associated with heteroatoms 

from biomolecules by hydrogen-bonding. Br was found to be 

predominantly hydrogen-bonded to biomolecules in fresh and 

lyophilized Laminaria (Fig. 1, traces D and E), but the larger 

number of oxygen atoms found for oligo-GG stress (Fig.  1, 

trace C) compared to fresh Laminaria indicated that a larger 

fraction of it was hydrated under oligo-GG stress rather than 

bound to biomolecules in fresh Laminaria. This is analogous 

to the situation reported earlier (Küpper et al., 2008) for iodide 

in Laminaria, and it is in line with the differences observed 

between the dissolving of iodide by small solvent molecules, 

resulting in interaction with many solvent atoms, or by larger 

solvent molecules, where fewer solvent atoms can interact 

(Tanida and Watanabe, 2000). In contrast, the XAS spectra 

of freeze-dried Laminaria tissues rehydrated with 2 mM H2O2 

(Supplementary Fig. S3, trace A) could be interpreted by the 

incorporation of bromide in aromatic substrates both in the 

rehydrated thallus and in the cell-wall fraction, either directly 

by the oxidative activation of Br– by H2O2 or by the action 

of haloperoxidases. An analogous observation was made for 

iodide in Laminaria (Supplementary Fig. S4, trace H; Küpper 

et al., 2008). Of the Laminaria parts, the cell wall was the only 

one that displayed this spectrum (Supplementary Fig. S3, trace 

B). While the spectrum of the Laminaria holdfast (Fig. 1, trace 

F) resembled that of whole Laminaria, indicating the presence 

of H-bonded Br–, those of other Laminaria thallus parts (apart 

from the blade) in Fig. 3, viz. the methanol extract enriched in 

polyphenols, the cortical tissue, the stipe, and the meristem, 

appeared to contain bromide in the position of a Cl defect in 

a KCl crystal. It is possible to interpret this result as due to the 

presence of free Br– which co-precipitates with KCl upon cool-

ing of the sample for the XAS measurement, but the concept 

that Br– is also associated with solid KCl under physiological 

conditions in Laminaria cannot be excluded. It should be noted 

that the highest concentrations of K+ and Cl– ions in the cor-

tex and medulla of dry weight Laminaria (120,000 and 109,000 

ppm, respectively (Verhaeghe et al., 2008a), which turn out to 

be equimolar amounts upon correction for the atomic weight) 

imply that 22.9 % of the solid material was KCl. The new data 

are in accordance with the report of bromine localization in 

Laminaria (Verhaeghe et al., 2008a), which suggests that bro-

mine is less diffusible than iodine in stipe tissues and is pro-

portionally more abundant in strong association with the cell 

walls. By merging these different approaches – microchemical 

imaging (Verhaeghe et al., 2008b), XAS, ICP-MS, EPR, and 

whole-blood antioxidant assays – this study sought to provide 

new hypotheses about bromination processes and the function 

of bromine in brown algal kelps.

A comparison of the pattern of peaks in the Fourier transform 

of the Br EXAFS for the native L. digitata VHPOs (Fig. 2D for 

iodoperoxidase, Supplementary Fig. S3C for bromoperoxidase) 

with a number of brominated amino acids (3-Br-tryptophan, 

4-Br-phenylalanine, and 3,5-di-Br-tyrosine in Figs. 2E, 2C, and 

2A, respectively) showed evidence for incorporation of Br into 

the aromatic moiety of the amino acids. This was, however, not 

in the form of 3,5-dibromo-tyrosine as established earlier for 

the bromoperoxidase of Ascophyllum nodosum by XAS (also 

included in Fig. 2 as trace B) and mass spectrometry (Feiters 

et  al., 2005b). Simulations of the Laminaria haloperoxidase 

Br XAS with structural models based on 5-Br-tryptophan or 

4-bromo-phenylalanine, respectively, con�rmed that the Br 

was attached to an aromatic group, but did not allow unam-

biguous identi�cation of the type of amino acid (3-bromo-

tyrosine, 4-bromophenylalanine, 5-bromotryptophan), except 

for the exclusion of 3,5-dibromo-tyrosine. The native bromop-

eroxidase of A. nodosum contained Br in the surface tyrosine 

residues 398 (rarely monobrominated) and 447 (frequently 

dibrominated) (Feiters et al., 2005b). In fact, the alignment of 

the different VHPO proteins did not show a strict conservation 

of tyrosine residues at these two positions, but phenylalanine 

residues in L. digitata VHPOs (Supplementary Fig. S5). Both 

types of native VHPOs from Laminaria were brominated; the 

enzymes appeared to have been exposed to conditions in the 

algae or during enzyme extraction where they were brominated. 

It should be noted that the bromoperoxidase is capable of bro-

minating itself, whereas the iodoperoxidase is unable to react 

with bromide (Colin et al., 2005).

XAS of iodine in Laminaria (Supplementary Fig. S4) 

shows that it was present as iodide, which is hydrogen-

bonded to large biomolecules in fresh Laminaria, but partly 

mobilized as hydrated iodide upon addition of an oligo-GG 

elicitor, as reported earlier (Küpper et al., 2008), and of H2O2. 

The iodine EXAFS showed no evidence of incorporation in 

KCl crystals, as found for the bromine. Iodide has been found 

(Verhaeghe et  al., 2008b) to be associated more exclusively 

than bromide with peripheral tissue, where the potassium 

and chloride concentrations are relatively low; moreover, the 

iodide ion would �t even more poorly in the KCl lattice than 

the bromide ion, due to its larger size.

Consistent with previously published results (Carpenter 

et  al., 2000; Palmer et  al., 2005; Thomas et  al., 2011), 

Laminaria emitted predominantly brominated halocarbons 

in the unstressed steady state, while an oxidative burst follow-

ing GG treatment resulted in strongly increased emissions of 

iodocarbons (Supplementary Fig. S6). Arguably, the more 

physiological form of oxidative stress (caused by GG) was 

met by a mobilization of the iodide antioxidant reservoir, thus 

providing cell-wall-bound haloperoxidase enzymes both with 

their preferred substrate and also at a locally higher concentra-

tion than bromide, leading to an increased incorporation of 

iodine into organic molecules, resulting in mono- and multiple 

iodinations. However, it has to be noted that the total emis-

sion rate of iodine via iodocarbons was at least three orders 

of magnitude lower than the inorganic iodine ef�ux previously 

reported (Küpper et al., 1998, 2008; Chance et al., 2009). This 

ef�ux was dominated by CH2I2, CH3I, CHBr2I, and C2H5I 
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(Supplementary Fig. S6B). Interestingly, both vanadium 

iodoperoxidase and vanadium bromoperoxidase genes are 

upregulated after GG elicitation (Cosse et al., 2009) and in sil-

ico protein sequence targeting suggested cell-wall localization 

(Colin et al., 2003, 2005). Collén et al. (1996) found that adding 

H2O2 to Meristiella gelidium increased production of bromo- 

and chlorocarbons whereas iodocarbon levels were unaltered. 

Comparison of exogenous oxidative stress (exogenous H2O2) 

versus a GG-elicited oxidative burst (Supplementary Fig. 

S6A,B) suggested that in L. digitata, simple extracellular addi-

tion of H2O2 did not adequately mimic the rapid physiological 

ROS formation plus mobilization of accumulated iodide and 

volatile halocarbons that occurs during a GG-triggered oxi-

dative burst. Under stress conditions, spontaneous chemical 

reaction of I– with H2O2 and the activity of constitutive algal 

haloperoxidases are likely to generate hypoiodous acid (HOI) 

in equilibrium with I2. HOI and I2 are highly reactive and 

readily react with dissolved organic matter to produce orga-

noiodine compounds (Truesdale et al., 1995; Bichsel and von 

Gunten, 1999; Carpenter et al., 2005), analogous to bromocar-

bon synthesis by HOBr/bromoperoxidase (Theiler et al., 1978). 

The rates of production of iodine- and bromine-containing 

compounds will depend on the relative concentrations of I– 

and Br–, the speci�city of the haloperoxidase enzymes, dis-

solved organic matter availability, and type. Carbon skeletons 

could potentially originate from the alga itself (e.g. from the 

release of free fatty acids), which would then be iodinated and 

oxidized in the strongly oxidizing conditions prevalent during 

the oxidative burst (Küpper et al., 2001). Critically for the pro-

duction of volatile halocarbons, the substantial I– ef�ux would 

shift the balance between Br– and I–, increase HOI production 

relative to HOBr, and swamp the haloperoxidase system with 

iodide such that iodocarbons dominate the blend of halocar-

bon volatiles produced. The absence of a bromide ef�ux dur-

ing oxidative stress (supporting information) contrasted with 

the strong iodide ef�ux observed under the same conditions 

(Küpper et al., 2008; Chance et al., 2009) due to the predomi-

nance of iodide accumulation compared to bromide.

An antioxidant assay based on phorbol myristate acetate-

stimulated human blood cells showed that KBr has signi�-

cant antioxidant activity only at the highest concentration 

tested, 100 mM (Fig.  4). At all lower concentrations (0.01, 

0.1, 1 and 10 mM), no signi�cant anti- or pro-oxidant effect 

was detected. Remarkably, in the same assay, iodide showed a 

pro-oxidant effect at 0.01, 0.1, 1, and 10 mM which, however, 

was attenuated at 10 mM KI by the presence of 1 mM KBr. 

Only the highest iodide concentration, 100 mM, had a strong 

antioxidant effect in this assay.

The results of the in vitro EPR assay that discriminated 

between scavenging of superoxide and hydroxyl radicals are 

shown in Fig 5. KBr showed a trend towards scavenging of 

superoxide at concentrations >1 mM, reaching statistical 

signi�cance at 100 mM. KI failed to scavenge superoxide at 

the same concentrations and showed a trend for pro-oxidant 

activity. In contrast, both KBr and KI exhibited complex 

interactions with hydroxyl radicals, with a pro-oxidant effect 

at moderate concentrations (10–100 μM) being overwhelmed 

by antioxidant effects at high concentrations (signi�cant at 

100 mM). The results show that the reactivity of the inorganic 

halide with radicals is complex and concentration depend-

ent. High Br– concentrations (>1 mM) were found to scav-

enge superoxide whilst equivalent concentrations of I– tended 

to exacerbate radical generation. In contrast, both halides 

increased radical generation at moderate (10–100  μM) 

Fig. 4. Neutrophil antioxidant assay at varying concentrations of bromide and iodide.
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concentrations and were equally effective at sequestering 

hydroxyl radicals at concentrations >1 mM. Indeed, similar 

concentration-dependent pro- and antioxidant behaviour 

is known for a range of biological antioxidants (Long and 

Halliwell, 2001). At present, there is no evidence to support 

a mechanism for the phenomenon in the case of iodide and 

bromide, but it is tempting to hypothesize that it might (as 

is the case with some other antioxidants) hinge around the 

balance between reduction of metal ions to more reactive 

reduced forms for mediating Fenton chemistry (e.g. Fe2+; pro-

oxidant) and radical-scavenging activity (antioxidant).

This study shows that L. digitata sporophytes contain bro-

mine as bromide, similarly to the more pronounced accu-

mulation of iodide, but to a lesser degree and also bound to 

aromatic molecules. The chemical in vivo speciation of bro-

mide in Laminaria resembles that of iodine – it is overwhelm-

ingly associated with biomolecules via hydrogen bonds. 

Also similarly to the previously documented case of iodide 

(Küpper et  al., 2008), oxidative stress results in increased 

hydration. However, and even though in principle the same 

reaction pathways would apply for both bromide and iodide 

(such as halide-assisted disproportionation of hydrogen per-

oxide; Vilter, 1995; Küpper et  al., 2008), bromide appears 

to be less suitable as an antioxidant than iodide, based on 

both thermodynamic and kinetic considerations regarding 

the reactions of halides with the oxidants relevant in a living 

system. Its function is likely not only that of an antioxidant 

but also, as found in other brown algae not showing a spe-

ci�c iodine concentration, a matter of interacting macromol-

ecules (such as cross-linking in Fucales; Potin and Leblanc, 

2006), and involvement in different and complementary roles 

for chemical defence, as also found in red algae (such as dis-

ruption of the quorum-sensing systems of bacterial bio�lms; 

Butler and Carter-Franklin, 2004).

However, the antioxidant function of iodide clearly 

depends on the nature of the oxidant considered, as estab-

lished by neutrophil oxidative burst and EPR assays. With 

regard to superoxide and as highlighted by both the neu-

trophil oxidative burst and EPR assays, iodide was actually 

pro-oxidant between 0.1–10 mM; only higher concentra-

tions were antioxidant. However, superoxide did not accu-

mulate during oxidative stress in Laminaria but was rapidly 

Fig. 5. Electron paramagnetic resonance determination of ROS by spin trapping. Effect of increasing concentrations of KBr (A, B) and 
KI (C, D) on spin adduct formation in the presence of superoxide (pyrogallol; A, C) and hydroxyl (menadione; B, D) radical generators. 
*P < 0.05, **P < 0.01, ***P < 0.001 compared to control (0 mM KI or KBr): Dunnett’s post-test after one-way ANOVA.
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converted to hydrogen peroxide by the action of superoxide 

dismutase (Küpper et  al., 2001) and scavenged by bromide 

(this study; Fig. 5). In contrast, iodide is a very ef�cient anti-

oxidant against hydrogen peroxide, hydroxyl radicals, and 

ozone (Küpper et  al., 2008), and it is well established that 

at least hydrogen peroxide (Küpper et  al., 2001, 2002)  and 

ozone (Palmer et al., 2005; Küpper et al., 2008) can exist at 

concentrations physiologically relevant for Laminaria. In 

one-electron oxidations, only iodide – not bromide – reacts 

exergonically with hydroxyl and superoxide radicals (Luther 

III, 2011). Among the two-electron reactions, iodide is still 

by far the most favourable reaction partner for many biologi-

cally relevant oxidants (ozone, singlet oxygen, and hydrogen 

peroxide), even though bromide and chloride show favour-

able (albeit considerably smaller) ΔGR values (Luther III, 

2011) for the reaction with ozone and hydrogen peroxide (and 

the EPR data suggest that bromide might have some addi-

tional bene�ts over iodide with regard to superoxide radical). 

Similarly, the reaction of iodide with ozone, singlet oxygen, 

and hydrogen peroxide was several orders of magnitude 

faster than that of bromide or chloride (Table 2). Finally, it 

should be highlighted that iodide is locally the predominant 

halide species and could be the preferred substrate of cell-

wall-localized vanadium haloperoxidases over bromide and 

chloride (Verhaeghe et al., 2008a). Haloperoxidases also con-

siderably accelerate the halide-assisted disproportionation of 

hydrogen peroxide (Vilter, 1995; Küpper et al., 2008).

The EPR results highlight the importance of having the 

correct blend of antioxidants present in the correct com-

partment in order to ensure bene�cial as opposed to detri-

mental or neutral effects. For example, high concentrations 

of Br–, but not I–, could represent a useful antioxidant in 

defence against superoxide (e.g. oxidative burst), whilst high 

(but not moderate) concentrations of both Br– and I– could 

protect against hydroxyl radical (e.g. derived from hydrogen 

peroxide via Fenton chemistry). From an evolutionary per-

spective, therefore, it would prove advantageous to maintain 

large stores of halides in inactive (caged) forms (i.e. bound to 

organic entities) and to release them in high concentrations in 

response to stress. A combined assault with Br– and I– would 

have the added bene�t of targeting different ROS species, 

thus providing comprehensive protection.

Overall, in Laminaria, bromide compares with iodide as 

follows. (i) There is no strong accumulation of bromide from 

Table 2.  Kinetics of oxygen species with halides and other reductants.

Compound k12 (M
–1 s–1) Source and notes

O3 reactions with:
 I– 1.2 × 109 Liu et al. (2001)
 Br– 2.48 × 102 Liu et al. (2001)
 Cl– <3 × 10–3 Hoigné et al. (1985)

 Ascorbate 4.8 × 107 Kanofsky and Sima (1995)
 Glutathione 2.5 × 106 Kanofsky and Sima (1995)
Singlet oxygen (1O2) reactions with:
 I– 1 × 108 Rosenthal (1976; aprotic solvents)

8.7 × 105 Wilkinson et al. (1995, p 896; pH ~7)
 Br– 1.0 × 103 Wilkinson et al. (1995, p 895; in D2O)
 Cl– 1.0 × 103 Wilkinson et al. (1995, p 895; in D2O)
 Ascorbate 8.3 × 106 Wilkinson et al. (1995, p 904; pH 6.8)
 Glutathione 2.4 × 106 Wilkinson et al. (1995, p 883; in D2O, 310 K, pD 7.4)
OH radical (⋅OH) reactions with:
 I– 1.2 × 1010 Buxton et al. (1988, p 527)
 Ascorbate 1.1 × 1010 Buxton et al. (1988, p 700)
 Glutathione 1.3 × 1010 Buxton et al. (1988, p 723; pH 5.5)
 Dimethyl sulphoniopropionate 3 × 108 Sunda et al. (2002)
 Dimethyl sulphide 1.9 × 1010 Buxton et al. (1988)
 Dimethyl sulphoxide 6.6 × 109 Buxton et al. (1988)
Superoxide (O2

–) reactions with:
 I3– 1 × 108 Bielski et al. (1985, p 1063; no data available for I–)
 Ascorbate 2.7 × 105 Bielski et al. (1985, p 1069; pH 7.4)
 Glutathione 2.4 × 105 Bielski et al. (1985, p 1075; pH 7.8)
Hydrogen peroxide (H2O2) reactions with:
 I– 0.69 Mohammed and Liebhafsky (1934)
 Br– 2.3 × 10–5 Mohammed and Liebhafsky (1934)
 Cl– 1.1 × 10–7 Mohammed and Liebhafsky (1934)
 Ascorbate 2 Polle and Junkermann (1996)
 Glutathione 2–20 D’Autréaux and Toledano (2007)

 Glutathione peroxidase 6 × 107 Flohe et al. (1972)
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seawater, and no detectable bromide ef�ux upon oxidative 

stress. (ii) An oxidative burst results in a shift to increased iodo-

carbon emissions (this study; Palmer et al., 2005; Thomas et al., 

2011). (iii) The reaction of bromide with most of the biologi-

cally relevant oxidants is not favourable, neither in a thermody-

namic nor in a kinetic sense. Therefore, the results suggest that, 

while the extracellular antioxidant defence of Laminaria is pri-

marily based on iodide, iodide and bromide may complement 

each other in the face of different oxidants such as superoxide 

and that the role of bromine and brominated compounds in 

macroalgae is more complex than previously thought (Table 3).

This work constitutes the �rst study about the physiology 

of bromide as a potentially comparable antioxidant. The 

results show that bromide complements iodide as an inorganic, 

extracellular antioxidant in Laminaria, in particular against 

superoxide, but also that it is less effective against most other 

biologically relevant oxidants and that its function is more 

diverse than that of iodide. It is proposed to call the preferen-

tial accumulation and targeted release of iodide upon oxidative 

stress, in comparison to bromide, the ‘iodide switch’. This work 

suggests that the accumulation of iodide and the iodide switch 

are central and unique features of the evolution of morpholog-

ically complex, large brown algal kelps such as Laminaria. The 

evolutionary origin of this unique antioxidant system remains 

one of the most intriguing research questions in this context.

Supplementary data

Supplementary data are available at JXB online.

Supplementary Fig. S1. Scheme of Laminaria digitata 

showing the different parts of the thallus

Supplementary Fig. S2. Br K-edge XANES and EXAFS 

of four representative samples: seawater and L. digitata stipe, 

cell wall, and lyophilized L. digitata rehydrated with H2O2

Supplementary Fig. S3. Br K-edge EXAFS and phase-

corrected Fourier-transforms of lyophilized L.  digitata 

rehydrated with H2O2, cell wall, L. digitata native bromoper-

oxidase, and inactive Escherichia coli-expressed iodoperoxi-

dase with added Br

Supplementary Fig. S4. I  K-edge EXAFS and phase-

corrected Fourier-transforms of fresh L. digitata, L. digitata 

stressed with oligo-GG or H2O2, and lyophilized and rehy-

drated L. digitata

Supplementary Fig. S5. Partial amino-acid alignment of 

vanadate-dependent haloperoxidases

Supplementary Fig. S6. Release of volatile low-molecular-

weight halocarbons from L. digitata plantlets

Supplementary Table S1. Parameters resulting from 

iterative re�nement of simulations of the Laminaria 

bromine-edge EXAFS

Supplementary Table S2. Parameters resulting from itera-

tive re�nement of simulations of the Laminaria iodine-edge 

EXAFS
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