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Abstract 
The ability of artificial characters to express emotions is essential for the natural interaction with humans. Their 
absence could be interpreted as coldness towards the user. Artificial characters can have different embodiments. 
Screen characters and robotic characters are currently among the most widely used. This study investigates the 
influence of the character’s embodiment on how users perceive the character’s emotional expressions. The 
results show that there is no significant difference in the perceived intensity and recognition accuracy between a 
robotic character and a screen character.  
 
Another important aspect of the character is its ability to express different emotional intensity levels. 
Developers create different geometrical intensity levels of emotional expressions by equally dividing the spatial 
difference of each facial component between the neutral and maximum expression. However, the relationship 
between this geometrical intensity and the intensity perceived by the user might not be strictly linear. This study 
shows that also a quadratic trend is present in this relationship and that10% steps increase of geometrical 
intensity can often be distinguished whereas 20% steps can be distinguished almost all the time. 
 
 
 
 
Introduction 

Many synthetic characters are used for entertainment, communication, and work. They range 

from movie stars (Thomas & Johnson, 1981) and pets (Sony, 1999) to helper agents (Bell et 

al., 1997) (see Figure 1) and avatars for virtual cooperative environments (Isbister, 

Nakanishi, Ishida, & Nass, 2000). Characters can also have a physical body, e.g. robots. The 

interesting robots for this study help the elderly  (Hirsch et al., 2000), support humans in the 

house (NEC, 2001), improve communication between distant partners (Gemperle, DiSalvo, 

Forlizzi, & Yonkers, 2003) and are research vehicles for the study on human-robot 

communication (Breazeal, 2003; Okada, 2001). A survey of relevant characters is available 

(Bartneck, 2002; Fong, Nourbakhsh, & Dautenhahn, 2003) 



 
Figure 1: Synthetic characters: Aibo, eMuu, Microsoft Paperclip 

 

The ability to communicate emotions is essential for a natural interaction between characters 

and humans because it is not possible not to communicate. The absence of a character’s 

emotional expressions could already be interpreted as indifference towards the human. 

Therefore it is important that characters express their emotional state.  

 

Robotic characters might be able to express their emotions better since their physical 

embodiment makes them more anthropomorphic than screen characters.  However, assuming 

that screens are available, it is much easier to develop a screen character than a robotic 

character because a virtual world can be controlled easier. Robotic character s need to deal 

with uncertain sensory data and an unpredictable environment.  A better ability to express 

emotions could possibly justify the extra effort of creating a robotic character.  

 

Other factors have influence on the choice between a screen character or robotic character, 

such as if the character should be able to manipulate objects in the real world directly, or if it 

should be able to be in more than one place at a time. These factors might outweigh the 

question which of them is better able to communicate its emotional state, but if the main 

purpose of the character is to communicate with humans than this question might be 

essential.  

 

Three parameters and their interaction are important for the comparison between the 

emotional expressions of a screen character and a robotic character: geometrical intensity, 

perceived intensity and recognition accuracy. We will now take a closer look at the three 

parameters. 

 



Geometrical intensity 

The synthetic face has certain components, such as eyebrows and a mouth, which can be 

manipulated. Usually, a maximum for each emotional expression is defined by reproducing 

already validated faces, such as the well-know Ekman faces (Ekman & Frieser, 1976). The 

spatial difference of each component between the neutral and the maximum expression is 

then divided into equal parts. To express 30% happiness, for example, the components are 

moved 30% of the distance between neutral and maximum.  

 

Perceived intensity 

Humans are able to judge the intensity of a human’s or character’s expression.  Several 

studies have been carried out in which participants evaluated expressions  (Etcoff & Magee, 

1992; Hess, Blairy, & Kleck, 1997). 

 

Recognition accuracy 

Each emotional expression has a certain distinctness, which can be measured by the 

recognition accuracy of humans observing the expression. In this study, when we refer to 

recognition accuracy, we do not mean the differentiability between intensity levels within one 

emotion. We mean the differentiability between emotion categories measured as recognition 

rate. In such recognition tests the participants have to identify which emotion was expressed. 

Low intensity expressions are usually less distinct (Bartneck, 2001; Etcoff & Magee, 1992) 

but can play an important role in human communication (Suzuki & Bartneck, 2003). 

 

Focus of this study 

The main focus of this study is to determine if the embodiment of the characters has an 

influence on its ability to express emotions. This ability will be determined by the parameters 

mentioned above. In addition we will take a look at the relationships of these three 

parameters. Clearly, the geometrical intensity has a direct influence on the perceived intensity 

and the recognition accuracy of the expression. The closer the emotional expression is to its 

maximum the higher is the perceived intensity and the recognition accuracy of the 

expression. However, it cannot be assumed that this relationship is as simple as the function 

perceived intensity = geometric intensity. A 30% geometrical intense expression of happiness 

may not be perceived to be 30% intense or correctly recognized in 30% of the cases.  

 



Research questions 

Based on the background given above we would like to define the four research questions of 

this study: 

1. Do robotic characters express emotions better than screen characters? 

2. What is the relationship between the geometrical and perceived intensity? 

3. What is the influence of the geometrical intensity on the recognition accuracy of the 

expression? 

4. What is the relation between perceived intensity and the recognition accuracy of the 

expression? 

 

Related work 

Hess, Blairy & Kleck (1997) studied the relationship between the geometrical intensity of an 

emotional expression and the perceived intensity and the recognition of that expression using 

pictures of natural faces as stimuli. They changed the geometrical intensity by combining a 

neutral face with an intense expression of an emotion using graphic morphing software in 

20% steps. This is problematic since it is impossible to control how the morphing software 

merges the pictures and therefore generates steps of 20% intensity.  

 

Hess et al. found a significant main effect of physical intensity for both perceived intensity 

and recognition accuracy. With increasing geometrical intensity, perceived intensity 

increased in a linear way. For recognition accuracy a significant linear and quadratic trend 

was found. Furthermore, task difficulty was rated lower for higher intensities. Besides, 

happiness was the easiest to recognize and it was recognized the best:  almost 100% correct 

identifications even for low physical intensities. This happy face advantage has been reported 

before (Ekman & Friesen, 1971). Hess et al. argue that their results support the theory of 

categorical perception only for happiness, not for the other emotions. 

 

In our study, we hope to replicate their results regarding the perceived intensity with different 

stimuli, namely robotic characters and screen characters. Regarding the recognition accuracy, 

we want to find out if we can support a categorical or a dimensional perception of emotional 

expressions. In the present study, however, we do not use the critical morphing procedure to 

create different intensity levels. Instead, we use an robot animation tool as described in the 

Methodology section below.  

 



Differences in identification of emotions between natural and synthetic faces were researched 

by Kätsyri, Klucharev, Frydrych & Sams (2003). They found that emotional expressions 

shown by a synthetic talking head that they developed (Frydrych, Kätsyri, Dobsik, & Sams, 

2003) was recognized worse than emotional expressions displayed by natural human faces. 

This suggests that synthetic faces are not an adequate alternative for natural faces. On the 

other hand there is research that shows that emotional expressions by synthetic faces are 

recognized as well or even better than emotions on natural faces (Bartneck, 2001; Katsikitis, 

1997).  

 

Another aspect of emotional expressions is of interest to this study. The space of human 

emotions is frequently modeled either with dimensions, such as arousal and valence (Hendrix 

et al., 2000; Osgood, Suci, & Tannenbaum, 1957; Russel, 1979; Schlossberg, 1954) or in 

categories such as happiness  and sadness (Ekman, Friesen, & Ellsworth, 1972; Izard, 1977; 

Plutchik, 1980). It has already been shown that a two dimensional space is insufficient to 

accurately model the perception of emotional facial expressions (Schiano, Ehrlich, Rahardja, 

& Sheridan, 2000). Etcoff & Magee (1992) showed that emotional facial expressions  are 

perceived categorically.  

 

They used line drawings of emotional faces to study the relationship between physical 

intensity of an emotional facial expression and the recognition. They had their subject 

identify an emotion on 11 evenly spaced facial expression continua. The continua were based 

on merging either a neutral face with an emotional expressive face or on merging two faces 

with different emotional expressions. It was found that emotions were perceived 

categorically, except for surprise. That means that small physical differences in emotional 

facial expressions are easier to distinguish when at boundaries between emotions and harder 

when within one emotion category. In our study we only use neutral – emotion continua for 5 

emotions. We expect to find a boundary for each emotion where it is possible to recognize an 

expression as a particular emotion. 

 

 

Design of the Robot 

Work at Philips Research currently focuses on building user-interface robot’s to facilitate 

natural dialogues for home automation. For this purpose, a dedicated user-interface robot has 

been developed that provides an interface to devices in the “HomeLab”, an Ambient 



Intelligence Home environment (Aarts, Harwig, & Schuurmans, 2001). Figure 2 shows the 

robot, which is called iCat and has a height of 38 cm. The robot performs various functions 

using the home network, such as information gathering on the Internet and device control 

(lights, VCR, radio, etc.). 

 

 
Figure 2: The degrees of freedom of the iCat Robot 

 

Interacting with the iCat should be enjoyable and effective. Therefore, we provided the user 

interface robot with facial expression capabilities that make the communication between the 

robot and a user more natural. Mobility capabilities were left out of our design in order to 

solely concentrate on face to face interaction.  

 

To determine the components of the face that should be manipulated to create a particular 

facial expression, we analyzed facial expressions of cartoon characters. We concluded that by 

controlling the eyebrows, eyelids, and mouth components we are at least able to express the 

six basic facial expressions (happiness, anger, sadness, surprise, fear, disgust). In addition to 

these facial components, we also decided to control the eyes (look up/down and left/right), 

the head (up/down) and body (left/right), because these parts also are involved in head to 

head communication. All parts of the robot are controlled by 13 standard R/C servos. These 

servos rotate with a 1 degree precision, which gives us the possibility to accurately vary the 

position of the facial components and thus to create different intensities of the facial 

expression. Figure 3 shows some of the facial expressions that can be realized by this 

configuration.  

 



A camera is installed in the nose of the iCat for face recognition and head tracking. iCat’s 

foot contains two microphones to record sound it hears and to determine the direction of the 

sound source. Also, a speaker is installed to play sounds (WAV and MIDI files) and to 

generate speech. Finally, several touch sensors are installed to sense whether the user touches 

the robot. 

 

The control software of the robot is implemented using the Dynamic Module Library 

(Breemen et al., 2003). A software module was implemented that calculated the positions of 

the servos for a given emotion and intensity. This is done by linearly interpolating the servo 

positions at the maximum intensity with the servo positions at the neutral position of an 

emotion. A second software module realized an interface between the robot and an Internet 

webpage that ran the experiments. 

 

 

Methodology 

We reproduced the method used by Hess, et al. (1997) to allow a comparison of the results, 

with two exceptions. First, we used a 11-point scale instead of a continuous slider, which 

should not have any effect on the validity of the comparison.  Second, we used 10% steps of 

geometrical intensity instead of Hess’ et al. 20% steps. This offers more fine-grained 

analyses, while still enabling us to compare the results by only considering every second 

intensity step. 

 

Unlike Hess et al. who did their study with morphed natural faces, we used a robotic 

characters and movies of the robotic character. These robotic faces differed in the percentage 

of the angles of the mouth, the eyebrows and the eyes from the neutral position (0 percent) to 

the extreme position (100 percent). 

 

Subjects  

56 people participated in the experiment. They consisted of 18 female and 38 male ranging 

from 16 to 57 years of age (M = 23.98, SD = 8,57). They were split randomly across the 

conditions. The participants received a reward at the end of the experiment.   

 



Design 

A mixed 5 (emotion) x 10 (intensity) x 2 (embodiment) experiment was conducted. Emotion 

and intensity were within subject factors and embodiment was as a between  subject factor. 

The dependent variables were perceived intensity, recognition accuracy and task difficulty. 

 

Perceived intensity. Participants were asked to rate the intensity of the emotions anger, 

contempt, disgust, fear, happiness, sadness, and surprise on 11-point scales for each presented 

schematic face. Each scale was labeled with an emotion and anchored with „not intense at 

all“ and „very intense“.  

 

Recognition Accuracy. The intended emotion was considered correctly identified if it 

received a highest rating on the correct scale. The recognition rate defines the distinctness of 

an emotion. 

 

Task difficulty. The task difficulty had to be rated on a 5-point scale anchored by the labels  

“very easy” and  “very difficult”. 

 

Material 

The iCat robot, developed by Philips Research (Breemen, 2004) was used to create the 

conditions of the experiment (see  Figure 3). In the robot condition the iCat itself was placed 

on a table in front of the participants and expressed the five emotions. In the screen condition 

movies of the iCat expressing the five emotions were played on a computer screen in front of 

the participants. 

 

The intensity factor consisted of ten evenly spaced levels of each emotion. Manipulating the 

angle of the eyebrow, the mouth and the eyes varied the intensity of an emotion. The 

intensity of each expression started with 10% of the maximum angle, and was increased by 

10% steps, ending with the highest emotion at 100% geometric intensity. 

 

The emotion factor consisted of five basic emotional expressions (see Figure 3) namely 

anger, fear, happiness, sadness, and surprise. The disgust expression was excluded because it 

received very low recognition ratings in a pilot test. 



 
Figure 3: The five most intense faces and the neutral face. 

 

Procedure 

The experiment took place in a lab in the TU Eindhoven and took about 30 minutes. After the 

participants read instructions on a computer screen they were shown the most intense faces 

and the neutral face before they entered a practice session. In the practice session they had to 

evaluate three different faces. In the robot condition, participants were asked to look at the 

robot, which was standing on a desk in front of them. The robot displayed an emotion for 5 

seconds and then returned to the neutral face. In the screen condition the participants were 

shown a face for five seconds on a computer screen. After seeing the face the participants had 

to fill in a questionnaire on a computer screen (see Figure 4). They had to fill in seven 

intensity rating scales and one difficulty scale. They could not continue before all scales were 

filled in. When an expression was shown and subjects thought certain emotions to be 

irrelevant for that expression, they were supposed to mark those irrelevant emotions with 

“not intense at all”.  

 

After the practice session the participants could ask questions about the process of the 

experiment.  Afterwards, the experiment started.  The structure of the experiment is identical 



to the practice session. However, now the participants had to evaluate all 50 faces that were 

shown in random order. After the experiment the participants were debriefed. 

 
Figure 4: The questionnaire 

 

 

Results 

Relationship between geometrical intensity and perceived intensity 

A 5 (emotion) x 10 (geometric intensity) x 2 (embodiment) ANOVA with emotion and 

geometric intensity as within subject factors and embodiment as between subjects factor was 

conducted. Emotion and geometric intensity had an significant effect on perceived intensity 

(emotion: F(4, 216) = 57.485, p < .001; geometrical intensity: F(9, 486) = 146.019, p < .001). 

Faces with higher geometric intensity received higher intensity ratings. Robot faces tended to 

receive higher intensity rating than the screen faces but this difference shortly missed 

significance (F(1, 54) = 3.863, p = 0.055).  

 

A linear (F(1, 54) = 551.633, p < .001) and quadratic (F(1, 54) = 33.375, p < .001) trend was 

present in the relationship between geometrical and perceived intensity.  Figure 5 visualizes 

the relationship.  
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Figure 5: Mean perceived intensity 

 

 

To evaluate which consecutive intensity levels differed significantly, we calculated repeated 

contrasts for each emotion across the embodiment condition. F and p values for the 

differences between consecutive levels can be seen in  

Table 1. Printed in bold are significant differences between consecutive intensity levels. That 

means that intensity differences in the emotional facial expressions are indeed perceived, 

mainly in the lower intensity expressions. 

 
Levels Anger Fear Happiness Sadness Surprise 

% F(1,55) p F(1,55) p F(1,55) p F(1,55) p F(1,55) p 

10-20 5.702 .020 2.186 .145 9.167 .004 .721 .400 9.557 .003 

20-30 7.590 .008 7.197 .010 18.534 .000 4.619 .036 .797 .376 

30-40 5.345 .025 .869 .355 2.541 .117 1.193 .280 .647 .425 

40-50 2.632 .110 1.930 .170 6.066 .017 5.659 .021 12.139 .001 

50-60 5.640 .021 .002 .968 .088 .768 7.021 .010 1.559 .217 

60-70 3.217 .078 3.037 .087 1.490 .227 .328 .569 8.480 .005 

70-80 .755 .389 .034 .855 .164 .687 2.018 .161 2.586 .114 

80-90 4.171 .046 .919 .342 1.761 .190 .028 .867 1.683 .200 

90-100 .001 .969 1.060 .308 5.669 .021 .004 .950 2.478 .121 

 

Table 1: Differences in perceived intensity between consecutive geometric intensity levels. 

 

Relationship between geometrical intensity and recognition 

A 5 (emotion) x 10 (geometric intensity) x 2 (embodiment) ANOVA with emotion and 

geometric intensity as within subject factors and embodiment as between subjects factor was 



conducted. Recognition accuracy differed significantly between emotions (F(4, 216) = 

88.780, p < .001) and between geometric intensity levels (F(9, 486) = 36.514, p < .001). 

Faces with higher geometric intensity received higher intensity ratings. There was no 

difference in recognition accuracy between robot and screen condition (F(1, 54) = .338, p = 

.563).  

Figure 6 shows the relationship between geometrical intensity and recognition accuracy. 

 

 
Figure 6: recognition accuracy per emotion 

 

 

To find out for what intensities the recognition rate was significantly lower compared to the 

maximum intensity of 100%, we tested simple contrasts with the highest intensity level for 

each emotion across embodiment conditions (see  

Table 2). Geometric intensity did not have a significant influence on recognition accuracy for 

surprise (F(9, 495) = .877, p = .546) Significant differences are printed in bold. It can be seen 

that emotional facial expressions were recognized less well when they were not very intense, 

but were recognized just as well as the full-.blown emotion when at least 50% intensity was 

given. 

 

 

 

 

 



 

 
Intensity Anger Fear Happiness Sadness Surprise 

% F(1, 55) p F(1, 55) p F(1, 55) p F(1, 55) p F(1, 55) p 

10 78.913 .000 17.022 .000 107.105 .000 18.733 .000 2.053 .158 

20 37.032 .000 7.279 .009 36.000 .000 7.941 .007 .066 .799 

30 9.230 .004 10.385 .002 3.779 .057 4.185 .046 .076 .784 

40 9.390 .003 5.115 .028 .663 .419 .152 .698 .596 .444 

50 .596 .444 1.687 .199 .329 .568 .101 .752 .066 .799 

60 1.000 .322 8.008 .006 2.037 .159 1.877 .176 .076 .784 

70 1.195 .279 2.037 .159 2.750 .103 .380 .540 .076 .784 

80 .688 .410 2.037 .159 6.600 .013 1.328 .254 .815 .370 

90 .000 1.000 .076 .784 2.037 .159 .000 .987 .089 .766 

 

Table 2: Differences in recognition rate between the highest geometric intensity of 100% and 

lower intensities. 

 

Relationship between geometrical intensity and difficulty 

A 5 (emotion) x 10 (geometric intensity) x 2 (embodiment) ANOVA with emotion and 

geometric intensity as within subject factors and embodiment as between subjects factor was 

conducted.  

 

Difficulty differed significantly between emotions (F(4, 216) =15.505, p < .001) and between 

geometric intensity levels (F(9, 486) = 28.747, p < .001). Faces with higher geometric 

intensity were easier to rate. There was no difference in difficulty between robot and video 

condition (F(1, 54) = .629, p = .431 Figure 7 illustrates the relationship between geometrical 

intensity and difficulty. 

 



Figure 7: Difficulty per emotion 

 

To see if it was any more difficult to judge a low intensity emotion we tested simple contrast 

with the highest intensity for each emotion across embodiment conditions. See  

Table 3 for the results. Printed in bold you find the significant results. You can see that low 

intensity expressions are harder to rate than the full-blown emotion. 

 
Intensity Anger Fear Happiness Sadness Surprise 

% F(1, 55) p F(1, 55) p F(1, 55) p F(1, 55) p F(1, 55) p 

10 62.255 .000 24.449 .000 14.026 .000 31.445 .000 29.585 .000 

20 27.486 .000 7.776 .007 5.500 .023 22.305 .000 26.110 .000 

30 24.557 .000 13.852 .000 4.269 .044 21.601 .000 26.713 .000 

40 13.827 .000 10.789 .002 .616 .436 14.808 .000 15.193 .000 

50 25.208 .000 15.149 .000 .632 .430 9.568 .003 18.474 .000 

60 11.551 .001 12.648 .001 1.072 .305 3.679 .060 13.326 .001 

70 5.115 .028 1.089 .301 1.435 .236 1.986 .164 2.249 .139 

80 8.354 .005 1.805 .185 1.256 .267 .021 .886 .636 .429 

90 .197 .659 5.589 .022 .036 .851 .692 .409 .616 .436 

 

Table 3: Differences in difficulty between the highest geometric intensity of 100% and lower 

intensities. 

 

 
Discussion 

Influence of the embodiment 

The embodiment of the character had no significant influence on how people perceive its 

emotional expression. 

 

Relationship between geometrical intensity and perceived intensity 

The perceived intensity increased with higher geometric intensity. Given geometrical 

intensity level steps of 10% the consecutive perceived intensity levels differed mainly at low 

geometrical intensity levels but not at the higher levels. It seems that the 10% geometrical 

intensity level steps are too small to be discriminated.  For a practical application it appears 

useful to use 20% steps to ensure that the user can distinguish the different levels. 

 

Figure 5 shows the relationship between geometrical and perceived intensity. The graph 

shows that this relationship cannot be modeled by a simple linear function, such as perceived 



intensity = geometric intensity but that a curve-linear trend is visible consisting of a linear 

trend and a quadratic trend. 

 

Relationship between geometrical intensity and recognition 

The recognition accuracies for each emotion increased with the geometric intensity up to a 

certain point where the recognition accuracy did not significantly differ anymore from the 

recognition accuracy at the maximum geometrical intensity of each emotion. This point was 

reached at 40% geometrical intensity for anger and fear at 30% for sadness and at 20% 

geometrical intensity for happiness. This happy-face bonus was previously observed (Ekman 

& Friesen, 1971). Our results show that it is possibly to communicate emotions also at low 

intensity levels and thereby enable characters and robots to act more subtle. 

 

Relationship between geometrical intensity and difficulty 

Although participants were able to recognize the emotions even at low intensities, it was still 

more difficult for them compared to high intensity expressions.  This result is in line with our 

expectations.  Fear remains a problematic emotional expression because it was difficult to 

identify at low and high intensity. In addition it was the most difficult emotion to identify. 

 

 

Conclusions 

We conducted a study of synthetic facial expression of robotic characters and screen 

characters. We investigated the influence of the embodiment and the relationships between 

geometrical intensity, perceived intensity, recognition accuracy and difficulty.  

 

Robotic characters are not able to express emotions better than screen characters. Their more 

anthropomorphic shape does not help to express emotions and hence developers of robots 

should focus on other advantages of robots to justify their development. This could be the 

possibility of tactile interaction and direct manipulation of the environment. Screen 

characters simply cannot bring you a cup of tea. 

 

Fear and happiness remain two special emotional categories for facial expressions. The 

happy-face advantage shows how sensitive humans are in perceiving positive expressions. 

Since the repertoire of positive expressions is limited to smiling it is good to know that it is 



also correctly recognized at low intensities. Fear is a problematic expression since it is 

difficult to recognize and to judge its intensity. 

 

The results of our study indicate that emotional expressions might be perceived categorically. 

The strong increase of recognition accuracy at about 30% geometrical intensity could be 

interpreted as categorical perception as described by Etcoff and Magee (1992). However, we 

have only explored facial expression between neutral face and most intense face for each 

emotion and not between two different emotions. Therefore our results can only be an 

indication. 
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