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Abstract

Objectives

Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes.

We aimed to investigate the potential of enteric neural stem cell therapy approaches for

such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic

and aganglionic mouse gut in vivo and analysing functional integration and long-term

safety.

Design

Neurospheres generated from yellow fluorescent protein (YFP) expressing ENCCs

selected from postnatalWnt1-cre;R26R-YFP/YFPmurine gut were transplanted into gangli-

onic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywamice (lacking

functional endothelin receptor type-B). Intestines were then assessed for ENCC integration

and differentiation using immunohistochemistry, cell function using calcium imaging, and

long-term safety using PCR to detect off-target YFP expression.

Results

YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within

recipient ganglionic gut. Transplanted cells and their projections spread along the endoge-

nous myenteric plexus to form branching networks. Electrical point stimulation of endoge-

nous nerve fibres resulted in calcium transients (F/F0 = 1.16±0.01;43 cells, n = 6) in YFP+

transplanted ENCCs (abolished with TTX). Long-term follow-up (24 months) showed trans-

planted ENCCs did not give rise to tumours or spread to other organs (PCR negative in
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extraintestinal sites). In aganglionic gut ENCCs similarly spread and differentiated to form

neuronal and glial networks with projections closely associated with endogenous neural

networks of the transition zone.

Conclusions

Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut

showing appropriate spread, localisation and, importantly, functional integration without any

long-term safety issues. This study provides key support for the development and use of

enteric neural stem cell therapies.

Introduction

Enteric neuropathies represent some of the most severe clinical gastrointestinal (GI) disorders

and are characterised by failure of normal propulsive contractile activity leading to functional

obstruction to the flow of luminal contents.[1–3] Archetypal disorders include the congenital

disorder Hirschsprung disease and acquired oesophageal achalasia, which result from an abso-

lute absence or loss of intrinsic enteric neurons in the distal and proximal parts of the GI tract

respectively. More subtle neuronal defects underlie other disorders such as intestinal pseudo-

obstruction and slow transit constipation, which show evidence of neuropathy on histology or

on contractile profiles from intestinal physiological studies.[4–7]

Enteric neuropathies are generally devastating conditions, which left untreated are life

threatening. Current available treatments are largely limited to surgery to decompress the

intestine or resect its most abnormal segments and the provision of specialised nutrition, often

parenteral, to preserve growth and development. Outcomes of such interventions are often

unsatisfactory and associated with significant complications[8, 9] highlighting the need for

alternative approaches.

Tremendous advances in regenerative medicine have brought the prospect of neural regen-

eration to replace deficient or defective enteric neurons as a potential therapeutic strategy for

enteric neuropathies to the forefront.[8, 10–12] Several cell types have been identified as poten-

tial sources of donor cells for a cell replacement therapy, such as skin-derived precursors and

central nervous system progenitors [13–16]. Arguably the most promising progress towards

this ultimate goal has been made using enteric neural crest cells (ENCCs) which comprise

enteric neural stem cells, neurons and glia and are derived from the original population of

migratory neural crest cells (NCC) that, during embryogenesis, colonise the gut to form the

enteric nervous system (ENS) [17–22].

The isolation of enteric neural stem cells was first described over a decade ago from murine

gut, including models of Hirschsprung disease.[23] Since then there has been steady progress

emanating from the isolation of such cells from human intestine including from the gut

mucosa of patients obtained by conventional endoscopy[24]. We and others have shown that

ENCCs contained within discrete cellular aggregates or neurospheres (including enteric neural

stem cells, neurons and glia) formed in culture can colonise recipient bowel in vitro.[23–32].

Most recently, in vivo studies have confirmed that ENCCs, predominantly from embryonic

mouse gut, are capable of migration, proliferation and differentiation and they retain some

functionality after transplantation into postnatal mouse gut.[16, 33–36] Although these initial

studies have addressed aspects of feasibility of ENS stem cell transplants, a number of chal-

lenges remain, including questions concerning long-term safety and the ability of transplanted
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cells to form neural networks, which connect to the endogenous enteric neural network. The

ability to form an integrated and functional ENS after transplantation, in vivo, will be critical in

the treatment of both aganglionic and euganglionic enteric neuropathies.

In this paper we confirm that postnatal mouse-derived ENCCs can colonise ganglionic

mouse gut in vivo and form neural networks, which functionally integrate with endogenous

ENS. We show that ENCCs similarly colonise aganglionic bowel. The transplanted cells do not

appear to pose any long-term safety risk within the recipient animals.

Materials and Methods

Animals

Animals used for this study were maintained and the experiments performed were in accor-

dance with the local approvals and the UK Animals (Scientific Procedures) Act 1986 under

licence from the Home Office (PPL70/7500).Wnt1-cre;R26R-YFP/YFPmice[37–39] in

which NCC express yellow fluorescent protein (YFP) were used to obtain YFP+ enteric

NCC (ENCCs). R26R-YFP/YFP littermates (in which YFP is not expressed in the absence of

cre) were used as ganglionic recipient bowel into which YFP+ ENCCs were transplanted.

Ednrbtm1Ywa mice lacking endothelin receptor type B (a model for Hirschsprung Disease)

(obtained from Jackson Laboratory (JAX#003295)) were used as aganglionic recipient bowel

for YFP+ ENCCs.

Isolation, cell sorting and culture of ENCCs

YFP+ ENCCs were obtained from early postnatal (P2-P4)Wnt1-cre;R26R-YFP/YFPmice.

Muscle strips of bowel (containing muscle layers and myenteric and submucosal plexuses)

were dissociated enzymatically (Collagenase, Sigma, 1mg/ml) for 30 minutes at 37°C. Dissoci-

ated cells were washed with neurosphere medium (NSM) (DMEM F12 supplemented with B27

(InvitrogenLife Technologies, UK), N2 (Life Technologies, UK), 20ng/ml EGF (Peprotech,

UK), 20ng/ml FGF (Peprotech, UK), and Primocin antibiotic (Invivo Gen, UK)) and filtered

through a 100μm and 40μmmesh.

ENCCs were isolated from the total cell population using fluorescence activated cell sorting

(FACS) for YFP. Dissociated cells were resuspended in NSM with 2% foetal calf serum before

undergoing FACS using a MoFloXDP cell sorter (Beckman Coulter).

ENCC were washed with NSM before plating on fibronectin-coated wells of 6-well dishes in

NSM. They were maintained in culture and generated neurospheres from around 1 week. Pri-

mary neurospheres generated in cultures maintained for a maximum of 30 days were used for

the transplants.

Transplantation of ENCCs into gut in vivo

YFP expressing ENCCs derived fromWnt1-cre;R26R-YFP/YFPmice were transplanted into

the ganglionic distal colon of ‘wild-type’ R26R-YFP/YFP littermates (which did not express

YFP in the absence of cre) via laparotomy at weaning (postnatal day 21) (n = 66). The same

YFP expressing ENCCs were transplanted into Ednrbtm1Ywa mutants (identified by their pie-

bald markings) as early as practically possible at postnatal day 9–13 (n = 5).

Laparotomy was conducted under isoflurane anaesthesia, using 0.05% carprieve (Norbrook)

and 0.25% marcaine polyamp (AstraZenica) analgesic agents. An incision was made in the

lower abdomen through the peritoneum to reveal the bowel. The most distal portion of colon

accessible from within the peritoneal cavity (around 0.5cm from the rectum), was exposed.

ENCCs, as neurospheres (3 per animal), were selected using a fine glass capillary attached to a
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mouth pipette and inserted into a small pocket in the serosa of the bowel using the bevel of a

syringe needle. The exteriorised bowel was returned to the abdomen and the laparotomy inci-

sion was closed using a combination of absorbable sutures (Ethicon) and wound clips (World

Precision Instruments), which were removed 7 days post-surgery.

Bromodeoxyuridine (BrdU) (Sigma, UK; 10mM (10μl/g weight of 10 mg/ml BrdU) in PBS)

was injected intraperitoneally at the time of surgery with additional application 24 hours post

surgery.

Transplanted R26R-YFP/YFPmice were checked periodically following surgery and of those

transplanted 4 (of 66) were in obvious discomfort in the 12 hours following surgery and were

euthanised according to protocol. The cause was determined to be perforation of the bowel.

The rest were typically maintained for around 4 weeks post-transplantation before sacrifice

and removal of bowel for analysis, although some animals were maintained up to 24 months to

obtain long-term safety data. Three of the 5 transplanted Ednrbtm1Ywa mutants developed

abdominal swelling and loss of condition without obvious intestinal perforation 2–4 days after

transplant and were euthanized. The other 2 animals were euthanized at day 5 post-transplant.

PCR

In order to ascertain whetherWnt1-cre;R26R-YFP/YFP-derived transplanted cells migrated to

locations other than the gut following transplantation into R26R-YFP/YFP recipients, PCR was

performed to identify the cre transgene. Brain, lungs, heart, liver, spleen, kidneys, adrenal

glands and gut mesentery were collected on sacrifice and frozen.Wnt1-cre;R26R-YFP/YFP pos-

itive control tissue was obtained fromWnt1-cre;R26RYFP/YFP gut tissue, transplanted gut, YFP+

neurospheres and aWnt1-cre;R26RYFP/YFP ear biopsy. DNA was extracted using DNAReleasy

(Anachem) diluted 1μl in 4μl water and heated to 75°C for 5min followed by 96°C for 2 min.

PCR was performed using cre primers (5’-ACCCTGATCCTGGCAATTTCGGC and 5’-

GATGCAACGAGTGATGAGGTTCGC) and a cycle with a 60°C annealing temperature.

Immunohistochemistry

Cells and transplanted bowel were fixed and analysed using immunohistochemistry as

described previously[24, 40]. The primary and secondary antibodies used in the study are listed

in Table 1 and Table 2.

Briefly, for wholemount immunolabelling, gastrointestinal tracts were fixed in 4% PFA (1h),

washed (2x10min, PBS) and then blocked (1h –overnight, wholemount blocking solution (WBS)

(PBS, 2% Triton X-100, 10% sheep serum). Primary antibodies were applied for 48h at 4°C before

washing (2x1h, PBS with 1% Triton X-100) and addition of secondary antibodies (24h, 4°C). Sec-

ondary antibodies were washed and samples mounted on glass coverslips for imaging.

For labelling with BrdU antibody, samples were first labelled with other primary antibodies

as described above. Samples were post fixed (4% PFA,10 min, RT) and washed 3x in PBS. This

was followed by treatment with 2M HCl for 15minutes at RT. After washing (3x15min), Rat

anti-BrdU (Oxford Biotech, UK, 1:20) was applied overnight at 4°C, followed by goat anti-rat

568 (1:500) secondary antibody. Post antibody washings and mounting were carried out as

described above.

Images were acquired on a Zeiss LSM 710 confocal microscope (Zeiss, Cambridge, UK) and

were processed using ImageJ and Adobe Photoshop software[41, 42].

Calcium imaging of transplanted mouse ENCCs

Colonic segments were removed from transplanted mice as described and immediately

immersed in previously oxygenated (95% oxygen/5% carbon dioxide) Krebs solution (in mM:
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120.9 NaCl, 5.9 KCl, 1.2 MgCl2, 2.5 CaCl2, 11.5 glucose, 14.4 NaHCO3 and 1.2 NaH2PO4).

After removing the mucosa, gut preparations were pinned tightly, serosal side up, in a Sylgard-

lined chamber. Transplanted YFP+ cells were identified and imaged at this stage.

Tissues were then loaded with the fluorescent Ca2+ indicator Fluo-4AM (Molecular Probes,

Invitrogen; 5mM) and Cremophor EL (Fluka Chemika, Buchs, Switzerland; 0.01%) in Krebs

solution at room temperature for 20 minutes with continuous oxygenation.

After loading, tissues were washed (2x10 min, Krebs) prior to imaging. Live fluorescence

imaging was performed on a Zeiss Examiner microscope equipped with a 20x (NA 1) water

dipping lens, Poly V monochromator (TILL Photonics, Gräfelfing, Germany) and cooled CCD

camera (Imago QE; TILL Photonics, Gräfelfing, Germany). The experimental chamber volume

was maintained at 3ml via a gravity-fed perfusion system ensuring continuous perfusion

(1ml/min) with 95% oxygen/5% carbon dioxide-gassed Krebs solution (at RT), excess solution

was removed via a peristaltic suction pump. Fluo-4 was excited at 475nm, and its fluorescence

emission was collected at 525/50 nm. Images (640X512 pixels2) were acquired at 2 Hz.

Electrical train stimulation (2 s, 20 Hz of 300 μs electrical pulses; Grass Instruments,

Quincy, Massachusetts, USA) was applied via a platinum electrode (diameter 25 μm), inserted

at a distance of 200μm from the most peripheral YFP+ cell or fibre in the observed transplanted

region of interest. Care was taken during this insertion to ensure contact was restricted to

endogenous (non YFP+) fibres. To confirm the neuronal origin of the signal in YFP+ trans-

planted cells, experiments were conducted in the presence of tetrodotoxin (1 μM, Sigma, Bor-

nem, Belgium). Local application of high K+ was also used as a means of determining basic

functionality of transplanted cells within host tissues.

Table 1. Primary antibodies for immunohistochemistry studies.

PRIMARY ANTIBODY CONCENTRATION COMPANY

Mouse anti-TuJ1 1:500 Covance

Mouse anti-GFAP 1:500 Dako

Rabbit anti-GFP 1:500 Invitrogen

Mouse anti-GFP 1:500 Invitrogen

Chicken anti-GFP 1:500 Abcam

Goat anti-Sox10 1:300 Santa Cruz

Rabbit anti-S100 1:400 Dako

Rabbit anti-nNOS 1:400 Invitrogen

Rabbit anti-VIP 1:400 AbD Serotec

Goat anti-ChAT 1:300 Millipore

Rat anti-BrdU 1:20 Oxford Biotech

Mouse anti-Synaptophysin 1:250 AbD Serotec

doi:10.1371/journal.pone.0147989.t001

Table 2. Secondary antibodies for immunohistochemistry studies.

SECONDARY ANTIBODY ALEXA FLUOR CONCENTRATION COMPANY

Goat anti-rabbit 488 1:500 Invitrogen

Goat anti-mouse 488 1:500 Invitrogen

Anti-chicken 488 1:500 Abcam

Anti-mouse 568 1:500 Invitrogen

Anti-rabbit 568 1:500 Invitrogen

Anti-mouse 647 1:500 Invitrogen

Anti-rabbit 647 1:500 Invitrogen

doi:10.1371/journal.pone.0147989.t002
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Images were collected using TILLVision software (TILL Photonics) and post acquisition

analysis performed in IGOR PRO (Wavemetrics, Lake Oswego, Oregon, USA). Movement arti-

facts were removed by registering the image stack to the first image. Regions of interest (ROI)

were drawn over each cell, fluorescence intensity was normalised to basal fluorescence for each

ROI(F/F0), and peaks analysed [43–45].

Results

YFP+ ENCCs form neurospheres containing neurons, glia and
presumptive enteric neural stem cells

Intestinal muscle strips were taken fromWnt1-cre;R26R-YFP/YFPmice aged P2-4 in which

NCC and their derivatives express YFP. Following gut dissociation, YFP+ ENCCs were selected

by FACS where these cells accounted for 16.5±1.9% (n = 6) of the total gut cell population (Fig

1A). Selected YFP+ mouse ENCCs formed characteristic neurospheres of approximately 20μm

in diameter within 2 weeks in culture, which increased in size to approximately 120μmwithin

a month (Fig 1B). The neurospheres comprised cells expressing ENS markers such as the pan-

neuronal marker TuJ1 (31.7%±3.2% of cells within the neurosphere (n = 3)) and the glial

marker GFAP (27.7%±5.9% (n = 3)), which maintained their YFP expression throughout cul-

ture (Fig 1C). They also contained cells that were immunopositive for Sox10 but negative for

GFAP (Fig 1D), the expression profile of presumptive enteric neural stem cells (Sox10+ cells

accounted for 67.7%±8.7% of cells within the neurosphere (n = 3), thus Sox10+;GFAP- enteric

neural stem cells accounting for around 40%).

Transplanted ENCCs show appropriate colonisation, localisation and
formation of ENS-like networks in ganglionic host gut

YFP+ neurospheres were transplanted into postnatal wild-type mouse distal hindgut. YFP+

transplanted ENCCs were subsequently identified within the gut wall of 56/62 animals exam-

ined (90.3%), up to 24 months post-transplantation. Within the gut, YFP+ ENCCs spread

orally and anally from the site of transplantation and formed extensive branching networks co-

located with the endogenous ENS (Fig 2A including inset and S1 Fig panel A). By 15 weeks

post-transplantation YFP+ networks, on average, covered an area of 4.3±3.1mm2 and cell bod-

ies were observed at a distance of 1.4±0.4mm from the site of transplantation (n = 10) (S1 Fig

panel B and C). These parameters, as well as the proximal-distal spread of transplanted cells,

showed positive correlation to the number of days post-transplantation (S1 Fig panel B

(r = 0.68, n = 32, p<0.01); 1C (r = 0.54, n = 28, p<0.01); and 1D (r = 0.51, n = 28 p<0.01)

respectively). There was no significant difference between the mean oral (0.9±0.38mm) and

aboral (0.9±0.4mm) spread (t = 0.45, n = 6, p<0.5).

Cell bodies (Fig 2B) of, and projections (arrowhead, Fig 2A) from, transplanted YFP+TuJ1+

neuronal cells were located within the endogenous myenteric plexus and projected within it for

several millimetres. Punctate labelling around transplanted cells with the synaptic vesicle pro-

tein synaptophysin (arrowheads, Fig 2C) suggested synapse formation within the host gut.

Transplanted YFP+ ENCCs show functional integration within host gut

In order to test the functional integration of transplanted YFP+ ENCCs within the host gut mus-

culature, we examined [Ca2+]i upon electrical stimulation of the endogenous enteric neural net-

work (Fig 3A) or used application of high K+ as a means of neuronal activation. Electrical point

stimulation of endogenous enteric nerve fibres resulted in calcium transients (F/F0 = 1.16±0.01;

43 cells, n = 6) in both the cell bodies and fibres of YFP+ transplanted ENCCs (Fig 3B–3D and
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Fig 1. Isolation and culture of YFP+ enteric neural crest cells (ENCC) from postnatal Wnt1-cre;R26RYFP/YFPmouse gut. A. Flow cytometry profile
showing the YFP+ cell population (green) separate from the enteric cell population (pink).B. Selected YFP+ cells form YFP+ neurospheres after 7 days in
culture.C. Immunohistochemical analysis confirms that all cells within the neurospheres express YFP (green;Civ, Div). Neurospheres contain cells
immunopositive for the neuronal marker TuJ1 (red; C, Ci) and the glial marker GFAP (cyan; C, Cii). DAPI labels nuclei in blue (Ciii). D. Neurospheres
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S1Movie). These calcium transients were abolished in the presence of 1μMTTX, confirming

their neuronal identity (Fig 3D and 3E; 43 cells, n = 6) (S1Movie). Local application of high K+

also resulted in similar widespread calcium transients throughout YFP+ transplanted cell net-

works and contributed to large contractions of the musculature (data not shown).

Transplanted YFP+ ENCCs generate a range of ENS cell types in vivo

The ENS cell-types of transplanted YFP+ ENCCs were analysed by immunofluorescence

4-weeks after transplantation. 53±14% of transplanted cells expressed the neuronal marker

TuJ1 (n = 13) (Fig 4A and S2 Fig panel A and S3 Fig panel A). nNOS expressing cells accounted

for the majority of neurons (50±5% of transplanted cells; Fig 4B and S2 Fig panel B and S3 Fig

panel A). Transplanted cells expressed other neuronal markers, such as ChAT, Calbindin and

VIP (S2 Fig panels C, D and E respectively) but these cell types were less numerous (data not

shown). Transplanted cells also expressed the glial cell markers S100 and GFAP (Fig 4C and S2

Fig panel F and G). S100+ cells comprised 64±22% of transplanted cells (S3 Fig panel A; n = 3).

YFP+ ENCCs proliferate post-transplant giving rise to enteric neurons
and glia

The proliferative capability of transplanted YFP+ cells was assessed by BrdU incorporation.

BrdU pulses were administered at transplantation and 24h later. BrdU incorporation was iden-

tified within YFP+ cells and quantified in different cell types (S3 Fig panel B). 26±19% of

(outlined by dotted lines) also contain cells (asterisk and arrowheads) that express Sox10 (red;D, Di andDiii, arrowheads) but are negative for GFAP (cyan;
D, Dii) i.e. presumptive ENSSCs. Inset inD shows a cross section through a Sox10+/GFAP- cell (red only; asterisk; presumptive ENSSC) adjacent to a
Sox10+/GFAP+ cell (red and cyan; presumptive glial cell). Scale bar in B-D = 20μm.

doi:10.1371/journal.pone.0147989.g001

Fig 2. ENCCs from transplanted murine neurospheres show appropriate colonisation, localisation and formation of ENS-like networks in recipient
wild-type gut. A.Wholemount gut preparation showing YFP+ transplanted cells (green) projecting along endogenous TuJ1+ (red) ENS nerve fibres. Arrow
indicates cell bodies at the presumptive site of transplantation and arrowhead indicates distal extent of projections of transplanted cells. YFP+ transplanted
cells also expressing the neuronal marker TuJ1 are seen as yellow. Inset shows a high power image taken from boxed region in S1 Fig panel A revealing
interconnections and network formation between YFP+ cell bodies.B. Confocal 3D reconstruction showing YFP+ transplanted cells (green) located at the
site of transplantation on the serosal surface (S) and within the myenteric plexus (MYP; arrowheads) between the inner circular (CM) and outer longitudinal
(LM) muscle layers.C. YFP+ transplanted cells (green) co-locate with the synaptic marker synaptophysin (red; arrowheads). Scale bar in A = 100μm;C =
25μm. Inset in C shows individual channels.

doi:10.1371/journal.pone.0147989.g002
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TuJ1+ cells (Fig 4A and S3 Fig panels B and C; n = 13), 36±19% of nNOS+ cells (Fig 4B and S3

Fig panel B, n = 3) and 32±17% of S100+ cells (Fig 4C and S3 Fig panel B; n = 3) showed BrdU

incorporation. This suggests that varying proportions of transplanted cells expressing neuronal

and glia markers are derived from cells that proliferate during the 48hrs following

transplantation.

Transplanted YFP+ ENCCs do not show uncontrolled proliferation, form
tumours or spread to other organs

Long-term studies of mice that were the recipients of YFP+ ENCC transplants were con-

ducted to assess safety of these transplants. Although initial BrdU exposure (48 hours after

transplantation) resulted in BrdU incorporation in transplanted cells, exposure 48hrs prior

to culling at 4 weeks post-transplantation did not show BrdU incorporation (data not

shown) suggesting there was no uncontrolled proliferation of transplanted cells. Macro-

scopic and PCR examination of transplanted animals and tissues aged 19–25 months

(including brain, lungs, heart, liver, spleen, kidneys, adrenal glands and gut mesentery)

failed to identify any YFP fluorescence or cre transgene within organs other than the gut

and positive controls (Fig 4D).

Fig 3. Transplanted YFP+ cells show functional integration within host gut. A. Schematic of experimental protocol demonstrating electrical point
stimulation of host enteric nerve fiber at a site distant from YFP+ transplanted cells.B,C.Representative images of YFP+ cells before (B) and after (C)
Fluo4-AM loading. Arrows indicate transplanted neurons (TP cell) from which Ca2+ responses are plotted in (D). D. Representative traces showing Ca2+

responses recorded as F/F0 from TP cell in control conditions (solid lines) and after addition of TTX (dotted lines). E. Summary data demonstrating abolition
of Ca2+ responses in the presence of TTX (43 cells, n = 6). Also see S1 Movie.

doi:10.1371/journal.pone.0147989.g003
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YFP+ ENCCs transplanted into aganglionic Ednrbtm1Ywa gut form
branching neuronal networks

Ednrbtm1Ywa mice are characterised by a variable length of aganglionosis in the distal colon and

mutants within our colony survive for around two weeks. Tuj1 immunohistochemistry showed

the proximal colon appeared normally ganglionated (Fig 5A and 5Ai) progressing distally to

the hypoganglionated region of transition zone (Fig 5A and 5Aii) and to the distal-most bowel,

which, although showing innervation by extrinsic fibres, lacks an intrinsic ENS (Fig 5A and

5Aiii).

YFP+ neurospheres were transplanted into the most distal portion of hindgut accessible

from the peritoneal cavity of Ednrbtm1Ywa mice (n = 5). Transplanted cells survived and could

be identified by their YFP fluorescence in 4 out of 5 guts after 3–5 days (Fig 5B). Transplanted

Fig 4. Transplanted YFP+mouse ENCCs proliferate and generate enteric neurons and glia but do not spread beyond transplanted gut. A-C. Z-
projections in which transplanted YFP+ cells co-express ENSmarkers (yellow; arrowheads) including the pan-neuronal marker TuJ1 (A), the inhibitory
neuronal marker nNOS (B), and the glial marker S100 (C). Transplanted cells co-expressing ENSmarkers also demonstrate BrdU incorporation (cyan;
arrowheads; A-C and insets). DAPI labels nuclei in blue (A-C and insets). Insets show individual channels. D.Wnt1-cre;R26R

YFP/YFP expressing transplanted
cells (YFP+) were identified within R26R

YFP/YFP recipient mice by the presence of the cre transgene on PCR. Representative cre-PCR to identify cre
expressing cells within the major organs from a transplanted mouse. Brain (B), lungs (Lu), heart (H), liver (Li), spleen (S), kidneys (K), adrenal glands (A) and
gut mesentery (M) were all negative for cre. Control tissues:Wnt1-cre;R26R

YFP/YFP gut tissue (C1), transplanted gut (C2), YFP+ neurospheres (C3) and
Wnt1-cre;R26R

YFP/YFP ear biopsy (C4) are cre+. Scale bar in A-C = 20μm.

doi:10.1371/journal.pone.0147989.g004
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cells included both Tuj1+ neurons (Fig 5Bii) and S100+ glia (data not shown) and had spread

out to form interconnected neural networks (Fig 5Bi). Furthermore projections from trans-

planted neuronal cells associated closely with the endogenous neurons of the transition zone

(Fig 5Bii and inset in 5Bii).

Discussion

Our studies confirm the feasibility of the in vivo transplantation of post-natally sourced

ENCCs into both ganglionic and aganglionic post-natal intestine. Not only are transplanted

cells able to engraft successfully into significant segments of intestine they are able to show crit-

ical functional integration with the endogenous neural networks. Importantly, our work sug-

gests that ENCC transplantation is safe in the long-term.

Fig 5. YFP+ ENCC colonise aganglionic Ednrbtm1Ywa gut in vivo. A. Neurons in an Ednrbtm1Ywa colon immunolabelled with TuJ1 progressing from
proximal ganglionated gut (Ai), through the partially ganglionated transition zone (Aii) to the distal aganglionic gut (Aiii). B. Ednrbtm1Ywa gut 3 days after
transplantation with YFP+ ENCCs (green) which could be identified in distal colon. Boxed area is area enlarged in Bi and asterisk denoted presumptive site of
transplantation in this region.Bi. Interconnections are visible between transplanted cells that have spread from the site of transplantation. Bii. Z-projections in
which endogenous neurons express the neuronal marker Tuj1 (red; arrow) and YFP+ transplanted cells (green) also coexpress Tuj1 (yellow; arrowhead).
Projections from YFP+;Tuj1+ transplanted cells closely associate with projections from endogenous Tuj1+ neurons present in the transition zone (insets in
Bii; arrowheads and arrows respectively). Scale bar in Bi = 100μm; Bii = 50μm. DAPi is shown in blue.

doi:10.1371/journal.pone.0147989.g005
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Only one other study to date has robustly tested engraftment and functional integrity of

ENCCs following in vivo transplantation [32]. Our study, however, extended this work signifi-

cantly across a number of domains from assessment of engraftment, post-transplant cell

behaviour and functional integration with endogenous neurons, through to long-term studies

of viability and safety. We were also able to assess in vivo transplantation into aganglionic

intestine.

Our exclusive use of postnatal intestine in the in vivo setting as both donor and recipient of

ENCCs served to best recapitulate the clinical setting of autologous transplantation. We have

previously shown that ENCCs can be harvested from human post-natal gut, even utilising min-

imally invasive techniques such as endoscopy. Such cells successfully colonised recipient agan-

glionic gut either embryonic gut maintained on chorioallantoic membrane or human gut

maintained in vitro [24]. Although human ENCCs remain to be tested in the in vivo setting our

murine studies confirm that the therapeutic strategy of autologous transplantation of ENCCs

into aganglionic and euganglionic intestine is a viable option.

Previous studies have suggested that recipient intestine with established endogenous enteric

neurons is poorly receptive to transplanted cells [10]. Our studies and those of others [16, 33,

35, 46] confirm this not to be the case opening up the considerable potential for ENCC therapy

for a range of enteric neuropathies not characterised by aganglionosis such as slow transit con-

stipation, intestinal pseudo-obstruction or those occurring following injury.

In our studies transplanted ENCCs showed significant proliferation in recipient intestine

following transplantation. BrdU assays confirmed that although highly proliferative following

delivery (giving rise to both neurons and glia in approximately equal proportions), trans-

planted cells did not continue to proliferate and seem to achieve a steady state within a few

weeks. This mimics the behaviour of the endogenous ENS after insult or injury [47] implying

that transplanted cells may be responding to endogenous signalling mechanisms tasked with

maintaining the structural and functional integrity of the ENS, perhaps at the site of injury sec-

ondary to implantation of the neurospheres. Nonetheless, this capacity to expand until pre-

sumably a status quo is achieved holds huge promise given it suggests that sufficient

‘therapeutic’ cells may be generated following transplant to colonise and integrate within the

recipient ENS.

Of course therapeutic success is reliant on appropriate differentiation and functional inte-

gration. In our studies, and as recently reported [32], we utilised YFP+ ENCCs derived from

postnatalWnt1-cre;R26R-YFP/YFP mice to generate YFP+ neurospheres, comprised of mature

neurons and glia as well as enteric neural stem cells but devoid of non-ENS cells (e.g. smooth

muscle and fibroblast-like cells). Upon transplantation, the YFP+ ENCCs were capable of gen-

erating both neurons and glia including a range of neuronal subtypes. Importantly nNOS+

cells were the predominant neuronal subtype evident in transplanted ENCCs. This may be crit-

ical for therapy of enteric neuropathies, many of which are characterised by loss of ENS or

more specifically of inhibitory nNOS neurons with tonic contraction and a failure of adequate

relaxation of the affected intestine[48, 49]. Our further studies will aim to determine whether

the nNOS component of transplanted cells is capable of restoring the inhibitory response in

models of nNOS deficiency

Transplanted ENCCs localised to the myenteric plexus and with their projections followed

established networks for considerable distances, which, accompanied by expression of the syn-

aptic marker synaptophysin, suggested integration with the host neuromusculature. In work by

Hotta et al the authors made intracellular recordings of individual transplanted ENCCs con-

firming them to be functionally active neurons and suggesting their functional integration

within recipient gut [35]. Using the different approach of intracellular calcium imaging we

were able to further show that stimulation of endogenous enteric nerve fibres resulted in
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widespread calcium transients throughout multiple cells within YFP+ transplanted neural net-

works. Such firing of multiple transplanted cells suggests integration of circuitry, which would

be required to impart functional improvements in models of neuropathy. This technique has

been used widely to demonstrate ENS functionality [44, 45]. These studies do suggest func-

tional integration of the transplanted networks with the endogenous neuromusculature but do

not confirm that this translates to changes in colonic motility as measured by contractile func-

tion or indeed transit of luminal contents. The use of wild-type ganglionic intestine precludes

this assessment given it is unlikely that one is able to see a supra-physiological change in motil-

ity. This will need to be done in the context of models of enteric neuropathy or aganglionosis.

To date studies demonstrating the colonisation of aganglionic gut by transplanted ENCCs

have been almost completely limited to in vitro experiments [24, 28] given the very poor sur-

vival of the mouse models of Hirschsprung disease. We have been able to progress these studies

into in vivo transplantation with data that supports the ability of ENCCs to rebuild neural net-

works. Although, the survival of recipient EDNRB null animals was limited we were able to

deliver the cells in vivo and show that they were able to engraft successfully. Accepting a short

duration for assessment transplanted ENCCs survived, spread out and formed close associa-

tions with endogenous neurons, providing promise that in a therapeutic setting transplanted

ENCCs may be able to make the connections with the endogenous ENS required to make func-

tional circuitry. Although, in keeping with the experience of others, our experiments continue

to be hampered by the poor survival of mouse models of Hirschsprung Disease (including

Ednrb and monoisoformic Ret51), novel strategies may facilitate future studies in such animals.

Stamp et al recently report a surgical model in a rat model of Hirschsprung disease whereby

formation of an intestinal stoma enabled good post-natal survival and well-being theoretically

facilitating assessment of transplants[50]. Alternatives include the use of less affected models of

enteric neuropathy, such as the nNOS null mutant, which is compatible with survival, but has

detectable neurological deficits [51], or other models of aganglionosis such as chemical ablation

of the ENS using treatments such as benzalkonium chloride (BAC) [47, 52].

A strength of our studies is the robust assessment of long-term safety up to 24 months post

transplantation. We could consistently visualise transplanted YFP+ cells within hindguts of

recipient mice in these end stage experiments, however we never observed YFP-derived

tumours in any organ. Additionally PCR analysis demonstrated that transplanted cells were

restricted to the distal colon with no evidence of spread or seeding to sites away from the target

organ. This containment of transplanted cells taken together with their restricted proliferative

capacity to the period immediately following transplantation provides critical safety data for

the application of any future cellular therapy. Although we did not assess transplanted cells for

genetic alterations our studies strongly support the long-term safety and suggest a minimal risk

of malignant transformation of ENCC transplants or metastatic spread.

In conclusion, our findings demonstrate that within the context of in vivo transplantation

postnatal ENCCs are able to engraft successfully and safely within recipient mouse bowel.

These observations significantly support and advance the development of cell replacement

strategies for a range of enteric neuropathies but this needs to be verified by further studies

detailing in vivo transplantations into more robust models of these devastating disorders.

Supporting Information

S1 Fig. Spread of YFP+ mouse ENCC following transplantation into in vivo gut. A. YFP

+ transplanted cells migrate from the presumptive site of transplantation (asterisk) to form

branching networks. Arrowheads indicate oral- and anal-most cells. B.Quantification of the

area covered by networks of transplanted cells originating from an individual neurosphere
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plotted over time (days post-transplant), (R = 0.54; n = 28; p<0.01). C. Quantification of the

maximal migration of transplanted YFP+ cells from the presumptive site of transplantation

plotted as a function of time (days post-transplant) (R = 0.68; n = 32; p<0.01).D.Quantifica-

tion of the maximal proximal-distal spread of transplanted YFP+ cells plotted as a function of

time (days post-transplant) (R = 0.51; n = 28; p<0.01). Scale bar in A = 250μm.

(TIF)

S2 Fig. Transplanted YFP+ ENCC generate neurons and glia, including different neuronal

subtypes. A-G. 3D reconstructions (low and high magnification) of z-stacks taken from whole-

mount gut preparations in which YFP+ transplanted cells (green) are immunohistochemically

labelled with a range of ENS markers (red; co-expression yellow and arrowheads). Trans-

planted cells express the pan neuronal marker TuJ1 (A), inhibitory neuronal markers nNOS

and VIP (B, E), excitatory neuronal markers ChAT and Calbindin (C, D), and the glial markers

S100 and GFAP (F, G). DAPI labels nuclei in blue. Scale bar in A-G low magnification = 50μm;

high magnification = 10μm. Insets show individual channels.

(TIF)

S3 Fig. Proliferation and safety data for transplanted YFP+ mouse ENCC. A. Percentage of

TuJ1+, nNOS+ and S100+ cells in the total population of transplanted cells (n = 13, 3, 3 respec-

tively). B. Percentage of TuJ1+, nNOS+ and S100+ transplanted cells showing BrdU incorpo-

ration (n = 13, 3, 3 respectively). C. Percentage of TuJ1+ transplanted cells showing BrdU

incorporation with high inter-sample variability, but low within-sample variability.

(TIF)

S1 Movie. Ca2+ responses of transplanted YFP+ mouse neurons following electrical stimu-

lation of endogenous ENS. Representative videos of Ca2+ responses following point stimula-

tion of the endogenous ENS. Left panel shows activation of transplanted YFP+ cells in control

conditions. In the presence of 1μMTTX, evoked Ca2+ responses are abolished (middle panel)

and are restored after washout (right panel). Equivalent transplanted cells (Fig 2B), Ca2+

response traces (Fig 2D) and cumulative data plots (Fig 2E) are presented in the main manu-

script.

(AVI)

Author Contributions

Conceived and designed the experiments: NT JC CM DN AJB JMD. Performed the experi-

ments: JC CM DNWB SC. Analyzed the data: JC CM NT. Contributed reagents/materials/

analysis tools: JC CM DN NT AJB PVBWB. Wrote the paper: JC NT DN CM AJB JMD.

References
1. Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, et al. Hirschsprung

disease, associated syndromes and genetics: a review. J Med Genet. 2008; 45(1):1–14. Epub 2007/
10/30. doi: 10.1136/jmg.2007.053959 PMID: 17965226.

2. Chuenkova MV, Pereiraperrin M. Neurodegeneration and neuroregeneration in Chagas disease. Adv
Parasitol. 2011; 76:195–233. Epub 2011/09/03. doi: 10.1016/B978-0-12-385895-5.00009–8 PMID:
21884893.

3. McKeown SJ, Stamp L, Hao MM, Young HM. Hirschsprung disease: a developmental disorder of the
enteric nervous system.Wiley Interdiscip Rev Dev Biol. 2013; 2(1):113–29. Epub 2013/06/27. doi: 10.
1002/wdev.57 PMID: 23799632.

4. Facer P, Knowles CH, Thomas PK, Tam PK, Williams NS, Anand P. Decreased tyrosine kinase C
expression may reflect developmental abnormalities in Hirschsprung's disease and idiopathic slow-
transit constipation. Br J Surg. 2001; 88(4):545–52. Epub 2001/04/12. doi: 10.1046/j.1365-2168.2001.
01731.x PMID: 11298623.

In Vivo Transplantation of Enteric Neural Crest Cells

PLOS ONE | DOI:10.1371/journal.pone.0147989 January 29, 2016 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147989.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147989.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147989.s004
http://dx.doi.org/10.1136/jmg.2007.053959
http://www.ncbi.nlm.nih.gov/pubmed/17965226
http://dx.doi.org/10.1016/B978-0-12-385895-5.00009&ndash;8
http://www.ncbi.nlm.nih.gov/pubmed/21884893
http://dx.doi.org/10.1002/wdev.57
http://dx.doi.org/10.1002/wdev.57
http://www.ncbi.nlm.nih.gov/pubmed/23799632
http://dx.doi.org/10.1046/j.1365-2168.2001.01731.x
http://dx.doi.org/10.1046/j.1365-2168.2001.01731.x
http://www.ncbi.nlm.nih.gov/pubmed/11298623


5. Geramizadeh B, Hayati K, Rahsaz M, Hosseini SV. Assessing the interstitial cells of Cajal, cells of
enteric nervous system and neurotransmitters in slow transit constipation, using immunohistochemistry
for CD117, PGP9.5 and serotonin. Hepatogastroenterology. 2009; 56(96):1670–4. Epub 2010/03/11.
PMID: 20214215.

6. Giorgio V, Borrelli O, Smith VV, Rampling D, Koglmeier J, Shah N, et al. High-resolution colonic
manometry accurately predicts colonic neuromuscular pathological phenotype in pediatric slow transit
constipation. Neurogastroenterol Motil. 2013; 25(1):70–8 e8-9. Epub 2012/10/04. doi: 10.1111/nmo.
12016 PMID: 23030503.

7. Wedel T, Spiegler J, Soellner S, Roblick UJ, Schiedeck TH, Bruch HP, et al. Enteric nerves and intersti-
tial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology.
2002; 123(5):1459–67. Epub 2002/10/31. PMID: 12404220.

8. Burns AJ, Thapar N. Neural stem cell therapies for enteric nervous system disorders. Nat Rev Gastro-
enterol Hepatol. 2014; 11(5):317–28. Epub 2013/12/11. doi: 10.1038/nrgastro.2013.226 PMID:
24322895.

9. De Giorgio R, Camilleri M. Human enteric neuropathies: morphology and molecular pathology. Neuro-
gastroenterol Motil. 2004; 16(5):515–31. Epub 2004/10/27. doi: 10.1111/j.1365-2982.2004.00538.x
PMID: 15500508.

10. Hotta R, Anderson RB, Kobayashi K, Newgreen DF, Young HM. Effects of tissue age, presence of neu-
rones and endothelin-3 on the ability of enteric neurone precursors to colonize recipient gut: implica-
tions for cell-based therapies. Neurogastroenterol Motil. 2010; 22(3):331–e86. Epub 2009/09/25. doi:
10.1111/j.1365-2982.2009.01411.x PMID: 19775251.

11. Hotta R, Natarajan D, Burns AJ, Thapar N. Stem cells for GI motility disorders. Curr Opin Pharmacol.
2011; 11(6):617–23. Epub 2011/11/08. doi: 10.1016/j.coph.2011.09.004 PMID: 22056114.

12. Hotta R, Thapar N. Advances in enteric neurobiology: how close are we to clinical use? J Pediatr Gas-
troenterol Nutr. 2011; 53 Suppl 2:S43–5. Epub 2012/01/12. PMID: 22235473.

13. Wagner JP, Sullins VF, Dunn JC. Skin-derived precursors generate enteric-type neurons in aganglionic
jejunum. J Pediatr Surg. 2014; 49(12):1809–14. Epub 2014/12/10. doi: 10.1016/j.jpedsurg.2014.09.
023 PMID: 25487489; PubMed Central PMCID: PMC4261145.

14. Wagner JP, Sullins VF, Dunn JC. Transplanted skin-derived precursor stem cells generate enteric gan-
glion-like structures in vivo. J Pediatr Surg. 2014; 49(8):1319–24; discussion 24–5. Epub 2014/08/06.
doi: 10.1016/j.jpedsurg.2014.01.061 PMID: 25092099; PubMed Central PMCID: PMC4122864.

15. Kwok CK, Tam PK, Ngan ES. Potential use of skin-derived precursors (SKPs) in establishing a cell-
based treatment model for Hirschsprung's disease. J Pediatr Surg. 2013; 48(3):619–28. Epub 2013/03/
14. doi: 10.1016/j.jpedsurg.2012.08.026 PMID: 23480922.

16. Findlay Q, Yap KK, Bergner AJ, Young HM, Stamp LA. Enteric neural progenitors are more efficient
than brain-derived progenitors at generating neurons in the colon. Am J Physiol Gastrointest Liver Phy-
siol. 2014; 307(7):G741–8. Epub 2014/08/16. doi: 10.1152/ajpgi.00225.2014 PMID: 25125684.

17. Le Douarin N, Kalcheim C. The Neural Crest. 2nd ed. Cambridge, United Kingdom: Cambridge Uni-
versity Press; 1999. 445 p.

18. Burns AJ, Thapar N. Advances in ontogeny of the enteric nervous system. Neurogastroenterol Motil.
2006; 18(10):876–87. Epub 2006/09/12. doi: 10.1111/j.1365-2982.2006.00806.x PMID: 16961690.

19. Furness JB. Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons. Auton Neurosci.
2006; 125(1–2):81–5. Epub 2006/02/16. doi: 10.1016/j.autneu.2006.01.007 PMID: 16476573.

20. Burns AJ. Migration of neural crest-derived enteric nervous system precursor cells to and within the
gastrointestinal tract. Int J Dev Biol. 2005; 49(2–3):143–50. Epub 2005/05/21. doi: 10.1387/ijdb.
041935ab PMID: 15906227.

21. Kapur RP, Yost C, Palmiter RD. A transgenic model for studying development of the enteric nervous
system in normal and aganglionic mice. Development. 1992; 116(1):167–75. Epub 1992/09/01. PMID:
1483385.

22. Sasselli V, Pachnis V, Burns AJ. The enteric nervous system. Dev Biol. 2012; 366(1):64–73. doi: 10.
1016/j.ydbio.2012.01.012 PMID: 22290331.

23. Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V. Neuron and glia generating progenitors of
the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development.
2003; 130(25):6387–400. Epub 2003/11/19. doi: 10.1242/dev.00857 PMID: 14623827.

24. Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived
from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology. 2009; 136
(7):2214–25 e1-3. Epub 2009/06/10. doi: 10.1053/j.gastro.2009.02.048 PMID: 19505425.

In Vivo Transplantation of Enteric Neural Crest Cells

PLOS ONE | DOI:10.1371/journal.pone.0147989 January 29, 2016 15 / 17

http://www.ncbi.nlm.nih.gov/pubmed/20214215
http://dx.doi.org/10.1111/nmo.12016
http://dx.doi.org/10.1111/nmo.12016
http://www.ncbi.nlm.nih.gov/pubmed/23030503
http://www.ncbi.nlm.nih.gov/pubmed/12404220
http://dx.doi.org/10.1038/nrgastro.2013.226
http://www.ncbi.nlm.nih.gov/pubmed/24322895
http://dx.doi.org/10.1111/j.1365-2982.2004.00538.x
http://www.ncbi.nlm.nih.gov/pubmed/15500508
http://dx.doi.org/10.1111/j.1365-2982.2009.01411.x
http://www.ncbi.nlm.nih.gov/pubmed/19775251
http://dx.doi.org/10.1016/j.coph.2011.09.004
http://www.ncbi.nlm.nih.gov/pubmed/22056114
http://www.ncbi.nlm.nih.gov/pubmed/22235473
http://dx.doi.org/10.1016/j.jpedsurg.2014.09.023
http://dx.doi.org/10.1016/j.jpedsurg.2014.09.023
http://www.ncbi.nlm.nih.gov/pubmed/25487489
http://dx.doi.org/10.1016/j.jpedsurg.2014.01.061
http://www.ncbi.nlm.nih.gov/pubmed/25092099
http://dx.doi.org/10.1016/j.jpedsurg.2012.08.026
http://www.ncbi.nlm.nih.gov/pubmed/23480922
http://dx.doi.org/10.1152/ajpgi.00225.2014
http://www.ncbi.nlm.nih.gov/pubmed/25125684
http://dx.doi.org/10.1111/j.1365-2982.2006.00806.x
http://www.ncbi.nlm.nih.gov/pubmed/16961690
http://dx.doi.org/10.1016/j.autneu.2006.01.007
http://www.ncbi.nlm.nih.gov/pubmed/16476573
http://dx.doi.org/10.1387/ijdb.041935ab
http://dx.doi.org/10.1387/ijdb.041935ab
http://www.ncbi.nlm.nih.gov/pubmed/15906227
http://www.ncbi.nlm.nih.gov/pubmed/1483385
http://dx.doi.org/10.1016/j.ydbio.2012.01.012
http://dx.doi.org/10.1016/j.ydbio.2012.01.012
http://www.ncbi.nlm.nih.gov/pubmed/22290331
http://dx.doi.org/10.1242/dev.00857
http://www.ncbi.nlm.nih.gov/pubmed/14623827
http://dx.doi.org/10.1053/j.gastro.2009.02.048
http://www.ncbi.nlm.nih.gov/pubmed/19505425


25. Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH. Characterisation and transplantation of
enteric nervous system progenitor cells. Gut. 2007; 56(4):489–96. Epub 2006/09/16. doi: 10.1136/gut.
2006.094565 PMID: 16973717; PubMed Central PMCID: PMC1856871.

26. Belkind-Gerson J, Carreon-Rodriguez A, Benedict LA, Steiger C, Pieretti A, Nagy N, et al. Nestin-
expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol Motil. 2013;
25(1):61–9 e7. Epub 2012/09/25. doi: 10.1111/nmo.12015 PMID: 22998406; PubMed Central PMCID:
PMC3531577.

27. Hagl C, Schafer KH, Hellwig I, Barrenschee M, Harde J, Holtmann M, et al. Expression and function of
the Transforming Growth Factor-b system in the human and rat enteric nervous system. Neurogas-
troenterol Motil. 2013; 25(7):601–e464. Epub 2013/03/29. doi: 10.1111/nmo.12119 PMID: 23534441.

28. Lindley RM, Hawcutt DB, Connell MG, Almond SL, Vannucchi MG, Faussone-Pellegrini MS, et al.
Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglio-
nic embryonic distal colon. Gastroenterology. 2008; 135(1):205–16 e6. Epub 2008/06/03. doi: 10.1053/
j.gastro.2008.03.035 PMID: 18515088.

29. Lindley RM, Hawcutt DB, Connell MG, Edgar DH, Kenny SE. Properties of secondary and tertiary
human enteric nervous system neurospheres. J Pediatr Surg. 2009; 44(6):1249–55; discussion 55–6.
Epub 2009/06/16. doi: 10.1016/j.jpedsurg.2009.02.048 PMID: 19524749.

30. Metzger M, Bareiss PM, Danker T, Wagner S, Hennenlotter J, Guenther E, et al. Expansion and differ-
entiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology.
2009; 137(6):2063–73 e4. Epub 2009/06/25. doi: 10.1053/j.gastro.2009.06.038 PMID: 19549531.

31. Rauch U, Hansgen A, Hagl C, Holland-Cunz S, Schafer KH. Isolation and cultivation of neuronal pre-
cursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglio-
nosis. Int J Colorectal Dis. 2006; 21(6):554–9. Epub 2005/11/04. doi: 10.1007/s00384-005-0051-z
PMID: 16267668.

32. Binder E, Natarajan D, Cooper J, Kronfli R, Cananzi M, Delalande JM, et al. Enteric neurospheres are
not specific to neural crest cultures: implications for neural stem cell therapies. PLoS One. 2015; 10(3):
e0119467. doi: 10.1371/journal.pone.0119467 PMID: 25799576.

33. Dettmann HM, Zhang Y, Wronna N, Kraushaar U, Guenther E, Mohr R, et al. Isolation, expansion and
transplantation of postnatal murine progenitor cells of the enteric nervous system. PLoS One. 2014; 9
(5):e97792. Epub 2014/05/30. doi: 10.1371/journal.pone.0097792 PMID: 24871092; PubMed Central
PMCID: PMC4037209.

34. Hetz S, Acikgoez A, Voss U, Nieber K, Holland H, Hegewald C, et al. In vivo transplantation of neuro-
sphere-like bodies derived from the human postnatal and adult enteric nervous system: a pilot study.
PLoS One. 2014; 9(4):e93605. Epub 2014/04/05. doi: 10.1371/journal.pone.0093605 PMID:
24699866; PubMed Central PMCID: PMC3974735.

35. Hotta R, Stamp LA, Foong JP, McConnell SN, Bergner AJ, Anderson RB, et al. Transplanted progeni-
tors generate functional enteric neurons in the postnatal colon. J Clin Invest. 2013; 123(3):1182–91.
Epub 2013/03/05. doi: 10.1172/JCI65963 PMID: 23454768; PubMed Central PMCID: PMC3582137.

36. Nishikawa R, Hotta R, Shimojima N, Shibata S, Nagoshi N, Nakamura M, et al. Migration and differenti-
ation of transplanted enteric neural crest-derived cells in murine model of Hirschsprung's disease. Cyto-
technology. 2014. Epub 2014/09/19. doi: 10.1007/s10616-014-9754-8 PMID: 25230796.

37. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in
mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998; 8
(24):1323–6. Epub 1998/12/09. PMID: 9843687.

38. Druckenbrod NR, Epstein ML. The pattern of neural crest advance in the cecum and colon. Dev Biol.
2005; 287(1):125–33. Epub 2005/10/04. doi: 10.1016/j.ydbio.2005.08.040 PMID: 16197939.

39. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, et al. Cre reporter strains produced
by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001; 1:4. Epub 2001/
04/12. PMID: 11299042; PubMed Central PMCID: PMC31338.

40. Bondurand N, Natarajan D, Barlow A, Thapar N, Pachnis V. Maintenance of mammalian enteric ner-
vous system progenitors by SOX10 and endothelin 3 signalling. Development. 2006; 133(10):2075–86.
doi: 10.1242/dev.02375 PMID: 16624853.

41. Schneider CA, RasbandWS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature
methods. 2012; 9(7):671–5. Epub 2012/08/30. PMID: 22930834.

42. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
platform for biological-image analysis. Nature methods. 2012; 9(7):676–82. doi: 10.1038/nmeth.2019
PMID: 22743772; PubMed Central PMCID: PMC3855844.

43. Thevenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity.
IEEE transactions on image processing: a publication of the IEEE Signal Processing Society. 1998; 7
(1):27–41. doi: 10.1109/83.650848 PMID: 18267377.

In Vivo Transplantation of Enteric Neural Crest Cells

PLOS ONE | DOI:10.1371/journal.pone.0147989 January 29, 2016 16 / 17

http://dx.doi.org/10.1136/gut.2006.094565
http://dx.doi.org/10.1136/gut.2006.094565
http://www.ncbi.nlm.nih.gov/pubmed/16973717
http://dx.doi.org/10.1111/nmo.12015
http://www.ncbi.nlm.nih.gov/pubmed/22998406
http://dx.doi.org/10.1111/nmo.12119
http://www.ncbi.nlm.nih.gov/pubmed/23534441
http://dx.doi.org/10.1053/j.gastro.2008.03.035
http://dx.doi.org/10.1053/j.gastro.2008.03.035
http://www.ncbi.nlm.nih.gov/pubmed/18515088
http://dx.doi.org/10.1016/j.jpedsurg.2009.02.048
http://www.ncbi.nlm.nih.gov/pubmed/19524749
http://dx.doi.org/10.1053/j.gastro.2009.06.038
http://www.ncbi.nlm.nih.gov/pubmed/19549531
http://dx.doi.org/10.1007/s00384-005-0051-z
http://www.ncbi.nlm.nih.gov/pubmed/16267668
http://dx.doi.org/10.1371/journal.pone.0119467
http://www.ncbi.nlm.nih.gov/pubmed/25799576
http://dx.doi.org/10.1371/journal.pone.0097792
http://www.ncbi.nlm.nih.gov/pubmed/24871092
http://dx.doi.org/10.1371/journal.pone.0093605
http://www.ncbi.nlm.nih.gov/pubmed/24699866
http://dx.doi.org/10.1172/JCI65963
http://www.ncbi.nlm.nih.gov/pubmed/23454768
http://dx.doi.org/10.1007/s10616-014-9754-8
http://www.ncbi.nlm.nih.gov/pubmed/25230796
http://www.ncbi.nlm.nih.gov/pubmed/9843687
http://dx.doi.org/10.1016/j.ydbio.2005.08.040
http://www.ncbi.nlm.nih.gov/pubmed/16197939
http://www.ncbi.nlm.nih.gov/pubmed/11299042
http://dx.doi.org/10.1242/dev.02375
http://www.ncbi.nlm.nih.gov/pubmed/16624853
http://www.ncbi.nlm.nih.gov/pubmed/22930834
http://dx.doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://dx.doi.org/10.1109/83.650848
http://www.ncbi.nlm.nih.gov/pubmed/18267377


44. Hao MM, BoesmansW, Van den Abbeel V, Jennings EA, Bornstein JC, Young HM, et al. Early emer-
gence of neural activity in the developing mouse enteric nervous system. The Journal of neuroscience:
the official journal of the Society for Neuroscience. 2011; 31(43):15352–61. Epub 2011/10/28. doi: 10.
1523/JNEUROSCI.3053-11.2011 PMID: 22031881.

45. BoesmansW, Martens MA, Weltens N, Hao MM, Tack J, Cirillo C, et al. Imaging neuron-glia interac-
tions in the enteric nervous system. Frontiers in cellular neuroscience. 2013; 7:183. Epub 2013/10/25.
doi: 10.3389/fncel.2013.00183 PMID: 24155689; PubMed Central PMCID: PMC3801083.

46. Goto K, Kawahara I, Inada H, Misawa H, Kuniyasu H, Nabekura J, et al. Activation of 5-HT receptors
facilitates neurogenesis from transplanted neural stem cells in the anastomotic ileum. J Physiol Sci.
2015. Epub 2015/09/04. doi: 10.1007/s12576-015-0396-1 PMID: 26335766.

47. Laranjeira C, Sandgren K, Kessaris N, RichardsonW, Potocnik A, Vanden Berghe P, et al. Glial cells in
the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest. 2011;
121(9):3412–24. Epub 2011/08/26. doi: 10.1172/JCI58200 PMID: 21865647; PubMed Central PMCID:
PMC3163972.

48. Ghoshal UC, Daschakraborty SB, Singh R. Pathogenesis of achalasia cardia. World journal of gastro-
enterology: WJG. 2012; 18(24):3050–7. doi: 10.3748/wjg.v18.i24.3050 PMID: 22791940; PubMed
Central PMCID: PMC3386318.

49. Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal
tract. J Gastroenterol. 2003; 38(5):421–30. doi: 10.1007/s00535-003-1094-y PMID: 12768383.

50. Stamp LA, Obermayr F, Pontell L, Young HM, Xie D, Croaker DH, et al. Surgical Intervention to Rescue
Hirschsprung Disease in a Rat Model. J Neurogastroenterol Motil. 2015; 21(4):552–9. Epub 2015/10/
02. doi: 10.5056/jnm15079 PMID: 26424040.

51. Dickson EJ, Heredia DJ, McCann CJ, Hennig GW, Smith TK. The mechanisms underlying the genera-
tion of the colonic migrating motor complex in both wild-type and nNOS knockout mice. Am J Physiol
Gastrointest Liver Physiol. 2010; 298(2):G222–32. Epub 2009/12/05. doi: 10.1152/ajpgi.00399.2009
PMID: 19959818; PubMed Central PMCID: PMC2822500.

52. Fox DA, Epstein ML, Bass P. Surfactants selectively ablate enteric neurons of the rat jejunum. J Phar-
macol Exp Ther. 1983; 227(2):538–44. Epub 1983/11/01. PMID: 6195330.

In Vivo Transplantation of Enteric Neural Crest Cells

PLOS ONE | DOI:10.1371/journal.pone.0147989 January 29, 2016 17 / 17

http://dx.doi.org/10.1523/JNEUROSCI.3053-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.3053-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22031881
http://dx.doi.org/10.3389/fncel.2013.00183
http://www.ncbi.nlm.nih.gov/pubmed/24155689
http://dx.doi.org/10.1007/s12576-015-0396-1
http://www.ncbi.nlm.nih.gov/pubmed/26335766
http://dx.doi.org/10.1172/JCI58200
http://www.ncbi.nlm.nih.gov/pubmed/21865647
http://dx.doi.org/10.3748/wjg.v18.i24.3050
http://www.ncbi.nlm.nih.gov/pubmed/22791940
http://dx.doi.org/10.1007/s00535-003-1094-y
http://www.ncbi.nlm.nih.gov/pubmed/12768383
http://dx.doi.org/10.5056/jnm15079
http://www.ncbi.nlm.nih.gov/pubmed/26424040
http://dx.doi.org/10.1152/ajpgi.00399.2009
http://www.ncbi.nlm.nih.gov/pubmed/19959818
http://www.ncbi.nlm.nih.gov/pubmed/6195330

