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Abstract 

Background. Accumulating evidence suggests that -synuclein aggregates, a defining pathology 

of Parkinson’s disease (PD), display cell-to-cell transmission. The initial -synuclein aggregation 

may start in autonomic nerve terminals years prior to appearance of motor symptoms, and 

subsequently spread via autonomic nerves to the spinal cord and brainstem. If this hypothesis is 

correct, patients with idiopathic REM sleep behaviour disorder (iRBD), a prodromal phenotype of 

PD with RBD and dementia with Lewy bodies, could display a pattern of pathology where the 

peripheral autonomic nervous system and locus coeruleus (LC) are affected ahead of the 

nigrostriatal dopamine system. We aimed to investigate function of sympathetic, parasympathetic, 

noradrenergic, and dopaminergic innervation in iRBD patients using multi-modality imaging. 

Methods. In this clinically prospective, case-control study, polysomnography-confirmed iRBD 

subjects without clinical signs of parkinsonism or dementia were recruited via advertisement and 

sleep clinics in Denmark. We used 11C-donepezil PET/CT to assess their cholinergic activity 

(parasympathetic) in the gut, 123I-MIBG scintigraphy to measure cardiac sympathetic function, 

neuromelanin-sensitive MRI to measure density of pigmented neurons of the LC, 11C-MeNER PET 

to assess noradrenergic transporter availability in terminals originating from the LC, and 18F-DOPA 

PET to assess nigrostriatal dopamine storage capacity. For each imaging modality, findings for 

iRBD subjects were compared to those of controls without neurological disorders or cognitive 

impairment and to symptomatic PD patients. Imaging data were interrogated with one-way 

ANOVAs corrected for multiple comparisons. 

Findings. Twenty two iRBD patients were consecutively included between June 2016 and Dec 

2017. Compared to healthy controls, the iRBD patients showed significant decreases in colonic 

11C-donepezil uptake (-0·322 (CI-0·112; -0·531); p=0·0020), 123I-MIBG heart-mediastinum ratios 

(-0·508 (CI:-0·353; -0·664); p<0·0001), neuromelanin-MRI LC/pons ratios (-0·059 (CI:-0·019; -

0·099); p=0·0028), 11C-MeNER binding potential in the left thalamus (-0·080 (CI:-0·010; -0·150) 

p=0·023), and putaminal 18F-DOPA Ki (-0·0023 (CI:-0·0009; -0·0037); p=0·0013). The iRBD and 

PD groups had similar gut 11C-donepezil (p=0·39), heart 123I-MIBG (p>0·99), neuromelanin-MRI 

(P=0·96), and brain 11C-MeNER signals (P=0·66). In contrast, while 71% of iRBD cases had 

normal putamen 18F-FDOPA Ki values, this was significantly reduced in all the PD patients (iRBD 

vs. PD: p<0·0001).  
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Interpretation.  

Patients with iRBD displayed similar peripheral dysfunction to symptomatic PD in their 

sympathetic and parasympathetic nervous systems, and a similar loss of pigmented cells of the LC. 

In contrast to PD, 71% of iRBD cases had normal putaminal dopaminergic storage capacity. As 

iRBD can progress to PD with RBD or DLB, the peripheral dysfunction present in the absence of 

dopamine terminal damage supports the hypothesis that -synuclein pathology in PD targets 

peripheral autonomic nerves ahead of involving nigral cells in the midbrain. 

Funding. Lundbeck Foundation. Jascha Foundation. Swiss National foundation. 
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Research in context  

Background 

   Prospective studies have shown that most cases of idiopathic rapid-eye-movement sleep 

behaviour disorder (iRBD) represents a prodromal phenotype of the synucleinopathies Parkinson’s 

disease (PD) or dementia with Lewy bodies (DLB). We searched PubMed in all languages on 

December 20, 2017 using the keywords “Parkinson disease”, “Lewy body disease”, “REM sleep 

behaviour disorder”, “positron-emission tomography”, “tomography emission-computed single-

photon”, “magnetic resonance imaging”, “dual-hit hypothesis”, “alpha-synuclein”. We found no 

previous in vivo studies which had used multimodal imaging to comprehensively assess the levels 

of dysfunction in the autonomic nervous system, locus coeruleus, and substantia nigra of patients 

with iRBD or genetically susceptible prodromal PD cohorts.  

   Accumulating evidence suggests that the defining pathology of PD, aggregated -synuclein, is 

capable of cell-to-cell transmission. It has been hypothesised that the initial misfolding and 

aggregation may occur in the olfactory bulb and autonomic nerve terminals, and then spread 

centripetally to the brain. This view is supported by evidence that peripheral-to-central spreading 

of -synuclein can be induced in animal models, by epidemiological evidence that total vagotomy 

protects against PD, and the finding of pathological -synuclein aggregates in the gut of PD 

patients years prior to their diagnosis.  

Added value of this study  

To our knowledge, we present the most comprehensive imaging study to date of iRBD, potentially 

a prodromal PD+RBD/DLB patient cohort. We demonstrate convincing sympathetic and 

parasympathetic dysfunction in iRBD patients equivalent to that seen in diagnosed PD patients, 

along with similar loss of pigmented locus coeruleus cells and thalamic noradrenaline transporters. 

In contrast to PD patients, 71% of our iRBD cases had normal 18F-FDOPA uptake in their putamen.  

Implications  

Our imaging findings support the hypothesis that those PD cases with RBD have early dysfunction 

in their peripheral autonomic system and locus coeruleus prior to involvement of their nigral 

dopamine system by -synuclein pathology.  
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Introduction 

   The pathological hallmarks of Parkinson’s disease (PD) are progressive loss of nigrostriatal 

dopaminergic innervation and the presence of abnormal -synuclein (-syn) aggregates in 

vulnerable neuron populations. Accumulating evidence suggests that misfolded -syn protein can 

act as a template, encouraging further -syn to misfold with formation of insoluble filamentous 

inclusions which are capable of cell-to-cell transmission through interconnected neuronal 

pathways1. In most cases of PD, the distribution of brain -syn inclusions displays a characteristic 

caudo-rostral gradient with the lower brainstem nuclei becoming first involved2. It has been 

hypothesized that -syn aggregates initially form in the olfactory bulb and nerve terminals of the 

gastrointestinal lining. Subsequently, the pathology spreads via autonomic nerves to the dorsal 

motor nucleus of the vagus (DMV) and intermediolateral cell columns (IML) of the sympathetic 

system3,4. This hypothesis is supported by animal studies showing that peripheral-to-central 

spreading of -syn aggregates through autonomic nerves can be induced5, epidemiological 

evidence that truncal vagotomy is protective against PD6,7, and the finding of -syn inclusions in 

gastrointestinal nerve fibres many years prior to clinical PD diagnosis8. However, human autopsies 

have failed to support the view that PD is initiated in the gut9. Currently, cell-to-cell transmission 

of aggregated -syn and the peripheral-onset hypothesis are intensely debated topics in PD 

research4,10,11. 

   In the present study, we performed comprehensive multimodal imaging of patients with 

idiopathic rapid-eye-movement sleep behaviour disorder (iRBD). Most iRBD cases will eventually 

develop a synucleinopathy – PD with RBD, dementia with Lewy bodies (DLB), or rarely, multiple 

system atrophy (MSA)12,13. iRBD is believed to arise from degeneration of the pontine nuclei, 

including the magnocellular reticular formation, sublaterodorsal nucleus, and peri-coeruleus 

complex2,14. These structures are situated close to the locus coeruleus (LC). Importantly, 

pathological phosphorylated -syn inclusions have been detected in the colon and sympathetic 

chain in iRBD patients15,16. If the peripheral-to-central spreading hypothesis of -syn is correct, 

we predicted that a significant fraction of iRBD cases would display dysfunction of peripheral 

autonomic nerves equivalent to that seen in symptomatic PD, and that the LC could be involved 

ahead of the dopamine cells in the substantia nigra compacta which would be relatively spared as 

iRBD patients do not exhibit overt parkinsonism. We used 11C-donepezil PET-CT to assess 
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cholinergic (including parasympathetic) activity of the gut17,18, 123I-MIBG scintigraphy to measure 

integrity of sympathetic cardiac innervation19, neuromelanin-sensitive MRI to measure the density 

of pigmented cell bodies of the LC20,21, 11C-MeNER PET to assess thalamic noradrenaline 

transporter binding in the terminals of LC projections21,22, and finally 18F-DOPA PET to assess 

nigrostriatal dopamine storage capacity23.  

 

Methods 

 

Study design and participants 

   The study was conducted between June 3rd, 2016, and December 19th, 2017. We recruited 

consecutively 22 iRBD patients with polysomnographic confirmation (Supplementary methods). 

Inclusion criteria: iRBD diagnosis according to International Classification of Sleep Disorders III, 

age 50-85 years. Exclusion criteria: A clinical diagnosis of PD or DLB according to consensus 

criteria24,25, a Montreal Cognitive assessment (MoCA) score <23, or the presence of psychiatric 

disorders, medication interfering with the noradrenergic system, cholinesterase inhibitors, diabetes, 

neuropathies, heart- or kidney failure, current or previous cancer and/or major surgery on 

abdominal organs, inflammatory bowel disease.  

   Table 1 summarizes clinical and demographic data of the iRBD patients and imaging-modality 

specific PD and control groups who were scanned with identical methodologies. More clinical 

information is listed in Supplementary table 1. Much of the reference imaging data has been 

published previously17,21,23. The study was approved by the Science Ethical Committee of the 

Central Denmark Region (case nr. 1-10-72-160-16). All subjects provided informed written 

consent according to the Declaration of Helsinki. 

 

Imaging 

   The five imaging modalities and their relationship to neuropathological Braak stages I-III of -

syn aggregation in PD are represented in Figure 1. The sympathetic autonomic nuclei are not part 

of the original Braak PD staging scheme2, but are included here in stage I as the IML and 
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paravertebral sympathetic chain are nearly always involved in cases with incidental Lewy body 

disease26,27.  

   All subjects were scanned on either 3T Siemens TRIO or 3T Siemens SKYRA MR systems; 

protocols included T1 and fluid-attenuated inversion recovery images. Neuromelanin sensitive 

images were obtained in a subset of 11 iRBD patients, as previously described21. Using a volume 

of interest (VOI) approach, LC/pons ratios were calculated (Supplementary methods). All MRI 

and PET analyses were performed in PMOD 3·6 (PMOD, Zürich, Switzerland).  

     11C-donepezil PET/CT was performed, as previously described17. Subjects fasted for at least 8 

hours and abstained from drinking 4 hours before PET. Forty-five minutes after injection of 500 

MBq 11C-donepezil, static PET images were performed in 3D-mode with the abdominal organs in 

field-of-view. High-resolution CT with contrast-enhancement was performed immediately prior to 

PET. Body-weight corrected standard uptake values (SUV) were calculated: SUV = concentration 

(kBq/mL)/[injected dose (kBq)/body weight (g)]. VOIs were defined on the small and large 

intestine as previously described17. Intra-luminal water content was excluded from the small 

intestine and SUVs were extracted from the VOIs. Small intestine and colon SUVs were adjusted 

for volume to avoid underestimating the PET signal in PD and iRBD patients17. 

   123I-MIBG scintigraphy was performed using a dual-head gamma camera (Siemens Symbia 

SPECT/CT, Erlangen, Germany) with a low-energy high-resolution collimator. 15-minute images 

of the thorax were obtained 15 minutes (early) and 3·5 hours (late) after injection of 110 MBq 123I-

MIBG. Regions of interest were defined on the heart and mediastinum. Mean heart-uptake /mean 

mediastinum-uptake (H/M) ratios were calculated on early and late images, and washout rates 

(WR) were calculated as H/Mlate – H/Mearly. 

   18F-DOPA and 11C-MeNER PET was performed, as previously described21,23. One hour before 

18F-FDOPA injection, 150 mg of carbidopa was administered orally. After a transmission scan, 

tracer doses of 120 MBq 18F-DOPA or 550 MBq 11C-MeNER were injected intravenously and 

dynamic PET (FDOPA 94·5 min; MeNER 90 min) acquired in list mode on an ECAT high-

resolution research tomograph (HRRT; Siemens/CTI, Knoxville, TN). PET data were reconstructed 

using a 3D-OSEM algorithm yielding dynamic PET data volumes (Supplementary methods). 

PET images were normalized to MNI space with rigid matching of subject’s PET to the anatomical 

MRI, and MRI segmentation using the built-in Hammers N30R83 atlas. 
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Table 1. Demographic and clinical data of the iRBD patients, and the PD and healthy control (HC) reference groups.  
 

  Sex, m/f Age, y DD, y UPDRS 

H&Y 

I/II/III/IV MMSE MOCA OH, y/n Olfaction NMSQuest 

 
Donepezil 

 
RBD 16/4 68±9 - 1 (0-5) - - 27 (23-30) 7/13 6 (2-13) 7 (2-15) 

 
PD 10/8 62±8 1·7±0·6 19 (6-26) 0/14/2/0 29 (27-30) - - 6 (1-14) 7 (2-14) 

 
HC 9/7 65±6 - - - 29 (24-30) - - 11 (6-13) 1 (0-7) 

 
MIBG                   

 
RBD 18/4 68±9 - 1 (0-5) - - 27 (23-30) 7/15 6 (2-13) 7 (2-15) 

 
PD 12/5 65±8 9.9±2.8 43 (25-52) 0/10/7/0 29 (24-30) - 2/13 7 (2-11) - 

 
HC 4/6 63±9 - - - 30 (27-30) - 0/6 11 (8-13) - 

 
Neuromelanin 

 
RBD 9/2 67±7 - 1 (0-5) - - 28 (24-30) 4/7 6 (3-9) 6 (3-15) 

 
PD 21/8 67±9 6·2±4·2 37 (11-51) 2/26/1/0 - 26 (23-30) 10/16 6 (2-14) 7 (1-19) 

 
HC 12/5 68±7 - - - - 29 (27-30) 0/10 12 (6-15) 2 (0-14) 

 
MeNER 

 
RBD 14/3 66±8 - 1 (0-5) - - 28 (24-30) 5/12 6 (2-13) 6 (2-15) 

 
PD 22/8 67±9 6·4±4·3 37 (11-62) 2/26/1/1 - 27 (23-30) 10/16 6 (2-14) 7 (1-19) 

 
HC 9/2 67±6 - - - - 28 (27-30) 0/10 12 (6-13) 2 (0-7) 

 
FDOPA 

 
RBD 17/4 68±9 - 1 (0-5) - - 27 (23-30) 7/14 6 (2-13) 7 (2-15) 

 
PD 8/2 64±9 10·6±3·2 44 (29-52) 0/5/5/0 29 (24-30) - 1/8 7 (2-10) - 

 
HC 14/4 64±6 - - - 30 (27-30) - 0/6 12 (6-15) 2 (0-4) 

 
 

Data presented as mean±SD or median (range). Orthostatic hypotension (OH) measurements were only available for a subset of the reference 

subjects. [DD=disease duration of PD. H&Y=Hoehn & Yahr stage. MMSE=mini-mental state examination. MoCA=Montreal cognitive 

assessment. UPDRS=Unified PD Rating scale – part III.] 
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Figure 1. The five imaging modalities and their relationship to Braak stage structures involved in PD are denoted by 

roman numerals. I. 11C-donepezil PET signal of the intestine is a marker of decreased acetylcholine esterase activity, 

reflecting cholinergic innervation including parasympathetic innervation from the dorsal motor nucleus of the vagus 

(DMV). Arrows indicate the small intestine. 123I-MIBG is a validated tracer of sympathetic cardiac innervation II. 11C-

MeNER measures the availability of noradrenaline transporters in terminals originating from the locus coeruleus (LC). 

The integrity of the pigmented cell bodies of the LC is estimated by neuromelanin-sensitive MRI (arrows). III. Striatal 

dopamine storage capacity of projections from the substantia nigra (SN) is measured with 18F-DOPA PET. 

  For the FDOPA analysis, time-activity curves were extracted from template VOIs placed in the 

putamen and occipital cortex. The Gjedde-Patlak graphical approach was applied to estimate 

specific FDOPA uptake (Ki) in putamen using occipital cortex as a reference28. The lowest of 

left/right putamen Ki values was always used for analyses. 11C-MeNER uptake was investigated in 

the thalamus and red nucleus, since previous 11C-MeNER PET studies showed robust PD vs. 

healthy control differences in these structures21,22. Template VOIs were defined in the thalamus, 

red nucleus, and occipital cortex (reference region), as previously described21. PET images were 

smoothed with a 4mm Gaussian filter and time activity curves extracted from VOIs for calculation 

of binding potentials relative to non-displaceable binding (BPND) using the simplified reference 

tissue model 2 (SRTM2).  
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Other assessments 

   Autonomic and non-motor symptoms were assessed with the non-motor symptoms questionnaire 

(NMSQuest)29, constipation with ROME III diagnostic criteria, motor symptoms with the MDS 

Unified PD Rating Scale part III (MDS-UPDRS III), and RBD symptoms with the RBD symptom 

questionnaire30. Cognitive status of iRBD patients was evaluated with the MoCA battery, whereas 

some of the control and PD comparator groups had been assessed with the Mini mental state 

examination (MMSE). After 15 minutes of supine rest, blood pressure was measured for three 

consecutive minutes after tilting. Orthostatic hypotension was defined as systolic pressure drop of 

20 mmHg or diastolic pressure drop of 10 mmHg. Olfaction was tested with the 16-item Sniffin’ 

Sticks identification battery.  

 

Statistical analyses 

   Statistical analyses were performed with Stata 14·2 and Graphpad PRISM 6. Normality of data 

was assessed with Shapiro-Wilk tests and Q-Q plots. Data are presented as mean±SD or median 

(range). Grubbs’ test was used to identify statistical outliers. Demographic and clinical data were 

interrogated using ANOVA, Kruskal-Wallis, and chi-squared tests as appropriate. Group 

comparisons of imaging data were performed with one-way ANOVA. The iRBD group was 

subsequently compared to the control and PD groups applying Dunnett’s correction for multiple 

comparisons. Associations between imaging data and clinical data were investigated with Pearson 

correlation or Spearman Rank correlation for continuous and categorical data. Significance level 

was set at p <0·05.  

Pathology index 

   To assess the degree to which iRBD subjects had reached “fully developed PD-level pathology” 

within each neuronal system, we converted the iRBD imaging data to a “PD pathology index”, by 

defining the corresponding healthy control mean as 0% and the PD mean as 100%. Resulting 

pathology indices were compared to published data from previous 123I-MIBG studies19,31 and 123I-

FP-CIT dopamine transporter studies of iRBD patients32,33, where controls and PD patient 

comparator data were presented.  
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Role of the funding source 

The funder of the study had no role in the study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all the data in 

the study and had final responsibility for the decision to submit for publication.  

 

Results 

 

Clinical and demographic data 

   The iRBD group was 6 years older than the PD comparator group for 11C-donepezil PET 

(p=0·04), and the male/female ratio across the three 123I-MIBG subject groups was unmatched 

(p=0·059). There were no other significant differences in age or sex-distribution between the iRBD 

and comparator PD and control groups. Self-reported duration of RBD symptoms in the iRBD 

group was 6·3±5·6 years. The iRBD patients showed similar rates of hyposmia, orthostatic 

hypotension, and non-motor symptoms compared to all PD reference groups. Twenty of 22 (91%) 

iRBD patients were hyposmic. Two iRBD cases had MoCA scores of 23 and 24, while the 

remaining 20 subjects fell in the 25-30 range. These data are summarized in Table 1. 

 

Imaging data 

   Images from the five modalities are presented in Figure 2. Due to logistical challenges and 

technical failures, there were a few missing scans in the study. All 22 iRBD patients underwent 

MIBG scintigraphy, 21 had FDOPA PET, 20 donepezil PET, and 17 MeNER PET. Only 11 iRBD 

patients had neuromelanin-sensitive MRI. See Table 1 for exact numbers of subjects within each 

imaging modality. The median time lag from the first to last imaging session in the iRBD cohort 

was 92 days (range 7-265).  

   11C-donepezil PET. Significant between-group differences in 11C-donepezil uptake were seen in 

the small intestine (p=0·004, ANOVA, Figure 3A), and the colon (p=0·004, ANOVA, Figure 3B). 

Compared to healthy controls, iRBD patients displayed significantly lower uptake in the small 

intestine (p=0·0018) and colon (p=0·0020). Mean small intestine and colon values in the iRBD 

group were similar to PD patients (small intestine p=0·348, colon p=0·388). There was no 
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significant correlation between colon 11C-donepezil SUV and severity of constipation ROME 

(questions 9-15) ratings (p=0·42).  

 

 

 

 

 

 

 

 

Figure 2. Representative images from 

healthy controls (HC), iRBD, and PD 

patients with the five imaging modalities. 

Individual cases are representative of the 

group mean within the respective groups. 

A. 11C-donepezil PET/CT. Note lower 

donepezil uptake in the colon in iRBD 

and PD. Arrows denote transverse colon. 

B. 123I-MIBG scintigraphy of the heart 

(arrow). Note completely absent heart 

uptake in iRBD and PD. C. 

Neuromelanin (NM) MRI of locus 

coeruleus (arrows). Note lower locus 

coeruleus signal in iRBD and PD. D. 11C-

MeNER PET. Thalamic MeNER binding 

potential (BPND), shown by arrows, is 

decreased in iRBD and PD. E. 18F-DOPA 

PET. Putamen FDOPA signal (arrows) is 

mildly decreased in some iRBD cases, 

but markedly decreased in PD. 

 

  

  123I-MIBG scintigraphy. Highly significant between-group differences were seen in the late-image 

mean H/M ratios (p<0·0001, ANOVA, Figure 3C) and also in the MIBG WR (p<0·0001, 

ANOVA, Figure 3D). Compared to controls, the iRBD group showed significantly lower H/M 

ratios (p<0·0001) and WR (p<0·0001). No mean difference was seen between the iRBD and PD 
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groups (p>0·21). Using a cut-off criterion of “>2 SD below control mean” to define a pathological 

MIBG scan, 18 of 22 (82%) iRBD patients had pathological H/M ratios, and 20 of 22 (91%) iRBD 

had pathological WR rates. No significant correlations were seen between systolic or diastolic 

blood pressure drop and the H/M ratios or WR values (p>0·25).  

 

 

Figure 3. A-B. The volume-corrected 11C-donepezil standard uptake values (SUV) in the small intestine (A) and colon 

(B) of healthy controls (HC), iRBD, and PD patients. The colon was impossible to define in one HC, leaving only 15 

HC with colon values. C. Heart/mediastinum (H/M) ratio on the late 123I-MIBG images. D. Wash out values of MIBG 

from the early (15 min) to late image (3·5 h). [Solid lines denote group means. Dotted lines denote -1 and -2 SD below 

control mean].  

 

 

 

Figure 4. A. The MRI neuromelanin LC/pons ratio in healthy controls (HC), iRBD, and PD patients. B-C. The 11C-

MeNER PET binding potential (BPND) in the thalamus (Th) and nucleus ruber (Ru). C. The minimum (left or right) 
18F-DOPA Ki value in the putamen. [Solid lines denote group means. Dotted lines denote -1 and -2 SD below control 

mean]. 

 

Neuromelanin MRI. Highly significant differences were seen between the groups in neuromelanin 

LC/pons ratios (p=0·0004, ANOVA, Figure 4A). iRBD patients displayed significantly lower 

LC/pons ratios compared to the controls (p=0·0028) but similar to those of PD patients (p=0·96).  
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   11C-MeNER PET. An overall difference in thalamic 11C-MeNER BPND was seen across the groups 

with reduced mean uptake evident in both iRBD and PD groups (p=0·017, ANOVA, Figure 4B). 

No significant differences were seen when comparing mean BPND in the iRBD group directly with 

the healthy controls (p=0·095) or PD patients (p=0·56). A post hoc analysis of the left and right 

BPND values individually disclosed a significant reduction in the left thalamic 11C-MeNER in the 

iRBD group compared to controls (p=0·023, Supplementary Figure 1). The 11C-MeNER BPND 

of the red nucleus also differed significantly across the three groups with reductions evident in 

iRBD and PD (p=0·033, ANOVA, Figure 4C), but no significant differences were seen when 

comparing the iRBD group with the healthy controls (p=0·103) or PD patients (p=0·74). 

   18F-DOPA PET. Highly significant between-group differences were seen in putamen FDOPA Ki 

values (p<0·0001, ANOVA; Figure 4D). When using a “>2 SD below control mean” criterion of 

pathology, 6 of 21 (29%) iRBD patients had pathologically reduced putamen FDOPA uptake. In 

contrast, all PD patients had pathological FDOPA PET, and a highly significant difference was 

seen in mean FDOPA Ki values between iRBD and PD groups (p<0.0001). 

 

 

Supplementary Figure 1. The 11C-MeNER PET binding potential (BPND) in the left (A) and right (B) thalamus of 

healthy controls (HC), iRBD, and PD patients. An overall difference in thalamic 11C-MeNER BPND was seen between 

the groups in the left thalamus (p=0·004, A), and post-ANOVA comparison of the iRBD to control group showed that 

the 11C-MeNER BPND reduction was significant in the left thalamus (p=0·023). Dotted lines denote -1 and -2 SD below 

control mean. 

 

Pathology index 

   Figure 5 depicts the pathology indices across the five imaging modalities. iRBD patients 

exhibited dysfunction equivalent to PD patients on 11C-donepezil PET, 123I-MIBG scintigraphy, 

and neuromelanin MRI measures. The index for thalamic noradrenergic transporter availability 
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with 11C-MeNER data was 73% but only 21% for putamen dopamine storage capacity measured 

with 18F-DOPA PET. Pathology indices from previous 123I-MIBG and dopamine transporter 

SPECT studies are shown for comparison (depicted with grey circles in Figure 5)19,31-33. 

Importantly, the iRBD patients showed extreme denervation of both the sympathetic and 

parasympathetic nervous systems (i.e. pathology indices >100%) compared to groups of mixed 

RBD-positive/negative early-stage PD patients. In contrast, the pathology indices of presynaptic 

dopaminergic imaging markers were 21-36%. More details are available in Supplementary table 

2. 

 

Figure 5. The figure shows pathology indices (mean±SEM) of the present iRBD imaging data (black circles) listed 

according to PD Braak stage structures. For each imaging modality the healthy control (C) average is set at 0% and 

PD average at 100%. Grey circles show pathology indices from two previous MIBG studies19,31 (a & b), and two 

dopamine transporter SPECT studies32,33 (c & d). The four grey points in b show the MIBG pathology index of iRBD 

patients compared to H&Y stage I through IV PD patients (roman numerals: I, II, III, IV). Note that the H&Y I index 

was actually 300% (denoted by * and up-arrow). That particular MIBG study demonstrated that iRBD patients show 

more severe cardiac sympathetic denervation than H&Y I-II PD patients (MIBG index >100%). Similarly, our iRBD 

group showed a donepezil PET index of 157% when compared to our early stage PD patients. In one dopamine 

transporter SPECT studies, iRBD patients were compared to de novo H&Y I patients (c), and in another iRBD cases 

were compared to PD patients with and without RBD (depicted with + and - RBD). [DON: donepezil colon values, 

NM: neuromelanin MRI] 
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Discussion 

   The “peripheral-onset” of PD  hypothesis posits that formation of abnormal -syn aggregates 

first occurs in nerve terminals of the olfactory, enteric, and autonomic nervous system. The 

aggregates then spread by retrograde axonal transport to the medullary DMV and spinal IML3. 

Here, we have demonstrated peripheral dysfunction at a level seen in established PD level in our 

iRBD patients who are likely to represent prodromal PD or DLB. Our findings do not prove that 

-syn misfolding is initiated peripherally by neurotropic pathogens, but are compatible with this 

view. Our findings argue against an isolated olfactory entry site of pathogens in PD11,34 as this 

would be difficult to reconcile with our observed cardiac and intestinal dysfunction and 

concomitant sparing of the nigra in iRBD. 

   11C-donepezil PET is not a specific marker of parasympathetic innervation, but measures 

acetylcholinesterase activity in both enteric neurons and parasympathetic synapses. However, 

pathology studies have not shown an appreciable loss of enteric neurons in PD, whereas damage 

to the DMV and parasympathetic sacral plexus is common. The most parsimonious explanation of 

decreased gastrointestinal 11C-donepezil signal is, therefore, loss of parasympathetic cholinergic 

terminals18. Whatever is responsible for the reduced 11C-donepezil signal in iRBD, this pathology 

appears to be fully developed by the prodromal stage of PD with RBD.  

   Nearly all our iRBD patients had pathological MIBG heart scans, in accordance with two 

previous, smaller iRBD studies19,31. Taken together, the available data show that approximately 

90% of iRBD patients have profound cardiac sympathetic denervation. We saw no correlations 

between MIBG signals and severity of orthostatic hypotension in iRBD; this is also the case in 

PD35. Interestingly, 40-50% of H&Y stage I PD patients have normal MIBG scans, but by stage 

H&Y III nearly all have pathological MIBG31. In the light of our MIBG results in iRBD, it is 

possible that those early-stage PD patients with normal MIBG scans are predominantly RBD-

negative36,37. We propose that the prodromal RBD phenotype of PD is characterized by early, 

severe pathology in the autonomic nervous system whereas RBD-negative early PD patients are 

less susceptible. This interpretation is supported by a previous MIBG report, which compared 

iRBD to PD patients across H&Y stages I through V31. These authors found MIBG pathology 

indices in iRBD of 300% (compared to H&Y I PD), 127% (H&Y II), 110% (H&Y III), and 102% 

(H&Y IV) (grey inserts in Figure 5). 
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   The iRBD group displayed a similar reduction in LC neuromelanin signal to our diagnosed PD 

patients. The PD comparator group comprised 15 polysomnography-verified RBD-positive and 14 

RBD-negative patients21. Our iRBD patients displayed a larger mean reduction in LC neuromelanin 

signal than the RBD-negative PD sub-group, although the difference was non-significant 

(Supplementary Figure 2)21. These observations are in line with previous studies of iRBD and 

PD20,38 and reinforce the conclusion that iRBD patients exhibit a more profound loss of LC 

neuromelanin than diagnosed PD patients without RBD. Damage to pontine nuclei, including 

sublaterodorsal nucleus and peri-coeruleus complex, is thought to be responsible for generating the 

RBD phenotype14. 

 

 

Supplementary Figure 2. The MRI neuromelanin LC/pons ratio in healthy controls (HC), iRBD, and PD patients 

with and without RBD. No significant differences were seen between iRBD and either PD group (iRBD vs. PD-RBD: 

p=0·344, iRBD vs. PD+RBD: p=0·662). However, the iRBD group displayed significantly lower values than the HC 

group (p=0·004). [Dotted line denotes 1 SD below control mean]. 

 

   11C-MeNER is a reboxetine analogue that binds specifically to noradrenaline transporters. Two 

recent studies have reported reduced 11C-MeNER binding in the red nucleus and thalamus of PD 

patients compared to controls21,22. Our iRBD patients had lower mean 11C-MeNER binding 

bilaterally in the thalamus and red nucleus than healthy controls but the reduction only reached 

significance in the left thalamus after a post hoc analysis (Supplementary Figure 1). Sommerauer 

et al. have previously reported that RBD-positive PD patients showed significant reductions in 

thalamic 11C-MeNER BPND, whereas RBD-negative PD patients did not. Our findings suggest that 

noradrenergic terminal loss is less pronounced in iRBD compared to PD patients with RBD. 11C-
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MeNER gives a low specific signal, so our study may well have lacked the power to detect 

bilaterally significant thalamic 11C-MeNER reductions with this intrinsically noisy tracer. 

   29% of our iRBD patients exhibited decreased putaminal FDOPA uptake in line with previous 

dopamine transporter imaging studies39,40. Our PD comparator group for FDOPA had established 

disability (Table 1) so severe nigrostriatal dopaminergic deficits would be expected (Figure 4D). 

The use of this PD group as a comparator resulted in a low FDOPA pathology index for the iRBD 

patients (21%) which could have been higher if iRBD had been compared with newly diagnosed 

PD cases. FDOPA PET is a marker of aromatic L-amino acid decarboxylase and this becomes up-

regulated in remaining terminals during the early stages of nigrostriatal degeneration41. Such 

upregulation could mask early dopaminergic dysfunction in iRBD when FDOPA PET is used as 

an imaging biomarker. Nevertheless, normal presynaptic dopamine imaging is considered an 

exclusion criterion for a PD diagnosis24. Since 71% of our iRBD subjects had normal putamen 

FDOPA uptake, we conclude that the dopaminergic system is considerably less affected in iRBD 

compared to the dusfunction of the autonomic nervous system and the LC. 

   We emphasize that our iRBD findings may only represent a valid prodrome of PD patients with 

additional RBD. It is accepted that RBD is associated with a more aggressive PD phenotype which 

shows  more widespread -syn deposition affecting most brain regions42, and faster progression of 

motor and non-motor symptoms43. We have demonstrated that the level of dysfunction in the 

autonomic nervous system of iRBD patients equals, and at times exceeds, that seen in unselected 

PD patients. Based on its pattern of autonomic and LC involvement, we hypothesize that non-

cognitively impaired iRBD parallels the Braak stage 2 PD distribution of Lewy pathology2. We 

speculate that this supports the view that, during the prodromal phase of PD or DLB with RBD, 

the -syn pathology responsible originates in peripheral autonomic/enteric nerve terminals. In 

contrast, RBD-negative early-stage PD patients may have a more benign phenotype where -syn 

pathology is primarily initiated within the CNS  and olfactory bulb. This hypothesis is speculative, 

but would explain why not all PD patients show a Braak-like distribution of -syn pathology at 

post-mortem  - 20% of cases have no pathology in the DMV11. 

   The dual-hit hypothesis is based on post-mortem Braak staging of PD brains2, however, DLB 

cases can exhibit alternative distributions of -syn pathology44. Our choice to study iRBD as a 

prodrome of PD can be criticized as ~50% of iRBD subjects will convert to DLB12,13. Despite this 
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caveat, our findings strongly suggest that iRBD represents a prodrome of both DLB and PD with 

RBD  and these patients are similar with respect to having early peripheral autonomic and LC 

dysfunction. We will follow-up our iRBD cases to determine whether those patients with a final 

PD+RBD diagnosis show more extensive peripheral dysfunction than the DLB converters. Finally, 

we propose that MIBG scintigraphy may be useful for predicting which iRBD cases will progress 

to clinical MSA as cardiac sympathetic innervation is preserved in this synucleinopathy35. We 

speculate that those iRBD cases with normal MIBG scans have a higher probability of representing 

prodromal MSA. This assertion needs confirmation in future studies.   

   The pattern of neuronal cell loss seen in PD does not parallel the severity of Lewy pathology and 

it has been suggested that regional or cell-related factors could be responsible for this9,11. Our 

findings are relevant to this discussion, since we primarily used markers of nerve terminal function, 

not cell body loss. -syn is a synaptic protein and its initial aggregation is thought to take place in 

neuronal terminals1. Studies have shown a more dramatic loss of nerve terminals compared to cell 

bodies across several neurotransmitter systems in PD35,45. This implies that neurons containing 

Lewy pathology will be most dysfunctional at a synaptic level, while their cell bodies may remain 

intact. Our results in iRBD show a pattern of neuronal terminal damage that parallels Braak stage 

2 of Lewy body pathology although cell body loss measured in post-mortem studies of early PD 

patients does not follow Braak -syn staging. The fact that some neurons containing -syn 

aggregates are more resistant to apoptosis than others  is not against the hypothesis that -syn 

aggregates can be transmitted through inter-connected neuronal networks, nor that the initial -syn 

aggregation may first occur in peripheral nerve terminals in some individuals. 

   This study has several limitations: First, we used different groups of healthy controls and PD 

patients as comparators when analysing iRBD imaging findings. This was to limit levels of 

radiation exposure to healthy and PD subjects and maintain scan tolerance as far as possible in our 

complex PET/MRI programme. However, except for minor differences in age distribution of the 

11C-donepezil groups and an unmatched male/female ratio in the 123I-MIBG data, all HC and PD 

reference groups were reasonably comparable to the iRBD patients in terms of demographic 

findings. Second, we included both early-stage and later-stage PD comparator groups. Thus, our 

pathology index of iRBD relative to PD for different imaging biomarkers (Figure 5) must be 

interpreted with caution. The most important finding is that the iRBD cases showed peripheral 

cholinergic and noradrenergic dysfunction and LC melanin loss at a similar level to diagnosed PD 

Commented [DB2]: Perhaps drop it altogether?! 
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patients. Third, our iRBD sample size of 22 was modest affecting our power to interrogate data 

statistically, particularly the neuromelanin and 11C-MeNER analyses. These cases, however, are 

not easy to find and recruit for complex imaging programmes. Fourth, since 11C-donepezil PET is 

not a specific parasympathetic marker, the significant intestinal 11C-donepezil signal reductions in 

iRBD may indicate both parasympathetic and local enteric nerve terminal damage.  

   In conclusion, iRBD patients display neuronal dysfunction in the peripheral autonomic nervous 

system and locus coeruleus equivalent to diagnosed PD patients although 71% of these iRBD 

patients have normal nigrostrial dopaminergic innervation. This pattern of dysfunction parallels 

Braak stage 2 -syn pathology in PD and supports the hypothesis that -syn misfolding and 

aggregation in iRBD,  a prodrome of both PD and DLB with RBD, initially targets terminals of the 

peripheral nervous system.  
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Figure Legends 

 

Figure 1. The five imaging modalities and their relationship to Braak stage structures are denoted by roman 

numerals. I. 11C-donepezil PET signal of the intestine is a surrogate marker of decreased cholinergic 

innervation, including parasympathetic innervation from the dorsal motor nucleus of the vagus (DMV). 

Arrows indicate the small intestine. 123I-MIBG is a validated tracer of sympathetic cardiac innervation II. 

11C-MeNER measures the density of noradrenergic terminals originating in the locus coeruleus (LC). The 

integrity of the pigmented cell bodies of the LC is estimated by neuromelanin-sensitive MRI (arrows). III. 

Striatal dopaminergic innervation from the substantia nigra (SN) is measured by 18F-DOPA PET. 

 

 

Figure 2. Representative images from healthy controls (HC), iRBD, and PD patients with the five imaging 

modalities. Individual cases are representative of the group mean within the respective groups. A. 11C-

donepezil PET/CT. Note lower donepezil uptake in the colon in iRBD and PD. Arrows denote transverse 

colon. B. 123I-MIBG scintigraphy of the heart (arrow). Note completely absent heart uptake in iRBD and 

PD. C. Neuromelanin (NM) MRI of locus coeruleus (arrows). Note lower locus coeruleus signal in iRBD 

and PD. D. 11C-MeNER PET. Thalamic MeNER binding potential (BPND), shown by arrows, is decreased 

in iRBD and PD. E. 18F-DOPA PET. Putamen FDOPA signal (arrows) is mildly decreased in some iRBD 

cases, but markedly decreased in PD. 
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Figure 3. A-B. The volume-corrected 11C-donepezil standard uptake values (SUV) in the small intestine 

(A) and colon (B) of healthy controls (HC), iRBD, and PD patients. The colon was impossible to define in 

one HC, leaving only 15 HC with colon values. C. Heart/mediastinum (H/M) ratio on the late 123I-MIBG 

images. D. Wash out values of MIBG from the early (15 min) to late image (3·5 h). [Solid lines denote 

group means. Dotted lines denote -1 and -2 SD below control mean].  

 

 

 

Figure 4. A. The MRI neuromelanin LC/pons ratio in healthy controls (HC), iRBD, and PD patients. B-C. 

The 11C-MeNER PET binding potential (BPND) in the thalamus (Th) and nucleus ruber (Ru). C. The 

minimum (left or right) 18F-DOPA Ki value in the putamen. [Solid lines denote group means. Dotted lines 

denote -1 and -2 SD below control mean]. 

 

 

Figure 5. The figure shows pathology indices (mean±SEM) of the present iRBD imaging data (black 

circles) listed according to Braak stage structures. For each imaging modality the healthy control (C) average 

is set at 0% and PD average at 100%. Grey circles show pathology indices from two previous MIBG 

studies19,31 (a & b), and two dopamine transporter SPECT studies32,33 (c & d). The four grey points in b show 

the MIBG pathology index of iRBD patients compared to H&Y stage I through IV PD patients (roman 

numerals: I, II, III, IV). Note that the H&Y I index was actually 300% (denoted by * and up-arrow). That 

particular MIBG study demonstrated that iRBD patients show more severe cardiac sympathetic denervation 

than H&Y I-II PD patients (MIBG index >100%). Similarly, our iRBD group showed a donepezil PET 

index of 157% when compared to our early stage PD patients. In one dopamine transporter SPECT studies, 

iRBD patients were compared to de novo H&Y I patients (c), and in another iRBD cases were compared to 

PD patients with and without RBD (depicted with + and - RBD). [DON: donepezil colon values, NM: 

neuromelanin MRI] 

 


