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1. Introduction

It is known (13, p. 92) that each closed normal cone in a weakly sequentially
complete locally convex space is regular and fully regular. Part of the main
theorem of this paper shows that a certain amount of weak sequential com-
pleteness is necessary in order that each closed normal cone be regular.
Specifically, it is shown that each closed normal cone in a Frechet space is
regular if and only if each closed subspace with an unconditional basis is
weakly sequentially complete. If E is a strongly separable conjugate of a
Banach space it is shown that each closed normal cone in E is fully regular.
If E is a Banach space with an unconditional basis it is shown that each closed
normal cone in E is fully regular if and only if E is the conjugate of a Banach
space.

Throughout this paper all spaces dealt with will be real Frechet spaces
(locally convex, complete, metrizable). A cone in a real vector space E is a
set K such that K+K<=.K, XKaK for X k 0, and Kn-K= {6}. If K is a
cone in E, then its dual wedge K' is denned to be the set of those continuous
linear functionals on E which are non-negative on K. Corresponding to the
cone K in E is the partial ordering " ^ " defined on E by x g y for x, y e E
means y—xeK. A cone K in E is normal if there is a family of seminorms
P = {/>} which generates the topology of E and which has the property that
ifpeP and x, ye K with x ^ y then p(x) ^ p{y). A cone K is regular if each
non-decreasing sequence in K which is majorised by an element of K converges.
A cone is fully regular if each non-decreasing bounded sequence in K con-
verges. Krasnosel'skii (9) has shown that closed fully regular cones in Banach
spaces are regular and closed regular cones are normal. It is in fact true (11)
that in complete metric linear spaces closed regular cones are normal. On the
other hand the natural positive cone in (m) is an example of a closed normal
cone which is not regular.

2. The Main Theorem
Let a> be the set of positive integers and ^(co) the finite subsets of co. A

00

se r i e s £ x ( in E is unordered bounded if a n d o n l y if t h e se t { £ xt: a e ^{(o)}
i = 1 i E a
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CO

is bounded. It is well known that £ •*• 1S unordered bounded if and only if
i = 1

CO

]£ |/(•*»)!< + 0 0 f ° r a l l / s if'. A sequence {zn} in E is a (topological) 6as£r
i = 1

for E if and only if corresponding to each xe E there is a unique sequence
CO

of scalars {aj such that x = ^ aizi- ^ sequence {zn} in E is iawc if and
i = 1

only if {zn} is a basis for its closed linear span which we denote by [zn]. The
following fundamental lemma is due to Bessaga and Pelczyriski (2; 12).

Lemma 1. For a Fre'chet space E the following conditions are equivalent:

(i) there exists in E an unordered bounded series which is not unconditionally
convergent;

00

(ii) there exists in E an unordered bounded series £ xt and a neighbourhood

Uofd such that xt $ U, i = 1, 2, ...;
(iii) E contains a subspace Eo which is isomorphic to (c0), (i.e. there is a

linear homeomorphism qf(c0) onto Eo).

Generalising work of (6, 3, 4) the following lemma has been shown (5, 16).

Lemma 2. If E is a Frechet space with an unconditional basis the following
are equivalent:

(a) E has no subspace isomorphic to (c0);
(b) E is weakly sequentially complete;
(c) the basis is boundedly complete.

Theorem 1. IfE is a Frechet space the following are equivalent:

(i) each closed normal cone is regular;
(ii) each closed normal cone is fully regular;

(iii) E has no subspace isomorphic to (c0);
(iv) each closed subspace of E with an unconditional basis is weakly sequentially

complete;
(v) each unconditionally basic sequence in E is boundedly complete.

Proof. That (ii) implies (i) is immediate, since order-intervals determined
by normal cones are bounded.

(i) implies (iii). Suppose E has a subspace Eo isomorphic to (c0). Then
(1, p. 181) since (c0) and (c) are isomorphic there exists a linear homeomorphism
T from (c) on to Eo. Let Kc = {a = {a,} e (c): a; ^ 0, i = 1, 2, . . .} . Let
eh i = 1, 2, ... denote the unit vectors in (c) and let e denote the element of

(c) all of whose coordinates are 1. Now •< £ e,> is a non-decreasing
(t = 1 ) ne a

sequence in Kc majorised by e so Kc is not regular but Ke is closed and normal

j t e\ is
{i — 1 J n e to
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(since the usual norm for (c) is monotone on Kc). It follows that the cone
T(KC) is closed and normal but non-regular in E.

(iii) implies (ii). Suppose K is a closed, normal non-fully regular cone in
E. Thus there exists a sequence {*„} in K which is bounded, nonconvergent
and 0 ^ xx ^ x2 ^•••S xn g xn+i g. . . where the partial order is defined by
K. It follows that there exists a neighbourhood U of 6 and a sequence of
positive integers p1<q1<p2<q2<...<pn<qn<... such that if yn = xtn-xPn

then yn $ U. Note that yn e K. Also for arbitrary a e fF(co) there exists
me co, e.g. m = max {grn: n e c}, such that £ yn ^ *m- Thus i f /e K',

since {xn} is non-decreasing and bounded and fe K'. Since K is normal,
E' = K'- K', so i f /e £', f = ft -f2 for some / t , f2 e K' and

| f{ 2 yn)| ̂  lim/1(xj+ lim/2(xj< + oo.
n e <T m m

Hence the set {^ yn: a e ^ c o ) } is weakly bounded and therefore bounded.

oo

The series £ _yf is unordered bounded and there is a neighbourhood [/ of
i = 1

6 such that yt $ U, i = 1, 2, .... By Lemma 1, £ has a subspace isomorphic
to (c0).

We have now shown that (i), (ii) and (iii) are equivalent. Recalling that
(c0) is not weakly sequentially complete and that the unit vector basis for
(c0) is unconditional the equivalence of (iii), (iv) and (v) is clear by Lemma 2.

3. Applications
The following theorem strengthens a theorem of Karlin (8; 13, p. 98).

Theorem 2. Let E be a Banach space whose topological dual space E' is
separable with the strong topology. Then with respect to the strong topology
each closed normal cone in E' is fully regular and hence regular.

Proof. It has been shown (2) that if E' has a subspace isomorphic to (c0)
then it has a subspace isomorphic to (m) so E' could not be separable since
(m) is not separable. Thus, since E' is separable, E' has no subspace isomorphic
to (c0) and the conclusion is given by Theorem 1.

Theorem 3. Jf E is a Banach space with an unconditional basis the following
are equivalent:

(i) each closed normal cone in E is fully regular;
(ii) E is weakly sequentially complete;

(iii) E is isomorphic to the strong topological dual of a Banach space.
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Proof. That (i) implies (ii) follows from Theorem 1 and that (ii) implies
(i) (13, p. 92) is true for locally convex spaces in general. By Theorem 2, we
have (iii) implies (i). Conversely, if (i) holds then by Lemma 2 the basis is
boundedly complete so (7, Theorem 10) (iii) follows.

A Banach space E has property («) if and only if for every weak Cauchy
sequence {xn}c=E there is a sequence {x'n}c=E such that

00

(i) £ I f(x'n)\ < + oo for each / e £';
n = 1

n

(ii) the sequence xn— ]T) x\ converges weakly to 6. Pelczynski (14) has
i = 1

shown that if is is a Banach space with property (w) then is is weakly sequentially
complete if and only if no subspace of E is isomorphic to (c0). He shows that
a Banach space with an unconditional basis has property (w), (14). A Banach
space E is called a cyclic space if E is the closed linear span of the set

{P(xo):PeB}

for some xQe E and a c-complete (not necessarily atomic) Boolean algebra of
projections B on E. A Banach space with an unconditional basis is a cyclic
space and any cyclic Banach space has property (w) (15, Lemma 2). The follow-
ing theorem is immediate from the above results and Theorem 1.

Theorem 4. If the Banach space E has the property (u), then each closed
normal cone in E is fully regular if and only if E is weakly sequentially complete.

Theorem 5. If E is a Banach lattice then each closed normal cone in E is
fully regular if and only if E is weakly sequentially complete.

Proof. It has been shown (10) that if E is a Banach lattice then E is weakly
sequentially complete if and only if E contains no subspace isomorphic to
(c0). The conclusion follows from this and Theorem 1.
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