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Abstract. Shape averaging or signal averaging of time series data is one of the 
prevalent subroutines in data mining tasks, where  Dynamic Time Warping 
distance measure (DTW) is known to work exceptionally well with these time 
series data, and has long been demonstrated in various data mining tasks 
involving shape similarity among various domains. Therefore, DTW has been 
used to find the average shape of two time series according to the optimal 
mapping between them.  Several methods have been proposed, some of which 
require the number of time series being averaged to be a power of two.  In this 
work, we will demonstrate that these proposed methods cannot produce the real 
average of the time series. We conclude with a suggestion of a method to 
potentially find the shape-based time series average. 
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1   Introduction 

The need to find the template or the data representative from a group of time series is 
prevalent in major data mining tasks’ subroutines [2][6][7][9][10][14][16][19].  These 
include query refinement in Relevance Feedback [16], finding the cluster centers in k-
means clustering algorithm, and template calculation in speech processing or pattern 
recognition. Various algorithms have been applied to calculate these data 
representations, often times we simply call it a data average. A simple averaging 
technique uses Euclidean distance metric. However, its one-to-one mapping nature is 
unable to capture the actual average shape of the two time series. In this case, shape 
averaging algorithm, Dynamic Time Warping, is much more appropriate [8]. 

In shape-based time series data, shape averaging method should be considered. 
However, most work involving time series averaging appear to avoid using DTW in 
spite of its dire need in the shape-similarity-based calculation [2][5][6][7][9][10] 
[13][14][19] without providing sufficient reasons other than simplicity. For those who 
use k-means clustering, Euclidean distance metric is often used for time series 
average. This is also true in other domains such as speech recognition and pattern 
recognition [1][6][9][14], which perhaps is a good indicator flagging problems in 
DTW averaging method. 
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Despite many proposed shape averaging algorithms, most of them provide method 
for specific domains [3][11][12], such as evoked potential in medical domains. In 
particular, after surveying related publications in the past decade, there appears to be 
only one proposed by Gupta et al. [8], who introduced the shape averaging using 
Dynamic Time Warping, and has been the basis for all subsequent work involving 
shape averaging. As shown in Figure 1 (a), the average is done in pairs, and the 
averaged time series in each level are hierarchically combined until the final average 
is achieved. Otherwise, another method – sequential hierarchical averaging – has been 
suggested, as shown in Figure 1 (b). Many subsequent publications inherit this 
method under the restriction of having the power of two time series data. In this 
paper, we will show that the proposed method in [8] does not have associative 
property as claimed. 

 
(a) 

 
(b) 

Fig. 1. Two averaging method – (a) balanced hierarchical averaging and (b) sequential 
hierarchical averaging 

The rest of the paper is organized as follows. Section 2 explains some of important 
background involving shape averaging. Section 3 reveals the problems with current 
shape averaging method by extensive set of experiments. Finally, in section 4, we 
conclude with some discussion of potential causes of these inaccuracies, and suggest 
possible treatment to shape-based time series averaging problem. 

2   Background 

In this section, we provide brief details of Dynamic Time Warping (DTW) distance 
measure, its properties, time series averaging using DTW.  

2.1   Distance Measurement  

Distance measure is extensively used in finding the similarity/dissimilarity between 
time series. The two well known measures are Euclidean distance metric and DTW 
distance measure. As a distance metric, it must satisfy the four properties – symmetry, 
self-identity, non-negativity, and triangular inequality.  

A distance measure, however, does not need to satisfy all the properties above. 
Specifically, the triangular inequality does not hold for the DTW distance measure, 
which is an important key to the explanation why we have such a hard time in shape 
averaging using Dynamic Time Warping. 
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2.2   Dynamic Time Warping Distance  

DTW [15] is a well-known similarity measure based on shape. It uses dynamic 
programming technique to find all possible paths, and selects the one with the 
minimum distance between two time series. To calculate the distance, it creates a 
distance matrix, where each element in the matrix is cumulative distance of the 
minimum of three surrounding neighbors. Suppose we have two time series, a 
sequence Q of length n (Q = q1, q2, …, qi, …, qn) and a sequence C of length m (C = 
c1, c2, …, cj, …, cm). First, we create an n-by-m matrix where every (i, j) element of 
the matrix is the cumulative distance of the distance at (i, j) and the minimum of three 
neighbor elements, where 0<i ≤ n and 0<j ≤ m. We can define the (i, j) element as:  
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where dij = (ci - qj)
2 and eij is (i, j) element of the matrix which is the summation 

between the squared distance of qi and cj, and the minimum cumulative distance of 
three elements surrounding the (i, j) element. Then, to find an optimal path, we 
choose the path that has minimum cumulative distance at (n, m), which is defined as: 
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where P is a set of all possible warping paths, and wk is (i, j) at kth element of a 
warping path and K is the length of the warping path. 

2.3   Dynamic Time Warping Averaging  

Shape averaging exploits DTW distance [8] to find the appropriate mapping for an 
average.  More specifically, the algorithm needs to create a DTW distance matrix and 
find an optimal warping path. After the path is found, an averaged time series is 
calculated along this path by using the index (i, j) of each data point wk on the 
warping path, which corresponds to the data points qi and cj on the time series Q = q1, 
q2,…,qi,…,qn and C = c1,c2,…, cj,…,cm, respectively. An optimal warping path W with 
length K is defined as 

Kk wwwwW ,...,,...,2,1=  (3) 

In addition, wk, which is mapped with index (i, j), is calculated by the mean value 
between time series whose indices are i and j. Note that in query refinement, where 
two time series may have different weights, weight αQ for a sequence Q and weight αC 
for a sequence C, the equation above may then be simply generalized according to the 
desired weight below 
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3   Experiment Evaluation 

To validate our hypotheses, we set up 4 experiments to disprove the claims of the 
current shape averaging method. The first experiment tests whether reordering of the 
sequences will have any effect on the averaged result. The second experiment tests 
whether DTW averaging of two time series will give the real average. The third 
experiment tests whether the averaged result is in fact at the center of all original time 
series. Finally, in the fourth experiment, we test our overall hypotheses by running k-
means clustering and demonstrate its failure in returning meaningful results.  

3.1   Does Reordering Make Any Differences?  

This experiment tests whether reordering of the sequences of balanced hierarchical 
averaging will affect the final averaged time series. According to [8], they claim the 
associative property under 2n data constraint, and explicitly state that no matter how 
we rearrange the data, it will not make any difference in the final averaged outcome. 

To show the associative property, we use the Cylinder-Bell-Funnel (CBF) [17], 
Leaf, Face, Gun, and ECG dataset, from the UCR time series data mining archive 
[http://www.cs.ucr.edu/~eamonn/time_series_data/]. The well-known 3-class CBF 
dataset contains 64 instances with the length of 128 data points. The last 3 datasets are 
multimedia data transformed into time series [16]. The Face dataset contains 112 total 
normalized instances of 350 data points. The Leaf dataset contains 442 instances of 
rescaled lengths of 150 data points. Gun dataset has two classes, with 100 instances 
each, and each instance has the same length of 150 data points. ECG dataset consists 
of two different heart-pulse classes; each class contains 28 instances with normalized 
length of 205 data points. Examples of CBF, Leaf, Face, Gun, and ECG data show in 
Figures 2, 3, 4, 5, and 6. 
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Fig. 2. Examples of CBF data with variations in time axis, i.e. the onset and ending positions 
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Fig. 3. Examples of six species of Leaf data using time series representation 
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Fig. 4. Examples of six different Face classes 

50 100 150
-1
0
1
2
3

Gun Class 1

50 100 150
-1
0
1
2
3

Gun Class 2

 

Fig. 5. Examples of Gun data 
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Fig. 6. Examples of ECG data 

Even when n = 1, we cannot guarantee the commutative property of the averaging 
method, i.e., DTW_Avg(Q,C) may or may not give the same result as DTW_Avg(C,Q), 
though its symmetric property will give the same DTW distance. When n is larger 
than one, we want to test whether shuffling the sequences would affect the (balanced 
hierarchical) averaged result. We first test by averaging only instances within their 
own class. We compute the distance of every possible pairings, then reshuffle the data 
and repeat the computation (100 runs). We then compare whether the distances 
among all averaged results from each variation using DTW distance are in fact equal. 
It is very surprising to see that the averaged time series from each run do not have the 
same shape, giving the discrepancy among each of the averaging results from 
different runs much larger than zero. The result are shown in Table 1. 

Table 1. Mean and standard deviation of discrepancy distance 

 CBF Leaf Gun ECG Face 
Discrepancy distance 227.95±17.23 99.32±10.66 142.50±13.31 6.17±0.90 24.58±2.49 

3.2   Correctness of DTW Averaging Between Two Time Series  

In this experiment, we demonstrate that the averaged time series, when comparing 
back to the two original time series, does not have the same distance. Our general 
intuitive hypothesis is that if we average two time series, the averaged result should 
equally contain characteristics from both original time series. To examine this, we 
compute the DTW distance from the averaged result back to both original time series, 
and we should get the same distance. If this property does not hold, the large number 
of data mining algorithms that have used this averaging method would probably have 
worked incorrectly, especially in [8] itself (balanced hierarchical averaging by pairing 
of 2n time series). For evaluation, mean percentage errors in all possible pairs in each 
dataset are computed. Suppose we have two original time series, Q and C, and their 
resulting averaged time series X. The percentage error is defined as  
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Table 2 shows the experiment results with mean and the standard deviation of 
percentage errors in each dataset. Note that the percentage error should be 0%. 

Table 2. The percentage error from the average results in each dataset 

 CBF Leaf Gun ECG Face 
Discrepancy distance 227.95±17.23 99.32±10.66 142.50±13.31 6.17±0.90 24.58±2.49 

3.3   Can Cluster Center Drift Out of the Cluster? 

In this experiment, we demonstrate an undesirable phenomenon that could happen 
when we average more than two time series using DTW.  We first test on the simplest 
case where there are only 3 objects to average. We combine hierarchical averaging 
and sequential averaging methods proposed by [8], to make sure that all three time 
series are used in the averaging process. We then determine whether the averaged 
result is in the middle of the group. The example is shown in Figure 7 (a). We first 
average data, A-B-C from all three data points – A, B, and C. In Figure 7 (b), we 
calculate average results between each pair of the data points – A-B, A-C, and B-C. If 
DTW distances between: A-B and C is less than that between A-B-C and C, A-C and B 
is less than that between A-B-C and B, or B-C and A is less than that between A-B-C 
and A, then that means the averaged result, A-B-C, is not in the center of the data 
points. Figure 7 (c) shows the averaged result satisfying the above assumption, but 
Figure 7 (d) shows the averaged result violating the assumption. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. The cluster center from DTW average, that may drift from the actual cluster center 

Table 3 shows the percentage of occurrences that averaged results from all possible 
three time series that are outside the data group (unsatisfied averaging). Note that the 
unsatisfied averaging percentage must be 0% to verify correctness of this averaging 
method. 

Table 3. Percentages of average results that are outside the group 

 CBF Leaf Gun ECG Face 
Unsatisfied averaged result (%) 0.008% 0.031% 8.936% 23.521% 0.006% 

3.4   Failure in K-Means Clustering with DTW 

This last experiment shows the use of k-means clustering using DTW distance to find 
the cluster center (shape averaging), comparing with an unproblematic k-medoids 
clustering with DTW distance. In this experiment, we will show that if k-means 
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method is used in clustering, there is a high probability of failure (and that is probably 
why we do not see much of k-means clustering with DTW averaging in the literature.  
We will show this by reporting the average number of iteration up to the point where 
k-means fails, which is when the averaged cluster center happens to drift outside of 
the cluster, as we discussed in Experiment 3. We run k-means clustering with the 
same datasets. In each dataset, we choose k to be its actual numbers of class. For 
clearer evaluation, we compare the results with the number of iteration obtained using 
the k-medoids methods (which always succeed). We run the experiment 1,000 times 
for each dataset. Table 4 shows the mean and standard deviation of the number of 
iteration when k-means fails to give meaningful clustering results for each dataset.  

Table 4. The mean and standard deviation of number of iteration when k-means fails compares 
to k-medoids successes for each dataset 

 CBF Leaf Gun ECG Face 
Failure: iteration (k-means) 2.16±1.13 1.32±0.34 5.16±1.71 1.76±0.76 1.72±0.83 

Success: iteration (k-medoids) 3.87±0.94 4.19±0.90 4.06±0.93 2.50±0.51 3.61±0.72 

4   Discussion, Conclusion, and Future Works 

In search of the remedies, we can categorize the problems into three parts, i.e., a 
distance measure, an averaging method, and dataset properties. First, since DTW is 
the distance measure that has no triangular inequality property, the averaged time 
series may not be the actual mean because DTW cannot guarantee the position of 
averaged result in Euclidean space. Second, in finding a new the averaging method, 
we suggest that a new averaging method should satisfy various criteria in our 
proposed experiments. And third, to satisfy triangular inequalities, it also depends on 
the properties of the data at hands (generally, only a handful of data within a dataset 
would violate the triangular inequalities). It is possible to first split the data into 
groups that triangular inequalities hold within. We can simply find the DTW average 
for each group, and then finally merge those averages together. 

In conclusion, we have empirically demonstrated various counterexamples to 
current shape averaging method using Dynamic Time Warping distance.  From 
these experiments’ findings, we have confirmed that the current DTW averaging is 
inaccurate and should not be used as a subroutine where shape averaging is needed 
due to lacks of several properties discussed earlier. We conjecture that the reason to 
this undesirable phenomenon is the triangular inequality that DTW also lacks  
of. Therefore, DTW averaging cannot guarantee the correctness of the averaging 
result. 

In this paper, we intend to make a first attempt in pointing out some 
misunderstanding and misuse of current DTW averaging method. As our future work, 
from these findings, we will investigate how these problems can be resolved and 
come up with a remedy in accurately averaging shape-based time series data. 
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