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Abstract

Real-time ultrasound thermography has been recently demonstrated on commercially-available 

diagnostic imaging probes. In vitro experimental results demonstrate high sensitivity to small, 

localized temperature changes induced by subtherapeutic focused ultrasound. Most of the 

published results, however, are based on a thermally-induced echo strain model that assumes 

infinitesimal change in temperature between imaging frames. Under this assumption, the echo 

strain is computed using a lowpass axial differentiator which is implemented by a finite impulse 

response (FIR) digital filter. In this paper, we introduce a new model for temperature estimation 

which employs a recursive axial filter that acts as a spatial differentiator-integrator of echo shifts. 

The filter is derived from first principles and it accounts for a nonuniform temperature baseline 

when computing the spatial temperature change between two frames. This is a major difference 

from the previously proposed infinitesimal echo strain filter (δ-ESF) approach. We show that the 

new approach can be implemented by a first-order infinite impulse response (IIR) digital filter 

with depth-dependent spatial frequency response. Experimental results in vitro demonstrate the 

advantages over the δ-ESF approach in terms of suppressing the spatial variations in the estimated 

temperature without resorting to ad hoc lowpass filtering of echo strains. The performance of the 

new recursive echo strain filter (RESF) is also illustrated using echo data obtained during sub-

therapeutic localized heating in the hind limb of Copenhagen rat in vivo. In addition to the RESF, 

we have used an adaptive spatial filter to remove motion and deformation artifacts during real-

time data collection. The adaptive filtering algorithm is described and comparisons with 

uncompensated estimated spatio-temporal temperature profiles are given. The results demonstrate 

the feasibility of in vivo ultrasound thermography with high sensitivity and specificity.
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I. Introduction

Ultrasound thermography has proved to be a promising modality for non-invasive 

monitoring and control of temperature during thermal therapy. Local temperature changes 

create shifts due to physical and apparent displacements. The former is the result of thermal 

expansion while the rather is related to the local changes in speed of sound. Using an 

infinitesimal model for thermal expansion and a linear temperature dependency assumption 

for the speed of sound, Simon et al [1] suggested a model that lumped these two effects in a 

single equation which related the echo strain to the induced temperature change. We call this 

the δ-ESF model. Similar results were reported in [2] where the requirement for a good 

thermal expansion model was also explained. Based on the δ-ESF model and using the 

speckle tracking method explained in [1], authors in [3] demonstrated the real-time tracking 

of the temperature change in vivo using the integrated imaging-therapy system described in 

[4]. This model has also been confirmed by other groups [5],[6] and [7] where some 

limitations have been addressed as well as solutions for some of the common problems such 

as the thermoacoustic lens effect have been suggested [8]. In addition to the time domain 

method, spectral domain tracking of the temperature has been suggested [9],[10]. Although 

the derivations in these models include the spatial dependency of the temperature change, 

the final result is similar to the δ-ESF in time domain and does not account for the 

temperature gradients. Additionally, methods which are not based on displacement 

estimation have been proposed in [11], [12] and [13] with varying degrees of development 

in terms of real-time implementation and spatial and temporal resolution.

In spite of successful implementation of the δ-ESF model by many groups, ignoring the 

nonuniform temperature baseline can cause unrealistic temperature fluctuations at the focus. 

When these effects are combined with the thermal lens artifacts, without using any ad hoc 

lowpass filtering, the specificity of the ultrasound thermography can degrade significantly. 

In this paper we propose a new derivation of the temperature estimation based on the echo 

shifts. In this derivation, instead of infinitesimal changes the commutative effect of the 

thermal expansion is considered for modeling the physical shifts. This results in a recursive 

echo strain filter which was first introduced in [14]. we show that the final temperature 

reconstruction filter has the form of a differentiator-integrator as opposed to a pure 

differentiator used in the δ-ESF model. It is shown that the integrator part acts as a low pass 

filtering process which is derived from the local tissue properties and is effective in reducing 

inconsistent temperature fluctuations due to temperature gradients as well as ripples due to 

thermal lens effect without additional filtering.

In case of in vivo temperature estimation, in addition to the modeling errors, deformations 

caused by natural motions such as breathing, gasping and blood pulsation can introduce non-

thermal displacements in the same spatial and temporal frequency bands as the true 

temperature change. Methods based on frame-to-frame decorrelation were presented in [15] 

and [16]. Even though these methods are suitable for detecting large motions, they are not 

applicable for tracking of fast temperature changes with high frame rate speckle tracking. 

The results presented in [17] and [18] showed that post processing of the temperature using 

a two dimensional filter inspired by the bio-heat equation can further reduce some of the 

inconsistencies including the ripples caused by the thermal lens effect and sudden transitions 
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due to mechanical stresses. However due to shared bandwidth of the artifacts and the 

temperature field, a filtering mechanism with spatial and temporal selectivity is preferred. 

Using the global availability of the motion strain and adaptive filtering techniques, a method 

is presented which can significantly reduce most of the motion related artifacts.

The organization of this paper is as follows. In section II we present the new model for the 

ultrasound echo shift thermography. Section III describes a motion compensation algorithm 

based on an adaptive filter technique for dealing with natural deformation artifacts during in 

vivo temperature estimation. Material and methods are described in section IV. Phantom 

experiment as well as in vivo results are presented in section V. Section VI concludes the 

paper with a brief summary of achievements and future works.

II. Temperature Estimation Model

Localized heating of tissue in the order of few millimeters in each dimension creates echo 

shifts due to local changes in the speed of sound and thermal expansion. While the change in 

echos due to speed of sound variations is unidirectional with respect to temperature change 

(i.e. scatterers always appear closer to the transducer at higher temperatures when the speed 

of sound increases with temperature), tissue displacement due to thermal expansion is 

directional such that all the points between the transducer and the center of focused heating 

move toward the transducer while the points behind the center of heating are pushed away 

from the center. The infinitesimal echo strain filter presented in [1] does not take this 

directionality of the thermal expansion behavior into account. For a point between the 

transducer and heating center located at depth z at baseline temperature of θ, the round-trip 

time delay of the echoes can be calculated as

(1)

where c(ξ; θ) is the depth and temperature dependent speed of sound. Temperature change 

creates both apparent and physical changes in the estimated delay. The former is caused by 

the change in speed of sound while the latter is a result of tissue thermal expansion. Hence 

the frame-to-frame change in the delay can be written as

(2)

where Δθ is the differential change in temperature at depth z and T is the frame (wall clock) 

time. Assuming a linear model for the change in speed of sound and thermal expansion

(3)

and hence

(4)
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(5)

Ignoring the second order approximation terms, this can be further simplified as

(6)

A closed form solution of equation (6) is presented in Appendix A where temperature 

change and speed of sound are both considered as functions of depth and time. Although the 

final solution is interesting in terms of the reconstruction model in the spatial domain and it 

corroborates with a simpler model which follows, the implementation requires nonuniform 

sampling transformation and successive updating of speed of sound and temperature field in 

an iterative fashion. A simpler model can be derived by assuming small variations in the 

speed of sound and differentiating both sides of the equation (6) with respect to z

(7)

Substituting for ∂a by c∂t/2 in (7) results in the simplified equation:

(8)

where t is the propagation delay based on (1). Note that the second term in (8) is an 

approximation of the second term in (7) (by dropping the term with 1/c2 dependence).

In general, equation (8) is a nonlinear differential equation which can be solved numerically. 

However, for complexity reasons we would like to form a simpler implementation of the 

algorithm using only ordinary digital filters. For this reason the depth variable z is replaced 

by a constant depth z0. By taking Fourier transform from both sides of the equation (8) with 

respect to the variable t and rearranging the terms

(9)

where  and  are the Fourier transforms of Δθ and δτ respectively and we defined τ = 

2z0/c as a constant.

The δ-ESF model presented in [1] was based on the infinitesimal length changes which 

resulted in the following reconstruction model in the frequency domain

(10)

which acts as a pure differentiator operator on the echo shifts independent of any variations 

in the temperature baseline. The slope of this differentiator is defined based on the tissue 
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thermal coefficients. Equation (9), on the other hand, has the form of a differentiator-

integrator which can be implemented as an IIR filter in the axial direction or can be 

combined with time accumulation to form a spatial-temporal filter. It is interesting to note 

that, at low frequencies, the filter behaves like a differentiator, which is consistent with the 

δ-ESF model in (10)1. At higher frequencies, however, the filter has a flat response with a 

gain of 2/ατ. The cutoff frequency of the filter is also a function of the thermal expansion 

and the change in speed of sound coefficients. This result is still attractive from the real-time 

implementation point of view. Even though the derivation accounted for the inhomogeneous 

baseline, the final result does not relay on explicit knowledge of this baseline. The discrete 

time equivalent of the reconstruction filter in (9) can be derived by using the bilinear 

transformation [19],[20]

(11)

where Ts is the sampling time of the RF data. Hence

(12)

where  and  are the z transforms of Δθ and δτ respectively. Equation (12) resembles an 

IIR filter in the axial direction on the displacement data, the main reason that we call this the 

RESF model. The gain and location of the pole of this filter are defined by α, β (tissue 

dependent) and τ = 2z0/c in which zo is the effective length over which the recursion implied 

by (12) occurs. A very small z0 results in a model that approaches the C-ESF model.

Fig. 1 shows the frequency response of the reconstruction filters based on the δ-ESF model 

and the RESF model with different z0 values where we used α = 1 × 10−4 °C−1 and β = 1 × 

10−3 °C-1 [21], [1]. As it can be seen from the plots, as z0 approaches zero, the RESF model 

approaches the δ-ESF model.

For given values of α and β, The effective recursion length, z0, defines the amount of 

smoothing implied by the integrator part in (12). In monitoring of hyperthermia using HIFU, 

for example, z0 can be in the order of the extent of the therapy beam in the imaging plane; 

typically in the millimeter range.

III. Adaptive Motion Compensation

Natural motions such as breathing, gasping and pulsation in vivo can cause significant 

artifacts in the estimated temperature. These artifacts are due to the strain pattern induced by 

the mechanical stress on the tissue and the area for which the artifacts manifest depends on 

the extent of the motion and connectivity of the different parts of the underlying tissue. For 

example, the strain pattern caused by gasping can spread over a wide range of the imaging 

1The difference in the scaling factors is due the fact that in [1] the thermal expansion was included in the differential length element as 
dζ(θ + δθ) = dζ(θ)(1 + αδθ) whereas here it is modeled as an overall length decrease in the integral limit in (1) as z(θ + ∆θ) = z(θ)(1 - 
αΔθ). Nevertheless, both models result in a similar reconstruction filter at low frequencies and as long as β is much larger than a as 
shown in Fig. 1.
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plane such that when using the speckle tracking algorithm regions of strong strain can be 

detected in almost entire imaging plane. pulsation of small vessels, on the other hand, can 

create a more localized pattern. The strong time correlation of these patterns and the fact that 

most of these artifacts appear as strong foci with quasi-cyclic temporal patterns suggest that 

we can use strain information from outside the target region of ultrasound thermography to 

correct for the errors occurring within this region using adaptive filter techniques.

Let us assume the estimated temperature in the axial-lateral grid point (m, n) and time index 

k to be θ(m,n,k). The artifactual temperature of a point outside the heated region due to a 

strong deformation strain is denoted as θa(mi, ni, k) and we collect N such points for 

interference compensation. Before heating starts, for each time index k, the error is defined 

as

(13)

where ai(m, n)'s are the coefficients of the adaptive filter for grid point (m,n). Using a 

Normalized Least Mean Squares (NLMS) method this error is used to find the optimal value 

of the coefficient vector a(m, n) = [ai(m,n), a2(m,n), aN(m,n)] using the update equation,

(14)

where tfoci(k) = [θa(mi, ni, k), θa(m2, n2, k), αa(mN, nN, k)]T is a N × 1 vector containing the 

artifactual temperature data of each training point at time k and μ is the step size of the 

gradient descent algorithm used for training of the adaptive filter coefficients. The training 

phase stops as soon as the artifactual temperature values drop below a defined threshold. 

Once heating starts the corrected temperature field is calculated as follows

(15)

where θc is the motion compensated temperature field and  are the entries of the 

coefficient vector calculated at the last iteration of the NLMS algorithm during the training 

phase. Fig. 2 depicts the diagram of this process where green dots represent the deformation 

foci and the red dot represents a point from the target region for temperature estimation.

IV. Materials and Methods

A. Experiment Setup and Data Acquisition

1) Wire Heating in Tissue-mimicking Phantom—A thin resistive Nichrome wire (32 

AWG) was embedded in a tissue mimicking phantom which was prepared based on the 

method described in [24]. The wire was 15 cm long with 4.5 ohms resistance. A 3V DC 

source was applied to both ends of the wire which created around 667 milliamps of current 

for 13 seconds. RF data was acquired before, during and after the heating in a plane cross 

sectional to the wire in M2D mode2. RF data was collected using a L14-5/38 linear array 
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(LA) probe and the SonixRP machine with research interface (Ultrasonix, BC, CA). A 

needle thermocouple (HYP-1 Omega, Philadelphia, PA) was inserted into the phantom very 

close to the heating wire. During experiment, temperature data from the thermocouple was 

collected at 100 frames per second. A schematic of the experiment setup is shown in Fig. 3.

2) Sub-therapeutic heating in the hind limb of Copenhagen rat in vivo—The 

M2D data was acquired at 40 MHz sampling rate and about 91 frames per second during 

sub-therapeutic HIFU shots in the hind limb of a Copenhagen rat as described in [17]. The 

HIFU shots were created using a 64-element DMUA transducer (Imasonic, FR) operating at 

3.5 MHz as described in [25]. The M2D data was acquired using a linear array (HST 15-8, 

Ultrasonics, BC, CA) and as described in [4], which allowed for relatively high frame rates 

at the expense of smaller lateral extent of the image. The animal was partially submerged in 

a temperature controlled (34° C) degassed water and anesthetized using Ketamine and 

Xylazine under University of Minnesota approved IACUC protocol. This combination often 

results in deep anesthesia which appear to change the breathing pattern of the animal. For 

example, the animal gasps for air at semi-regular intervals after each period of low breathing 

activity. These gasps are often separated by periods of 1.5 - 2 seconds and result in 

significant displacements and strains throughout the hind limb that present as temperature 

artifacts. Frame rates in the 80 - 200 frames per second range were found to be necessary for 

capturing the transients of tissue motion and deformation due to pulsation, breathing as well 

as the radiation force effects of the pulsed HIFU beams.

B. Data Processing

In all experiments the M2D data was collected before, during and after the heating 

procedure for use in calculating the incremental displacement using speckle tracking 

algorithm as presented in [1]. A kernel length of about 9λ (1.84 mm) was used for both 

experiments where λ is the wavelength of the diagnostic imaging waveform operating at 7.5 

MHz. The incremental displacement field was passed through the axial filter described in 

(12). For in vivo experiments α and β were set to 3 × 10−4 °C−1 and 2 × 10−3 °C−1, 

respectively based on the average values of thermal coefficients for soft tissue [21],[26]. For 

gel phantom experiment α and β were set to 2 × 10−4 °C−1 and 2 × 10−3 °C−1, respectively 

based on the average values from the slow heating experiments of the tissue mimicking 

phantoms reported in [1] and [27]. The integrator part of the axial filter in (12) was also 

applied in the reverse direction to compensate for the group delay. After performing the 

axial processing, the data is passed through a frame-to-frame accumulator followed by a 

low-pass filer with the cut off frequency of 1.5 Hz to create the final estimated temperature. 

In each experiment, the baseline temperature was measured and used to map the estimated 

temperature rise to the absolute temperature.

In order to compare the RESF temperature reconstruction model with the δ-ESF model, the 

displacement data was also processed using a wide-band axial differentiator and temporal 

accumulator as described in [1] for the case of the phantom experiment. In both in vitro and 

2M2D-mode simply refers to acquiring RF data frames with limited extent in a straightforward extension of the familiar M-mode 
imaging.
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in vivo experiments, we exclude the use of any 2D filtering post temperature calculations. 

For example, the (2D+Time) BHTE-inspired filter proposed in [18] was not used here. This 

approach was effective in removing temperature artifacts inconsistent with the physical 

model of temperature evolution in tissue media. However, the objective of this paper is to 

show that the new formulation removes some of these artifacts by virtue of the filtering step 

implied by equation (12).

V. Results and Discussion

To show the improvements achieved by the the RESF model and rule out other sources of 

interference and artifacts, we first present the phantom results.

A. Heated wire in a tissue mimicking phantom

In order to demonstrate the ability of the RESF method in correcting some of the 

temperature artifacts seen in the δ-ESF model, we first present the results for heating the thin 

resistive wire embedded in the tissue mimicking phantom. Fig. 4 shows the axial-lateral 

distribution of the estimated temperature using (a) the δ-ESF model and (b) the RESF 

model. While the δ-ESF model shows rapid temperature fluctuations and ripples due to 

thermal lens effect, the RESF model has created a more localized 2-D temperature map 

consistent with the expected temperature distribution around the heated wire. Fig. 5(a) 

shows the axial distribution of the estimated temperature using the δ-ESF model and the 

RESF model with different values of z0. As it can be seen the RESF suppresses most of the 

rapid fluctuations close to the heating center, partly caused by the thermal lens effect. Fig. 

5(b) shows the axial distribution of the estimated temperature using the RESF model with z0 

= 6 mm at different time instances during heating and cooling cycles. It can be seen that the 

RESF model has resulted in a localized temperature map with a subtle elevation in the 

temperature distribution tail during cooling cycle which can be attributed to the diffusion 

process. Fig. 6 shows the thermocouple data along with the estimated temperature of a point 

at similar distance from the wire. As it can be seen there is a good agreement between the 

two data sets in terms of the extent of temperature change without using additional scaling. 

The estimated temperature rise and fall also show strong consistency with the thermocouple 

data.

B. In vivo results

We present the results of applying a sub-therapeutic HIFU shot in the hind limb of a 

Copenhagen rat in vivo. The displacement data was passed through the temperature 

reconstruction filter in (12) with z0= 6 mm. This value of z0 provided best results when 

combined with the adaptive motion compensation technique. The result was then processed 

by the band-limited accumulator in the temporal direction to create the final temperature 

estimate.

Sub-therapeutic HIFU started after one second of baseline measurements and was on for 750 

ms. The total duration of data recording was 4 seconds where three sporadic gasps occurred 

within the data collection interval. Mechanical deformation foci were observed throughout 

the imaging plane and one location was selected using a simple threshold on the strain data 
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where 33 points were selected as the interference inputs to the algorithm. Classic NLMS 

algorithm with step size of μ = 0.5 was implemented on the artifactual (before HIFU was 

applied) temperature data to train the coefficients of the filter for each grid point in the target 

region. The update process stopped once the artifactual temperature dropped below 38° C 

where the baseline temperature was 34°C. Fig. 7 shows the axial-temporal distribution of the 

estimated temperature profile before and after applying the motion compensation method. 

First of all, the spatial distribution of the temperature seems to be consistent with the focus 

of the HIFU beam which was at 40 mm. Ripple artifacts due to the thermal lens effect are 

considerably reduced by using the mew model. In Fig. 7 (a) it can be seen that three strong 

gasps caused erroneous temperature estimates at three different time instances right at the 

heating focus and 2 mm beyond the focus. The motion compensation method has 

successfully canceled the effect of these gasps without scarifying the spatial distribution of 

the temperature. Fig. 8 (a) and (b) show the axial-lateral distribution of the estimated 

temperature before and after applying the motion compensation overlaid on 50 dB B-mode 

image at the second gasp time instance. The heterogeneity of the tissue can be observed in 

this image where the skin and connective tissues have created hyperechoic regions while 

muscle tissues appeared as uniform defused scattering areas. The overlaid temperature map 

in Fig. 8 (a) shows three regions with significant temperature rise. Fig. 8 (b) shows the same 

temperature map after applying the correction where a confined temperature rise is seen and 

the artifact are significantly reduced. Fig. 8 (c) shows the time profile of a point close to the 

focus. The NLMS algorithm is able to converge in a fraction of second. It is seen that while 

the corrected temperature preserves most of the unaffected parts of the temperature profile, 

large temperature errors in the order of 4°C (almost 40% of the peak temperature change) 

are corrected.

VI. Conclusion

In this paper we presented the RESF model for temperature estimation based on the 

ultrasound echo shifts. In this model, instead of infinitesimal changes, the cumulative effect 

of thermal expansion was used to relate the echo shifts to the temperature changes which 

enabled the incorporation of the temperature gradient in the derivations. The final 

formulation was shown to be in the form of a differentiator-integrator filter with parameters 

defined by the physical properties of tissue and heating source. The results of using the 

RESF model in the heated wire phantom showed consistent axial distribution of the 

temperature as well as strong agreement with the thermocouple readings without additional 

scaling. Compared to the δ-ESF model presented previously, the RESF model was shown to 

be less sensitive to the rapid fluctuations caused by ignoring temperature gradients as well as 

propagation artifacts including the thermal lens effect. It was also shown that the RESF 

model can change to the δ-ESF model via changing an effective recursion length variable z0. 

We then used the RESF model for estimating the temperature during sub-therapeutic HIFU 

shots in the hind limb of a Copenhagen rat in vivo. Due to gasping significant artifacts were 

introduced to estimated temperature. Using an adaptive filter technique we presented a 

motion compensation method which takes advantage of the global availability of the 

mechanical deformation patterns to train the coefficients of a corrective filter. By using 

these coefficients and the data from outside the target region we showed that the effect of 
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gasps can be significantly reduced without sacrificing the spatial and temporal distribution 

of the temperature. When combined by spatial temporal filtering approaches, these results 

suggest the suitability of ultrasound thermography for in vivo applications as long as good 

assumptions about local tissue formation and physical properties can be made.
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Appendix A Closed form solution of the thermal-echo displacement 

equation

At high frame rates where the change in temperature is very small, equation (6) becomes

(16)

where the temperature field θ(z, T) is considered as a two dimensional function and variable 

T represents the time progress along M2D frames. The first term in the right hand side of 

(16) represents the change in echo shifts due to the thermal expansion while the second term 

represents the variations due to the change in speed of sound. By replacing c(z; θ) with c(z, 

T) and noticing that the differential in (16) is due to time progress we have

(17)

The time derivative of the echo location in (17) can be regarded as the incremental 

displacement in the speckle tracking algorithm as explained in [1]. Given that the variations 

of speed of sound with temperature is known, in its general form, equation (17) represents a 

non-homogeneous nonlinear integro-differential equation of temperature distribution over 

time and space. A consistent solution for this equation should satisfy the bio-heat equation 

with given boundary and initial conditions. Taking Fourier transform from both sides of (17) 

with respect to variable z

(18)

Considering β as a constant and defining φ = (∂θ/∂T)/c we have

(19)

where θ = Fz {φ}. Alternatively
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(20)

Equation (20) is a solvable ODE with the following closed form solution

(21)

and taking inverse Fourier transform

(22)

The last equation relates the temperature rate to the incremental displacement via baseline 

speed of sound which can be in turn updated sequentially. Considering that equation (22) is 

derived with minor assumptions about change in speed of sound and temperature 

heterogeneity, it still resembles the form of a differentiator-integrator suggested by (9) with 

appropriate assumptions about α and β.
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Fig. 1. 
Frequency response of the RESF model for different depths along with the δ-ESF response 

for α = 10−4 and β = 10−3. Solid black: the δ-ESF model, dashed red: the RESF model with 

z0 = 0.3 mm, dotted blue: the RESF model with z0= 1 mm and dash-dotted green: the RESF 

model with z0= 4 mm.
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Fig. 2. 
Adaptive filter configuration. N observation points are selected outside the heated region 

based on pre-heating analysis of tissue motions and deformations (Green dots). A 

temperature reference point is selected from the heated region (Red dot) based on the target 

of the focus and/or the analysis of the initial heating rate immediately after the HIFU pulse 

is applied. The error function shown in the schematics controls the adaptation according to 

NLMS method [22],[23].
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Fig. 3. 
Experiment setup used for imaging of the resistive wire in gel phantom
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Fig. 4. 
Axial-lateral distribution of the estimated temperature around the heated wire using (a) δ-

ESF model and (b) RESF model at peak temperature
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Fig. 5. 
Axial distribution of the estimated temperature around the heated wire (a) estimated 

temperature based on RESF model for z0 = 1 mm, z0= 3 mm and z0 =6 mm along with δ-

ESF result (b) estimated temperature based on the RESF model with z0 =6 mm at different 

heating (solid black) and cooling (solid red) time instances
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Fig. 6. 
Ultrasound estimated temperature (solid black) and thermocouple reading (dotted red) very 

close to the heated wire
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Fig. 7. 
Spatio-temporal temperature profiles obtained (a) before (b) after applying the motion 

compensation algorithm. In both cases the new derivation is used without any post 

processing.
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Fig. 8. 
Temperature profiles at t = 1.7 sec obtained (a) before (b) after using the motion 

compensation method overlaid on a 50 dB B-mode iamge. (c) Temporal profile of the 

estimated temperature before (dashed black) and after (solid black) motion correction along 

with the difference (dotted red).
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