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Abstract 

 

 This paper proposes a theoretical modelling of the simultaneous and non invasive 

measurement of electrical resistivity and dielectric permittivity, using a quadrupole probe on a 

subjacent medium. A mathematical-physical model is applied on propagation of errors in the 

measurement of resistivity and permittivity based on the sensitivity functions tool. The findings are 

also compared to the results of the classical method of analysis in the frequency domain, which is 

useful for determining the behaviour of zero and pole frequencies in the linear time invariant (LTI) 

circuit of the quadrupole. The paper underlines that average values of electrical resistivity and 

dielectric permittivity may be used to estimate the complex impedance over various terrains and 

concretes, especially when they are characterized by low levels of water saturation (content) and 

analyzed within a bandwidth ranging only from low (LF) to middle (MF) frequencies. In order to 

meet the design specifications which ensure satisfactory performances of the probe (inaccuracy no 

more than 10%), the forecasts provided by the sensitivity functions approach are less stringent than 

those foreseen by the transfer functions method (in terms of both a larger band of frequency f and a 

wider measurable range of resistivity ρ or permittivity εr).  
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1. Introductive review. 

 

 Electrical resistivity survey in soil science - The electrical resistivity of a surface is a proxy 

for the spatial and temporal variability of many other physical properties of the subjacent medium. 

Samouëlian (Samouëlian et al., 2005) discusses the basic principles of data interpretation and the 

main advantages or limits of the analysis. This method allows non-destructive and very sensitive 

investigation, describing subsurface properties without direct inspection. Various techniques are 

applied according to the required scales of resolution and heterogeneities of the area. A suitable 

probe injects generated electric currents into a medium and the resulting potential differences are 

measured. The information is recovered from the potential difference patterns, which provide the 

form of medium heterogeneities and their electrical properties (Kearey et al., 2002). The greater the 

electrical contrast between the subsurface matrix and a heterogeneity, the easier the detection. Other 

authors (Banton et al. 1997) showed that surface resistivity can be considered as a good indication 

of the variability of other physical properties. The current pattern distributions depend on the 

medium heterogeneities and are concentrated in a conductive volume. Some linear distributed 

arrays use four-electrode cells, which are commonly employed in the laboratory for resistivity 

calibration (Rhoades et al., 1976) and in the field for vertical electrical sounding (Loke, 2001).  

 Dielectric permittivity survey in soil science [Middle frequencies (MF), 300kHz<f<3MHz] - 

Analysis in middle frequencies allows the measurement of dielectric permittivity. Fechant and 

Tabbagh (Fechant and Tabbagh, 1999) developed an interesting approach. They used a MF band for 

the characterization of permittivity in the natural media. This approach employs an electrostatic 

quadrupole probe designed to measure resistivity at several centuries of kHz (Tabbagh, 1994).  A 

quadrupole, working at the frequency 455kHz, measures permittivity for determination of water 

content (Fechant, 1996). However, this approach requires calibration in laboratory. 

 Electrical resistivity and dielectric permittivity surveys in soil science [low frequencies (LF), 

30kHz<f<300kHz] - Analysis in low frequencies allows simultaneous measurements of both 
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electrical resistivity and dielectric permittivity. Tabbagh and Grard, in their experiments (Grard, 

1990, a-b)(Grard and Tabbagh, 1991)(Tabbagh et al., 1993), showed that the resistivity and 

dielectric constant (complex permittivity) of a surface can be measured by a set of four electrodes. 

This novel approach, first introduced by Wenner, improved the existing system which provided 

only a resistivity assessment. In the new method the four electrodes are manually inserted into the 

subjacent medium. Permittivity, which is sensitive to the presence of water, can also be determined 

employing a LF probe (below 300 kHz) and plays an important role in the detection of anomalies in 

the subsurface. 

Vannaroni and Del Vento (Vannaroni et al., 2004)(Del Vento and Vannaroni, 2005) used a 

dielectric spectroscopy probe to determine the complex permittivity of a surface from 

measurements of transfer impedance of a four-electrode system electrically coupled to the medium. 

They defined transfer impedance as the ratio of the voltage measured across a pair of receiving 

electrodes to the current transmitted by a second pair of electrodes (Vannaroni et al., 2004). This 

impedance measurement, performed in AC regime capacitive coupling, strongly depends on the 

geometry of the electrode array but also on the complex permittivity of the subsurface. The 

advantages offered by this method are due to the fact that the exciter current can be injected into the 

surface even in the absence of galvanic contact, and, in AC regime, both conduction and 

displacement currents of the medium can be measured, obtaining further information on the 

polarizability. In this case the frequency band is 10kHz-1MHz. The lower limit is effectively 

imposed by two facts: a) firstly, the Maxwell-Wagner effect which limits probe accuracy (Frolich, 

1990): the most important limitation happens because of interface polarization effects that are 

stronger at low frequencies, say below 1kHz depending of medium conductivity; b) secondly, the 

need to maintain the amplitude of the current at measurable levels as, given the capacitive coupling 

between electrodes and soil, the current magnitude is proportional to the frequency. On the other 

hand, the upper limit is opportunely fixed to allow the analysis of the system in a regime of quasi 

static approximation and neglect the velocity factor of the cables used for the electrode harness, that 
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in turn degrades the accuracy of the mutual impedance phase measurements. Thus, it is possible to 

exploit the analysis of the system in the low and middle frequency band where the electrostatic term 

results considerable. The general electromagnetic (e.m.) calculation provides lower values than the 

static case; a high resistivity narrows the differences. So, comparing, above 1 MHz the general e.m. 

calculation must be preferred, while under 500 kHz the static case should be used and between 500 

kHz and 1 MHz both methods could be used (Tabbagh et al. 1993). 

The present paper proposes a theoretical modelling of the simultaneous and non invasive 

measurement of electrical resistivity and dielectric permittivity, using a quadrupole probe on a 

subjacent medium. A mathematical-physical model is applied on propagation of errors in the 

measurement of resistivity and permittivity based on the sensitivity functions tool. The findings are 

also compared to the results of the classical method of analysis in the frequency domain, which is 

useful for determining the behaviour of zero and pole frequencies in the linear time invariant (LTI) 

circuit of the quadrupole. This paper underlines that average values of electrical resistivity and 

dielectric permittivity may be used to estimate the complex impedance over various terrains and 

concretes, especially when they are characterized by low levels of water saturation or content 

(Knight and Nur, 1987) and analyzed within a frequency bandwidth ranging only from LF to MF 

(Myounghak et al., 2007)(Al-Qadi et al., 1995). In order to meet the design specifications which 

ensure satisfactory performances of the probe (inaccuracy no more than 10%), the forecasts 

provided by the theory of error propagation [suggested by (Vannaroni et al., 2004)] applying the 

sensitivity functions approach, explicitly developed in the paper, are less stringent than those 

foreseen by the analysis in the frequency domain [suggested by (Grard and Tabbagh, 1991)], 

deepening here the transfer function method to analyze the zero and pole behaviour (in terms of 

both a larger band of frequency f and a wider measurable range of resistivity ρ or permittivity εr). 

The paper is organized as follows. Section 2 discusses the Cole-Cole empiric function: for 

simplicity of analysis, the dielectric dispersion is assumed very low: this operating condition is 

satisfied when the electrical spectroscopy is performed only on non-saturated water materials and 
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especially in a suitable band of low and middle frequencies. Section 3 introduces the quadrupole 

probe. Sec. 4  provides a theoretical modelling which applies to both the sensitivity functions 

approach (Sec 4.a.) and the transfer function method (4.b.). In Sec 5, the configurations of the 

quadrupole are defined and discussed. Conclusions are drawn in Sec. 6. Finally, an outline of the 

somewhat lengthy calculations is presented in the Appendices A and B. 

 

2. Discussing Cole-Cole empiric function. 

 

 Even if, according to Debye polarization mechanisms (Debye, 1929) or Cole-Cole diagrams 

(Auty and Cole, 1952), the complex permittivity of various materials in the frequency band from 

VLF to VHF exhibits several intensive relaxation effects and a non-trivial dependence on the water 

saturation (Chelidze and Gueguen, 1999)(Chelidze et al., 1999), anyway average values of electrical 

resistivity and dielectric permittivity may be used to estimate the complex impedance over various 

terrains and concretes, especially when they are characterized by low levels of water content 

(Knight and Nur, 1987) and analyzed within a frequency bandwidth ranging only from LF to MF 

(Myounghak et al., 2007)(Al-Qadi et al., 1995).  

Many functions have been proposed to fit the data of dielectrics. Among them, there are those 

obtained by attempts to model the physical processes or those of simple empirical functions, which 

are used to parameterize the data without the knowledge of the involved mechanisms. A widely 

used empirical function has been proposed by brothers Cole and it is based on the theory of Debye 

relaxation, the first one to have treated this phenomenon. 

The Cole-Cole empiric function defines the first order dielectric response of materials in frequency 

domain, 
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where ε0 is the dielectric constant in vacuum. 

The electrical conductivity σ(f) and dielectric permittivity εr(f) exhibit limit values at low and high 

frequencies, σL, εr,L and σH, εr,H, which are linked by the relaxation time τ, 

 0( )L H
H L

ε ε ε σ σ
τ
−

= − , (2.4) 

so, as it can be noticed, permittivity and conductivity can not vary independently of each other 

(Frolich, 1990). 

At the characteristic frequency of relaxation, fc=1/(2π·τ), the permittivity εr assumes an  

intermediate value between the values of high and low frequency, εr,L and εr,H. Alternately,  

the relaxation frequency fc could be considered as that frequency at which the conductivity σ 

assumes the middle value between the two limit values, σL and σH. 

In reality, the relationship (2.1) is a generalization of Debye equation, having the purpose to take 

into account, through the introduction of another parameter α (inclusive between 0 e 1), the 

enlargement of dispersion region due to the complexity of structure and the composition of 

materials. Note that, for α = 0, eq. (2.1) can be exactly reduced to Debye equation. It is to be 

underlined that the parameter α is a increasing function of the water saturation SW, such that 

α(SW=0)→0, reaching a limit value αL>0 for SW→1 (Knight and Nur, 1987). In fact, the complex 

dielectric permittivity is flattened decreasing water content or increasing frequency (Myounghak et 

al., 2007)(Al-Qadi et al., 1995). 

The complex dielectric permittivity ( )complex

r fε  can be approximated to a constant if its dominant 

term 1
, ,( ) [1 ( 2 )r L r H j f ]αε ε π τ −− +  is a function almost independent from the frequency, 

 1(2 ) 1f απ τ − << . (2.5) 
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Operating condition (2.5) holds when the materials are characterized by low levels of water content, 

i.e. 

 0α → , (2.6) 

and analyzed over a band lower than middle frequencies, i.e. 

 
1

2
f

πτ
< . (2.7) 

In fact, the constant τ depends on the physical process under consideration and it has an order of 

magnitude that varies from a few picoseconds for the orientation of electrons and small dipolar 

molecules, up to a few seconds for the effects of counter-ions or for the interfacial polarization 

(Frolich, 1990). 

So, in the paper, let us refer to the (σ, εr) values in LF-MF bandwidth proposed for various terrains 

in (Edwards, 1998) and for concretes in (Polder et al., 2000)(Laurents, 2005). 

 

3.  Quadrupole probe. 

 

 When using a quadrupole probe [fig. 1] the response depends on geometric parameters, like 

the height of each electrode above the ground surface and the separation of the electrodes, and on 

physical parameters including frequency, electrical conductivity and dielectric permittivity. When a 

medium is assumed to be linear and its response linearly dependent on the electrical charges of the 

two exciting electrodes, the simplest approach is static calculation (Tabbagh et al., 1993), especially 

using a low operating frequency. If the electrodes have small dimensions relative to their 

separations, then they can be considered as points. Moreover, if the current wavelength is much 

larger than all the dimensions under consideration, then quasi-static approximation applies (Grard, 

1990, a-b).  
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 The quadrupole probe [fig. 1] measures a capacitance in vacuum C0(L), which is directly 

proportional to its characteristic geometrical dimension, i.e. the electrode-electrode distance L, both 

in a linear (Wenner) configuration [fig. 2.a], 

 0 ( ) 4C L L0πε= ⋅ , (3.1) 

and in a square arrangement [fig. 2.b], 

 0 ( ) 4C L L0α πε= ⋅ , (3.2) 

which is greater by a factor α=1/(2-2
1/2

)>1, where ε0 is the dielectric constant in vacuum. 

When the quadrupole, specified by the electrode-electrode distance L, has a galvanic contact with 

the subjacent medium, of electrical conductivity σ and dielectric permittivity εr, it measures a 

transfer impedance ZN(f,L,σ,εr), which consists of parallel components of resistance RN(L,σ) and 

capacitance CN(L,εr). The resistance RN(L,σ) depends only on L and σ (Grard and Tabbagh, 1991) 

 0

0

( , ) 2
( )NR L

C L

ε σσ = ; (3.3) 

while CN(L,εr) depends only on L and εr (Grard and Tabbagh, 1991) 

 0

1
( , ) ( ) ( 1)

2N r rC L C Lε ε= ⋅ + . (3.4) 

As a consequence, if the probe, besides grazing the medium, measures the conductivity σ and 

permittivity εr working in a frequency f much lower than the cut-off frequency fT=fT(σ,εr)= 

σ/(2πε0(εr+1)), the transfer impedance ZN(f,L,σ,εr) is characterized by the phase ФN(f,σ,εr) and 

modulus |Z|N(L,σ). The phase ФN(f,σ,εr) depends linearly on f with a maximum value of  π/4 and is 

directly proportional to the ratio (εr+1)/σ; while |Z|N(L,σ) does not depends on f, and is  inversely 

proportional to both L and σ. In fact, if ZN(f,L,σ,εr) consists of the parallel components of RN(L,σ) 

(3.3) and CN(L,εr) (3.4), then it is fully characterized by the high frequency pole fT=fT(σ,εr), which 

cancels its denominator: the transfer impedance acts as a low-middle frequency band-pass filter 

with cut-off fT=fT(σ,εr), in other words the frequency equalizing Joule and displacement current. In 
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the operating conditions defined in sec 2, average values of σ may be used over the band ranging 

from LF to MF, therefore |Z|N(L,σ) is not function of frequency below fT. 

Instead, when the quadrupole probe [fig. 1] has a capacitive contact with the subjacent medium and 

the geometry of the probe is characterized by the ratio x between the height above ground h and the 

electrode-electrode distance L,  

 
h

x
L

= , (3.5) 

its configurations can be entirely defined by a suitable geometrical factor K(x), which depends on 

the height/dimension ratio x. It is introduced by (Grard and Tabbagh, 1991) and can be specified for 

the Wenner configuration [fig. 2.a] 

 , (3.6) 2 1/ 2 2 1/ 2( ) 2(1 4 ) (1 )K x x x−= + − + −

and the square arrangement [fig. 2.b] 

 
2 -1/ 2 -1/ 2 2 -1/ 2

-1/ 2

(1 4 ) - 2 (1 2 )
( )

1- 2

x
K x

+ +
=

x
; (3.7) 

Actually, Grard and Tabbagh  preferred to introduce the complementary δ(x) of the geometrical 

factor K(x), i.e. 

 ( ) 1- ( )x K xδ = , (3.8) 

where  K(x=0)=1 and δ(x=0)=0.  

So, if the quadrupole works in the pulse frequency ω=2πf, which can be normalized with respect to 

the cut-off ωT=2πfT  (Grard and Tabbagh, 1991), 

 0 ( 1r
N N

T

R C
)ε εω ω ω

ω σ
+

Ω = = = , (3.9) 

then the probe measures a transfer impedance Z(Ω,x,σ,εr) which consists of the resistance 

R(Ω,x,σ,εr) and capacitance C(Ω,x,σ,εr) parallel components (Grard and Tabbagh, 1991), 
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Inverting eqs. (3.10) and (3.11), σ and  εr can be expressed as functions of R and C, i.e. 
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In our opinion, once fixed the pair’s (f, x) degrees of freedom, it is not suitable to choose (R,C) as 

independent variables and then (σ, εr) as dependent variables [eqs. (3.12)-(3.13)]. Instead, it is more 

appropriate to consider (σ, εr) as quantities of physical interest and consequently eqs. (3.10)-(3.11) 

as starting point for the theoretical development. In fact, even if the physics does not forbid to 

choose (R,C) as independent variables, running the way (R,C) → (σ, εr), anyway the procedures of 

design should choose (σ, εr) as independent variables, running a preferential way (σ, εr) → (R,C). 

According to the two following practical approaches: a) [(σ, εr) as independent variables in order] to 

establish the class of media with conductivity and permittivity (σ, εr) which are investigable by a 

quadrupole working in a fixed band B and specified by a known geometry x; b) [preferential way (σ, 

εr) → (R,C) since] once a subjacent medium with electrical conductivity σ and dielectric 

permittivity εr is selected, one can project the quadrupole probe specifications R and C both in 

frequency f and in height/dimension ratio x. 

 

4. Theoretical modelling. 

 

 The measurements taken using the quadrupole probe are affected by errors mainly originating 

from uncertainties associated with transfer impedance, from dishomogeneities between the 

modelled and actual stratigraphy, and from inaccuracy of the electrode array deployment above the 
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surface (Vannaroni et al., 2004). Errors in impedance result mainly from uncertainties in the 

electronic systems that perform the amplitude and phase measurements of the voltages and currents 

(Del Vento and Vannaroni, 2005). The above uncertainties were assumed constant throughout the 

whole frequency band even though their effects, propagating through the transfer function, will 

produce a frequency dependent perturbation. 

 

4.1. Sensitivity Functions Approach . 

 

 This paper proposes to develop explicitly the sensitivity function approach which is implied 

in the theory of error propagation suggested by (Vannaroni et al., 2004). In fact, the section 

introduces a mathematical-physical model for the propagation of errors in the measurement of 

electrical conductivity σ and dielectric permittivity εr, based on the sensitivity functions tool 

(Murray-Smith, 1987). This is useful for expressing inaccuracies in the measurement of 

conductivity and permittivity [fig. 3] as a linear combination of the inaccuracies for the transfer 

impedance, both in modulus |Z| and in phase ΦZ, where the weight functions are inversely 

proportional just to the sensitivity functions for |Z| and ΦZ relative to σ and εr [fig. 4]. The 

inaccuracies of transfer impedance depend on the inaccuracies of electrical voltage and current 

which are assigned by the employed electronics and, in particular, by the sampling methods. 

So, the inaccuracies Δσ/σ, in the measurement of the electrical conductivity σ, and Δεr/εr, in the 

dielectric permittivity εr, can be expressed as a linear combination of the inaccuracies Δ|Z|/|Z| and 

ΔΦZ /ΦZ in the measurement of the transfer impedance, respectively in modulus |Z| and in phase ΦZ,  

 
1 1

   ,   for   
Z Z
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Z Z
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σ σ

σσ
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σ Φ Φ

Δ ΔΔΦ ΔΦΔ
= + = + =

Φ Φ
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Z Z

rr

r Z Z

Z Z
r Z Z

Z Z
S S const

Z Z SS

ε ε

εε

ε σ
ε Φ Φ

Δ ΔΔ ΔΦ ΔΦ
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Φ Φ
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where ( Z
Sσ , ZSσ

Φ ) and (
r

Z
Sε , Z

r
Sε
Φ ) are the pairs of sensitivity functions for the transfer impedance, 

both in |Z| and ΦZ, relative to the conductivity σ and permittivity εr, whose expressions are reported 

in Appendix A. The conditions σ=const and εr=const in eqs. (4.1) and (4.2) underline not so much 

that constant values of electrical conductivity and dielectric permittivity are used to estimate the 

complex impedance over various terrains and concretes under the operating conditions defined in 

Sec. 2, as that the quantities σ and εr are not independent of each other, since the electrical 

displacement shows a phase-shift with respect to the electrical field (Frolich, 1990); so, for need to 

distinguish the inaccuracies in measurements of conductivity and permittivity, the inaccuracy Δσ/σ 

can only be calculated assuming there is not uncertainty for εr  (Δεr=0 ⇔  εr=const) and vice versa. 

Moreover, according to the physical problem, the probe performs measurements of the transfer 

impedance Z, both in modulus |Z| and in phase ΦZ, which are characterized by the inaccuracies 

Δ|Z|/|Z|>0 and ΔΦZ /ΦZ>0. Mathematically, it is not allowed to apply the conditions |Z|=const or 

ΦZ=const. In this context, the sensitivity functions 
Z

Sσ  and r

Z
S ε  can not be calculated assuming 

ΦZ=const and then the sensitivities 
Z

Sσ
Φ  and r

Z
S
ε
Φ  assuming |Z|=const. In fact, as discussed above, 

once fixed the pair’s (f, x) degrees of freedom, it is not suitable to choose as independent variables 

(|Z|,ΦZ) [or (R,C)]. Consequently, the sensitivity functions can not be calculated by the dependent 

variables σ=σ(|Z|, ΦZ) and εr=εr(|Z|, ΦZ) [or by eqs. (3.12) and (3.13)]. Instead, the physical 

problem should be approached recalling that (f, x, σ, εr) have been considered as independent 

variables. In the simplifying hypothesis that the frequency f and the height/dimension ratio x are 

characterized by inaccuracies Δf/f≈0 and Δx/x≈0 close to zero, the conditions f=const and x=const 

can be applied. Necessarily, the inaccuracy Δσ/σ, in the measurement of the electrical conductivity 

σ, is calculated assuming εr=const, and then the inaccuracy Δεr/εr, for the dielectric permittivity εr, 

assuming σ=const. As a consequence, the mathematical calculations should be done recalling the 

fact that eqs. (3.10)-(3.11) have been considered as starting point for the theoretical development. 

The inaccuracies Δσ/σ for the conductivity σ and Δεr/εr for the permittivity εr can be more directly 
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expressed as functions of (f, x, σ, εr) by calculating the sensitivity functions ( Z
Sσ , ZSσ

Φ ) and 

(
r

Z
Sε , Z

r
Sε
Φ ) in the last member of eqs. (4.1) and (4.2). These sensitivities are derived from the 

transfer impedance 1/Z=1/R+jωC reported in eqs. (3.10) and (3.11). 

 The interesting physical results obtained using this sensitivity functions approach are 

discussed below. If the quadrupole probe has a galvanic contact with the subjacent medium, i.e. 

h=0, then the inaccuracies Δσ/σ in the measurement of the electrical conductivity σ and Δεr/εr in the 

dielectric permittivity εr are minimized in the frequency band B of the quadrupole, for all its 

geometric configurations and media; and, even if h≠0, the design of the probe must still be 

optimized with respect to the minimum value of the inaccuracy Δεr/εr in εr, which is always higher 

than the corresponding minimum value of the inaccuracy Δσ/σ in the band B of the probe, for all its 

configurations and media (Tabbagh et al., 1993)(Vannaroni et al., 2004). 

Under quasi static approximation, only if the quadrupole probe is in galvanic contact with the 

subjacent medium, i.e. h=0, and considering that the sensitivities functions are defined as 

normalized functions, then our mathematical-physical model predicts that the sensitivities of the 

transfer impedance relative to the conductivity σ and permittivity εr are independent of the 

characteristic geometrical dimension of the quadrupole, i.e. electrode-electrode distance L. 

If the probe grazes the medium, then the transfer impedance ZN(σ,L) consists of the resistance 

RN(σ,L), which is independent of εr, and parallel capacitance CN(εr,L), which is independent of σ, 

such that: the sensitivity function RSσ  for R relative to σ is a constant equal to (-1); the sensitivity 

( )
r

C

rSε ε  for C relative to εr  is independent of σ, behaving as the function εr/(εr+1) of εr; the 
r

RSε  

function for R relative to εr and the CSσ  function for C relative to σ are identically null. As a 

consequence, the inaccuracy ΔR/R for R shows the same behaviour versus frequency of the 

inaccuracy Δσ/σ in the measurement of σ, as ΔR/R=| RSσ |Δσ/σ=Δσ/σ, and the inaccuracy ΔC/C for C 

shows a similar behaviour versus frequency with respect to the inaccuracy Δεr/εr for εr, as 
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ΔC/C=| ( )
r

C

rSε ε |Δεr/εr≈Δεr/εr if εr>>1. Moreover, besides the hypothesis h=0, if σ and εr are 

measured in the cut-off frequency fT=fT(σ,εr), then: the sensitivity functions Z
Sσ  and ZSσ

Φ  for the 

transfer impedance, both in modulus |Z| and in phase ΦZ, relative to σ, are constant, respectively (-

1/4) and (-1/π); the sensitivities ( )
r

Z

rSε ε  and ( )Z

r rSε εΦ  for |Z| and ΦZ relative to εr are independent of 

σ, such that they behave as the function εr/(εr+1) of εr. As a consequence, the ratio between Δεr/εr 

and Δσ/σ is independent of σ, behaving as the function (1+1/εr) of εr, and Δσ/σ is a constant equal to 

Δσ/σ=4Δ|Z|/|Z|+πΔΦZ /ΦZ. As post-test, only assuming the conditions σ=const and εr=const in eqs. 

(4.1) and (4.2), the sensitivity function approach provides results according to ref. (Vannaroni et al., 

2004). 

 

4.2. Transfer Function method.  

 

 This paper proposes to deepen the transfer function method, by analyzing the zero and pole 

behaviour, which is implied in the frequency domain analysis suggested by (Grard and Tabbagh, 

1991). In fact, the section introduces the method of analysis in the frequency domain for 

determining the behaviour of the zero and pole frequencies in the LTI circuit of the quadrupole 

probe [fig. 1]. In order to satisfy the operative conditions of linearity for the measurements, if the 

quadrupole has a capacitive contact with the subjacent medium, then one should impose the 

frequency f of the probe to be included between the zero zM and the pole pM of the transfer 

impedance, so its modulus to be almost constant within the frequency band (Grard and Tabbagh, 

1991),  

 ( , , ) ( , , )M r M rz x f p xε σ ε σ≤ ≤ . (4.3) 

Based on the above conditions, an optimization equation is deduced for the probe, which links the 

optimal ratio x between its height above ground and its characteristic geometrical dimension only to 

the dielectric permittivity εr of the medium, so that 
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In order to satisfy the operative conditions of linearity for the measurements,  if the quadrupole is in 

galvanic contact with the subjacent medium, then one should impose the working frequency f of the 

quadrupole to be lower than the cut-off frequency of the transfer impedance, so its modulus to be 

constant below the cut-off frequency. Just under the above conditions, it is optimal to design the 

characteristic geometrical dimensions of the probe or establish the measurable ranges of the 

conductivity σ and permittivity εr of the medium [fig. 5]. The results (4.3) and (4.4), derived by the 

classical transfer function method, are demonstrated in the Appendix B. 

 The interesting physical results obtained using this transfer function method are discussed 

below. In order to meet the design specifications which ensure satisfactory performances of the 

probe (inaccuracy no more than 10%), the forecasts provided by the theory of error propagation 

[suggested by (Vannaroni et al., 2004)] applying the sensitivity functions approach, explicitly 

developed in the paper, are less stringent than those foreseen by the analysis in the frequency 

domain [suggested by (Grard and Tabbagh, 1991)], deepening here the transfer function method to 

analyze the zero and pole behaviour (in terms of both a larger band of frequency f and a wider 

measurable range of resistivity ρ or permittivity εr) [figs. 6,7].  

In fact, given a surface (for example, a non-saturated concrete with low conductivity σ=10
-4

 S/m 

and εr=4) with dielectric permittivity εr [fig. 6]: 

• if the quadrupole probe has a capacitive contact with the subjacent medium, i.e. h≠0, then, 

having defined an optimal ratio xopt=hopt/L between an optimal height hopt above ground and 

the characteristic geometrical dimension L, the transfer impedance Z(f,xopt) in units of 1/hopt, 

calculated in xopt, is a function of the working frequency f such that its modulus |Z|(f,xopt), in 

units of 1/hopt, is almost constant between a zero frequency z(xopt), almost one decade higher 

than a minimum frequency value fmin(xopt) allowing the inaccuracy Δεr/εr(f,xopt) in the 

measurement of εr below a prefixed limit (10%), and a pole p(xopt), almost one decade lower 
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than the maximum value of frequency fmax(xopt) satisfying the requirement that the 

inaccuracy Δεr/εr(f,xopt) for εr is below 10% [fig. 6][fig. 8];  

• if h=0, i.e. the quadrupole of electrode-electrode distance L grazes a medium of conductivity 

σ, then the transfer impedance Z(f,L), calculated in L, is a function of the working frequency 

f such that its modulus |Z|(f,L) is constant down to the cut-off frequency fT=fT(σ,εr), which is 

higher than an optimal frequency fopt(L) minimizing the inaccuracy Δεr/εr(f,L). Materials 

characterized by a low σ or a high εr lead to the effect of leftward shifting of the cut-off 

frequency fT, so reducing the optimal frequency fopt(L) [fig. 9]; 

•  usually, on a selected surface, it is possible to verify that the probe in capacitive contact 

performs optimal measurements over the band [fmin(xopt)<z(xopt), fmax(xopt)>p(xopt)], which is 

shifted towards lower and higher frequencies compared to the case when the probe is in 

galvanic contact, where the respective band [fmin, fmax] is narrower of almost one decade in 

frequency, especially increasing the value of  εr [figs. 8.e, 9.c]. 

Moreover, once the frequency band B is fixed [fig. 7]: 

• if the quadrupole probe has a capacitive contact with the subjacent medium, then the ratio 

x=h/L, between the height h above ground and the characteristic geometrical dimension L, 

ranges from the lower limit xlow, corresponding to water (εr=81). 

In a preliminary analysis, based on the transfer functions approach, it follows that the 

quadrupole, designed with the height/dimension ratio x=h/L, optimally measures dielectric 

permittivity εr,opt; the modulus |Z|(x,σ,εr,opt), in units of 1/h, of its transfer impedance, 

calculated in x and εr,opt, function of the electrical conductivity σ, is characterized by a zero 

z(σ,εr,opt) and a pole p(σ,εr,opt) frequency, which respectively fall near the lower and upper 

limit of B when σ is measured within a range of lower limit lowσ ′  and upper limit 
upσ ′ .  

In a deeper analysis, based on the sensitivity function method, it is possible to verify, still 

designing the quadrupole with the ratio x=h/L for an optimal measurement of εr,opt, the 

measurable range of σ; the inaccuracy Δεr/εr(x,σ,εr,opt) in the measurement of εr,opt, a function 

 16



of σ, is below a prefixed limit (10%) if σ is measured within the range [σlow, σup] larger than 

 by almost one magnitude order (both right and left side) [fig. 7] [fig. 10] [tabs. 1, 

2]. 

low up[σ ,σ ]′ ′

• If h=0, i.e. the probe of electrode-electrode distance L grazes a medium of conductivity σ 

and permittivity εr, then the transfer impedance Z(L,σ,εr), calculated in L, is a function of σ 

and εr such that its cut-off frequency fT=fT(σ,εr), a function of both σ and εr, ranges from 

fT,min=100kHz to fT,max=1MHz for the materials belonging to an (σ,εr)-domain, almost super-

imposable with the corresponding one within which the inaccuracy Δεr/εr(L,σ,εr,) for εr is 

below about 10% [fig. 11]. 

• Usually, having fixed the frequency band, the probe in capacitive contact performs optimal 

measurements over surfaces of lower conductivities compared to the case when the probe is 

in galvanic contact, as the respective conductivities are higher even of almost one magnitude 

order [tabs. 1, 3].  

 

5. Quadrupole configurations. 

 

 The transfer impedance of a quadrupolar array can be evaluated for any arbitrary 

configuration. As a general rule it is assumed that subsurface electrical sounding becomes scarcely 

effective at depths greater than the horizontal distance between the electrodes (Grard and Tabbagh, 

1991)(Vannaroni et al., 2004). This paper considers two kinds of probes, i.e. square and linear 

(Wenner) configurations. The square configuration is an array of two horizontal parallel dipoles 

with the four electrodes positioned at the corners of a square (Grard and Tabbagh, 1991). Instead, 

the Wenner arrangement consists of four terminals equally spaced from one another along a straight 

horizontal line (Vannaroni et al., 2004). 
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 If the quadrupole probe [fig. 1] is characterized by a characteristic geometrical dimension L, 

then the linear (Wenner) configuration [fig. 2.a] measures a capacitance in vacuum C0,W=4πε0·L, 

while in the square arrangement [fig. 2.b] C0,S=α·C0,W, greater by a factor α=1/(2-2
1/2

)>1. 

 When the quadrupole is in galvanic contact, i.e. h=0, with a subjacent medium of electrical 

conductivity σ and dielectric permittivity εr, the Wenner configuration measures a resistance 

RN,W=2ε0/σC0,W and a parallel capacitance CN,W=C0,W·(εr+1)/2, while in the square arrangement  

RN,S=RN,W/α and CN,S= α·CN,W, so, at the frequency f, the transfer impedance 1/ZN=1/RN+j2πf·CN for 

the Wenner configuration is defined by a modulus |Z|N,W=1/[(1/RN,W)
2
+(2πf·CN,W)]

1/2 and a phase 

ФN,W=arctg(2πf·RN,W··CN,W), while in the square arrangement |Z|N,S=Z|N,W/α, smaller by a factor 1/α 

[fig. 9.a] and ФN,S=ФN,W, which is maintained invariant in the Wenner or square configurations [fig. 

9.b]. Also the cut-off frequency is independent of the configurations, i.e. fT=fT(σ,εr). 

Moreover, if the probe grazes the medium and considering that the sensitivity functions are defined 

as normalized functions, then the sensitivities Z
Sσ  and ZSσ

Φ , relative to the conductivity σ, and the 

functions ( )
r

Z

rSε ε  and ( )Z

r rSε εΦ , relative to the permittivity εr, for the transfer impedance, both in 

modulus |Z| and in phase ΦZ, are invariant in the Wenner or square configurations. Only if h=0, are 

the inaccuracies Δσ/σ in the measurement of σ and Δεr/εr for εr also independent of the  

configurations, so the probe is characterized by the same performances in the frequency band B and 

in the measurable ranges of  σ and εr [fig. 9.c]. 

 Instead, when the quadrupole is in capacitive contact with the subjacent medium, and so the 

ratio x=h/L between its height h above ground and its electrode-electrode distance L is not null, i.e. 

0<x≤1, then the quadrupole is characterized by a geometrical factor K(x) [δ(x)], decreasing 

(increasing) function of x, which, in the square configuration, slopes down (up) more swiftly than 

the Wenner arrangement, so assuming smaller (larger) values especially for 1/2<x<1 [fig. 8.a]. As a 

consequence, a probe with a fixed L, which performs measurements on a medium of dielectric 

permittivity εr, could be designed with an optimal height/dimension ratio xopt=hopt/L which, in the 
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square configuration, is smaller than the Wenner arrangement, because its factor δ(x) slopes up 

more swiftly increasing the ratio x, so reaching the prefixed optimal value δopt(εr)≈2/(15εr+17) in 

correspondence with a smaller xopt. In simpler terms, if the probe is in capacitive contact with the 

medium, in order to perform optimal measurement of the permittivity, then the square configuration 

needs to be raised above ground less than the Wenner arrangement, their electrode-electrode 

distance being equal. In fact, x ranges from xW,low=0.022 in the linear configuration and from 

xS,low=0.019 in the square arrangement. 

Moreover, in the case of capacitive contact, if the quadrupole, with electrode-electrode distance L, 

is designed to the optimal height/dimension ratio xopt=hopt/L, working in a frequency f, then the 

transfer impedance Z(f,xopt) in units of 1/hopt, calculated in xopt, is defined by a phase Φ(f,xopt), which 

does not depend on the square or Wenner configurations [fig. 8.d], and a modulus |Z|(f,xopt) in units 

of 1/hopt, which, in the square is shifted down by a factor 1/α with respect to the Wenner 

configuration [fig. 8.c], maintaining almost unvaried in both configurations not only the shape of 

the modulus |Z|(f,xopt) but also the position of its zero z(xopt) and pole p(xopt) frequencies [fig. 8.b] 

Finally, the inaccuracies Δσ/σ(f,xopt) in the measurement of the conductivity σ and Δεr/εr(f,xopt) for 

the permittivity εr, calculated in xopt, do not depend on the two configurations, so the optimal 

frequency fopt(xopt), which minimizes the inaccuracy Δεr/εr(f,xopt) for εr, together with the minimum 

and maximum values of frequency, respectively fmin(xopt) and fmax(xopt), allowing the inaccuracy 

Δεr/εr(f,xopt) below a prefixed limit (10%), are invariant in both the configurations [fig. 8.e]. In 

simpler words, if the probe is in capacitive contact with the medium, in order to perform an optimal 

measurement of permittivity, then the design of the two configurations establishes, as regards a 

different height/dimension ratio, (almost) invariant trends in frequency, both for their transfer 

impedances and measurement inaccuracies .  
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6. Conclusions. 

 

 The present paper proposed a theoretical modelling of the simultaneous and non invasive 

measurement of electrical resistivity and dielectric permittivity, using a quadrupole probe on a 

subjacent medium. A mathematical-physical model has been applied on propagation of errors in the 

measurement of resistivity and permittivity based on the sensitivity functions tool. The findings 

have also been compared to the results of the classical method of analysis in the frequency domain, 

which is useful for determining the behaviour of zero and pole frequencies in the linear time 

invariant (LTI) circuit of the quadrupole. This paper underlined that average values of electrical 

resistivity and dielectric permittivity may be used to estimate the complex impedance over various 

terrains and concretes, especially when they are characterized by low levels of water saturation or 

content (Knight and Nur, 1987) and analyzed within a bandwidth ranging only from low (LF) to 

middle (MF) frequencies (Myounghak et al., 2007)(Al-Qadi et al., 1995). In order to meet the 

design specifications which ensure satisfactory performances of the probe (inaccuracy no more than 

10%), the forecasts provided by the theory of error propagation [suggested by (Vannaroni et al., 

2004) applying the sensitivity functions approach, explicitly developed in the paper, are less 

stringent tham those foreseen by the analysis in the frequency domain [suggested by (Grard and 

Tabbagh, 1991)], deepening here the transfer function method to analyze the zero and pole 

behaviour (in terms of both a larger band of frequency f and a wider measurable range of resistivity 

ρ or permittivity εr). 

It is interesting to compare the results of the present paper with those published in scientific 

literature (Grard and Tabbagh, 1991)(Vannaroni et al., 2004). In accordance, the sensitivity 

functions approach, provides the following results: a) if the quadrupole probe is in galvanic contact 

with the subsurface, i.e. h=0, then the inaccuracies Δσ/σ in the measurement of conductivity σ and 

Δεr/εr for permittivity εr are minimized in the frequency band B of the quadrupole, for all its 

geometric configurations and media; b) and, even if h≠0, the design of the probe must be optimized 
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with reference to the minimum value of the inaccuracy Δεr/εr for εr, which is always higher than the 

corresponding minimum value of the inaccuracy Δσ/σ in the band B, for all its configurations and 

media.  

More explicitly than in referred papers, the transfer functions method provides results for which, in 

order to satisfy the operative conditions of linearity for the measurements: a) if the quadrupole has a 

capacitive contact with the subjacent medium, then one should impose the frequency f of the probe 

to be included between the zero zM and the pole pM of the transfer impedance, so its modulus to be 

almost constant within the frequency band, so an optimization equation is deduced for the probe, 

which links the optimal ratio x between its height above ground and its characteristic geometrical 

dimension only to the dielectric permittivity εr of the medium; b) instead, if the quadrupole is in 

galvanic contact with the subjacent medium, then one should impose the working frequency f of the 

quadrupole to be lower than the cut-off frequency of the transfer impedance, so its modulus to be 

constant below the cut-off frequency, so it is optimal to design the characteristic geometrical 

dimensions of the probe or establish the measurable ranges of the conductivity σ and permittivity εr 

of the medium. 

Unlike referred papers, the sensitivity functions approach and the transfer functions method provide 

results which permit an assessment of the performance of the quadrupole probe in galvanic and 

capacitive contact: a) usually, having selected the surface (for example, a non-saturated concrete 

with low conductivity σ=10
-4

 S/m and εr=4), it is possible to verify that the quadrupole in capacitive 

contact performs optimal measurements over the band [fmin(xopt)<z(xopt), fmax(xopt)>p(xopt)], which is 

shifted to lower and higher frequencies compared to the case when the probe is in galvanic contact, 

being the corresponding band [fmin, fmax] narrower of almost one decade in frequency, especially 

increasing the value of  εr; b) usually, having fixed the frequency band, the quadrupole in capacitive 

contact provides optimal measurements over surfaces of lower conductivity compared to when the 

probe is in galvanic contact, being the respective conductivities higher even of almost one 

magnitude order. 
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 On this basis, some constraints were established to design a quadrupole probe for conducting 

measurements of electrical resistivity and dielectric permittivity in a regime of alternating current at 

low and middle frequencies (10kHz-1MHz). Measurement is carried out using four electrodes laid 

on the surface to be analyzed and, through a measurement of transfer impedance, there is the 

possibility of extracting the resistivity and permittivity of the material. Furthermore, increasing the 

distance between the electrodes, it is possible to investigate the electrical properties of the sub-

surface structures to greater depth. The main advantage of the quadrupole is being able to conduct 

measurements of electrical parameters with a non destructive technique, thereby enabling 

characterization of precious and unique materials. Also, in appropriate arrangements, measurements 

could be carried out with electrodes slightly raised above the surface, enabling completely non-

destructive analysis, although with a greater error. The probe is able to perform measurements on 

materials with high resistivity and permittivity in an immediate way, without subsequent stages of 

post-analysis of data. 

 

Appendix A. 

 

 There follows a discussion of the influence of the inaccuracies in transfer impedance in 

modulus and phase on the measurement of electrical conductivity and dielectric permittivity. The 

mathematical tool best suited to this purpose applies the so-called sensitivity functions (Murray-

Smith, 1987), which formalize the intuitive concept of sensitivity as the ratio between the 

percentage error of certain physical quantities (due to the variation of some parameters) and the 

percentage error of the same parameters. 

The inaccuracies Δσ/σ, in the measurement of the electrical conductivity σ, and Δεr/εr, for the 

dielectric permittivity εr, can be expressed as linear combinations of the inaccuracies Δ|Z|/|Z| and 

ΔΦZ /ΦZ in the measurement of transfer impedance, respectively in modulus |Z| and in phase ΦZ, as 
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reported in eqs. (4.1) and (4.2)  [figs. 3]. The pairs of sensitivity functions ( Z
Sσ , ZSσ

Φ ) and (
r

Z
Sε , Z

r
Sε
Φ ) 

for the transfer impedance, both in |Z| and ΦZ, relative to the conductivity σ and the permittivity εr 

[figs. 4],  
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are, in turn, linear combinations of the sensitivity function pairs ( RSσ , CSσ ) and (
r

RSε ,
r

CSε ) for transfer 

impedance, in both the resistance R and capacitance C parallel components, relative to σ and εr,  
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with the weight functions 
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Discussing eqs. (A.1)-(A.4), if the modulus |Z| and the phase ΦZ of the transfer impedance provide 

an indirect measurement of the electrical conductivity σ and dielectric permittivity εr, then the 

functions |Z|=|Z|(σ, εr) and ΦZ=ΦZ(σ, εr) are invertible, i.e. σ=σ(|Z|, ΦZ) and εr=εr(|Z|, ΦZ). 

Therefore, the theorem of the derivative for the inverse function can be applied. In fact, under the 

condition σ=const (or εr=const), both |Z| and ΦZ are invertible functions of εr (or σ), i.e. strictly 

increasing or decreasing monotonic functions of εr (or σ).  

 

Appendix B. 

 

 By exact calculation, the transfer impedance Z(f,x,σ,εr) measured by the quadrupole probe, in 

units of the reciprocal height 1/h from the subjacent medium, consists of the resistance R(f,x,σ,εr), in 

units of 1/h [see eq. (3.10)], which can be expressed as a transfer function characterized by a pole in 

the origin frequency, pR=0, a zero in higher frequencies zR(f,x,σ,εr)>0, and a static gain KR(f,x,σ),  
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besides the parallel capacitance C(f,x,σ,εr), in units of 1/h [see eq. (3.11)], which can be expressed 

as a transfer function characterized by a low frequency pole, pC(f,x,σ,εr), a zero in higher 

frequencies zC(f,x,σ,εr)>pC(f,x,σ,εr), and a static gain KC(x),  
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where the capacitance pole pC(f,x,σ,εr) coincides with the resistance pole zR(f,x,σ,εr),  
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One can demonstrate that, for values of the ratio x=h/L, between the height h above ground and the 

characteristic geometrical dimension L, and the paired values of electrical conductivity σ and 

dielectric permittivity εr which satisfy the condition [fig. 5] 

 
2

1

[ ( , ) ( )] [2 ( , , )]R C C rK x K x z xσ π σ
<<

⋅ 2

2

ε
, (B.8) 

the modulus |Z|(f,x,σ,εr) can be approximately expressed as a transfer function with a pole in the 

origin frequency, a low frequency zero, zM(f,x,σ,εr), a pole in higher frequencies pM(f,x,σ,εr)>zM 

(f,x,σ,εr), and a static gain KM(x) [fig. 8.c],  
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where the zero of the modulus zM(f,x,σ,εr) coincides with the capacitance pole pC(f,x,σ,εr) and the 

pole of the modulus pM (f,x,σ,εr) with the capacitance zero zC(f,x,σ,εr) [fig. 8.b],  
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Eq. (B.8) establishes limits on the range for the design specification x of the quadrupole and the 

measurable range (σ,εr) of the media. 

In order to satisfy the operative conditions of linearity for the measurements, the quadrupole probe, 

characterized by the height/dimensions ratio x=h/L, should measure the conductivity σ and the 

permittivity εr of the subjacent medium when its working frequency f falls within the band included 

between the zero zM(f,x,σ,εr) and the pole pM(f,x,σ,εr) of the transfer impedance, as reported in eq. 

(4.3). 

Moreover, the quadrupole probe, specified by x=h/L, should measure εr, its geometric factor δ(x) 

being close to eq. (4.4), a necessary condition for Z(f,x,σ,εr) to show an almost constant modulus 

within the band (4.3), the modulus in the zero (B.10) coinciding with the corresponding one in the 

pole (B.11),  

 
2

( ) ( , , )1
( , , ) ( , , ) ( )

( , , ) 2 2 ( , , )M M

M M
r r Mf z f p

r

M r M

K x p x
Z x Z x K x

z x z x r

σ εσ ε σ ε
π σ ε π σ ε= =

= = , (B.13) 

so that the pole (B.11) is almost four times larger that the zero (B.10), 

 ( , , ) 4 ( , , )M r Mp x z x rσ ε σ ε≈ . (B.14) 
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Eq. (4.4) can be interpreted as the optimization equation of the quadrupole, so the sizing for the 

height/dimension ratio x of the probe depends only on the permittivity εr of the medium; instead, 

eqs. (4.3) and (B.14) show that the probe can work optimally only in a small band of frequencies. 
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Figure 2.a 
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Figure 3.a 

 

 

Figure 3.a.bis 

 

 

 32



Figure 4.a 
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Figure 4.b 
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Figure 5 
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Figure 8.b 
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Figure 8.d 
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Figure 8.e 
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Figure 9.a 
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Figure 9.b 
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Figure 9.c 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

10
4

10
5

10
6

Δε
r
/ε

r
 (f) , (Wenner's) Linear Configuration

Δε
r
/ε

r
 (f) , Square Configuration

Δσ/σ (f) , (Wenner's) Linear Configuration
Δσ/σ (f) , Square configuration

f [ Hz ] [ log ]
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 42



Figure 10.a 

 

 

Figure 10.b 
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Figure 11.a 

 

 

Figure 11.b 
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T

 Permittivity 

Inaccuracy 

able 1.a 

x tW, op 1.083·10-4

εr, opt 6.703 

σopt 3.52·10-5 S/m 

 

Table 1.b 

r, =6.703 

σopt=3.52·10
-5

 S/m

Δεr

Δσ 1 

ε opt /εr≤0.1

/σ≤0.

xW, low ≈ 0 

xW, up 0.475 

 

Table 1.c

xW, =1.083·10
-4

 

 opt Δεr/εr≤0.1 

Δσ/σ≤0.1 

εr, low low 1, 5.333·10  S/m , σ -5

εr, up , σup 81, 3.14·10-3 S/m
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Table 2.a 

ε =4.026 r, conc

xW, conc  

Sensitivity Function Approach Transfer Function Methodrete

rete=0.087

σlow 4.473·10  S/m 1.78·10  S/m -6 -5 

σup 3.058·10-4 S/m 7.12·10-5 S/m 

 

Table 2.b

xW, .087 

 

 concrete=0 Δεr/εr≤0.1 

Δσ/σ≤0.1 

εr, low low 1, 1.769·10  S/m  , σ -6

εr, up , σup 84.458, 1.573·10-3 S/m

 

Tabl

h

e 3 

=0 Δεr/εr≤0.1 

Δσ/σ≤0.1 

εr, low low 1, 5.333·10  S/m , σ -5

εr, up , σup 81, 3.14·10-3 S/m
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Fig. 1. Equivalent circuit of the quadrupole probe. 

ig. 2. Quadrupole probe in linear (Wenner) (a) or square (b) configuration. 

dielectric p

 

F

 

Fig. 3. In the hypothesis that Δ|Z|/|Z|=ΔΦZ/ΦZ=10
-3, inaccuracy Δεr/εr in the measurement of the 

ermittivity εr, plotted as: function Δεr/εr(f,x) (a) of both the frequency f in the band 

limf [0,f ]∈ , being flim=1MHz, and the ratio x=h/L between the height h above ground and the 

characteristic geometrical dimension L, being 0<x≤1, when the quadrupole probe, designed in the 

Wenner linear configuration, has a capacitive contact on a selected concrete of low electrical 

conductivity, i.e. σ=10
-4

 S/m, εr=4; function Δεr/εr(σ,εr) (a.bis) of both the conductivity σ and the 

permittivity εr, when the qua eddrupole, working in a fix  band B=100kHz, is in galvanic contact on a 

retes such that class of conc -4 -2σ [10 S/m, 2 10 S/m]∈ ⋅ . 

 

Fig. 4. Sensitivity functions 
r

Z
Sε  and Z

r
Sε
Φ  for the transfer impedance, both in mo | and in dulus |Z

phase ΦZ, relative to the dielectric permittivity εr, plotted as: functions, ( , )
r

Z
S f xε (a) and 

( , )Z

r
S f xε (b), of both the working frequenc e height/dime  x=h/L in the same 

operative conditions of fig.3.a; functions, 

Φ y f and th nsion ratio

( , )
r

Z

rSε σ ε  (a.bis) and ( , )Z

r rSε σ εΦ (b.bis), of both the 

onductivity σ and the permittivity εr in the same operative conditions of fig. 3.a.bis. 

ar configuration and in capacitive contact on a 

lected concrete of dielectric permittivity εr=4. 

c

 

Fig. 5. Ratio Г=Г1/Г2 between the first member Г1 and the second member Г2 of eq. (B.8), plotted as 

function Г(x,σ) of both the height/dimension ratio x=h/L and the electrical conductivity σ, being the 

quadrupole probe designed in the Wenner line

se

  

 47



Fig. 6. Conceptual schemes for the numerical simulations regarding the sensitivity functions 

approach (a) and the transfer function method (b), in order to design the characteristic geometrical 

dimensions and the frequency band, limiting inaccuracies in the measurements of the quadrupole 

robe, in capacitive contact with selected materials as concretes, in the hypothesis that 

uracies in the measurements of the 

uadrupole probe, in capacitive contact, and fixing its optimum working frequencies and 

p

Δ|Z|/|Z|=ΔΦZ/ΦZ=10
-3.  

 

Fig. 7. Conceptual schemes for the numerical simulations regarding the sensitivity functions 

approach (a) and the transfer function method (b), in order to establish the measurable ranges of 

electrical conductivity and dielectric permittivity, limiting inacc

q

characteristic geometrical dimensions [Δ|Z|/|Z|=ΔΦZ/ΦZ=10
-3]. 

 

Fig. 8. With reference to a quadrupole probe designed in the Wenner linear or square configuration 

and presenting a capacitive contact on a concrete of low electrical conductivity, i.e. σ=10
-4

 S/m, 

εr=4; plots, as function of the ratio x=h/L between the height h above ground and the characteristic 

geometrical dimension L, being 0<x≤1, for the geometrical factor δ(x) (a); semi-logarithmic plots 

for both the zero zM(x) and pole pM(x) of the transfer impedance in modulus (b); Bode’s diagrams, 

as function of the frequency f in the band limf [0,f ]∈ , being flim=1MHz, for the transfer impedance, 

both in modulus |Z|(f,xconcrete) [units of 1/h] (c) and phase ΦZ(f,xconcrete) (d); in the hypothesis that 

Δ|Z|/|Z|=ΔΦZ/ΦZ=10
-3, semi-logarithmic plots for both the inaccuracies (e) Δεr/εr(f,xconcrete), in the 

measurement of the permittivity εr, and Δσ/σ(f,xconcrete), of the conductivity σ, being the 

eight/dimension ratio designed optimally in the Wenner linear (xW,concrete=0.087) and square 

and in a galvanic contact on a concrete of low electrical conductivity, i.e. σ=10
-4

 S/m, εr=4; Bode’s 

h

(xS,concrete=0.078) configurations. 

 

Fig. 9. With reference to a quadrupole probe designed by an electrode-electrode distance L0=1m 
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diagrams, as function of the frequency f, for the transfer impedance, both in modulus |Z|(f,L0) (a) 

and phase ΦZ(f,L0) (b); semi-logarithmic plots for both the inaccuracies (c) Δσ/σ(f), in the 

easurement of the conductivity σ, and Δεr/εr(f), of the permittivity εr [Δ|Z|/|Z|=ΔΦZ/ΦZ=10
-3]. 

ver the (σ,εr) plane satisfying the conditions Δσ/σ(σ,εr)≤0.1 (a) and Δεr/εr(σ,εr)≤0.1 (b) [Tabs. 1, 2]. 

zed by a modulus w

m

  

Fig. 10. In the hypothesis that Δ|Z|/|Z|=ΔΦZ/ΦZ=10
-3, referring to both the inaccuracies Δσ/σ(σ,εr), 

for the electrical conductivity σ, and Δεr/εr(σ,εr), for the dielectric permittivity εr, as functions of σ 

and εr, and when the quadrupole probe is designed in the Wenner linear configuration, working in a 

fixed band B=100kHz, with an height/dimension ratio xW,concrete=0.087, which is optimal for a 

capacitive contact only with a concrete of permittivity εr=4: plots for the orthogonal projections 

o

 

Fig. 11. With reference to a quadrupole probe, in galvanic contact, working in a fixed band 

B=100kHz, plots for the domains (σ,εr) of the electrical conductivity σ and the dielectric 

permittivity εr such that: the transfer impedance is characteri ith a cut-off 

frequency fT=fT(σ,εr)=σ/(2πε0(εr+1)) ranging in the interval Tf [100kHz,1MHz]∈ (a); both the 

inaccuracies Δσ/σ(σ,εr), in the measure of the conductivity σ, and Δεr/εr(σ,εr), of the permittivity εr, 

result below a prefixed limit of 10% [Δ|Z|/|Z|=ΔΦZ/ΦZ=10
-3] (b) [Tabs. 1, 3]. 

 49


	INACCURACY ASSESSMENT 
	OF  RESISTIVITY AND PERMITTIVITY 
	APPLYING SENSITIVITY AND TRANSFER 
	FUNCTION APPROACHES
	A. Settimi, A. Zirizzotti, J. A. Baskaradas, C. Bianchi 
	INGV (Istituto Nazionale di Geofisica e Vulcanologia) – 
	via di Vigna Murata 605, I-00143 Rome, Italy
	Abstract
	 This paper proposes a theoretical modelling of the simultaneous and non invasive measurement of electrical resistivity and dielectric permittivity, using a quadrupole probe on a subjacent medium. A mathematical-physical model is applied on propagation of errors in the measurement of resistivity and permittivity based on the sensitivity functions tool. The findings are also compared to the results of the classical method of analysis in the frequency domain, which is useful for determining the behaviour of zero and pole frequencies in the linear time invariant (LTI) circuit of the quadrupole. The paper underlines that average values of electrical resistivity and dielectric permittivity may be used to estimate the complex impedance over various terrains and concretes, especially when they are characterized by low levels of water saturation (content) and analyzed within a bandwidth ranging only from low (LF) to middle (MF) frequencies. In order to meet the design specifications which ensure satisfactory performances of the probe (inaccuracy no more than 10%), the forecasts provided by the sensitivity functions approach are less stringent than those foreseen by the transfer functions method (in terms of both a larger band of frequency f and a wider measurable range of resistivity ρ or permittivity εr). 
	Keywords
	 
	Explorative geophysics;
	Methods of non-destructive testing;
	Complex impedance measurements: error theory.
	1. Introductive review.
	 Electrical resistivity survey in soil science - The electrical resistivity of a surface is a proxy for the spatial and temporal variability of many other physical properties of the subjacent medium. Samouëlian (Samouëlian et al., 2005) discusses the basic principles of data interpretation and the main advantages or limits of the analysis. This method allows non-destructive and very sensitive investigation, describing subsurface properties without direct inspection. Various techniques are applied according to the required scales of resolution and heterogeneities of the area. A suitable probe injects generated electric currents into a medium and the resulting potential differences are measured. The information is recovered from the potential difference patterns, which provide the form of medium heterogeneities and their electrical properties (Kearey et al., 2002). The greater the electrical contrast between the subsurface matrix and a heterogeneity, the easier the detection. Other authors (Banton et al. 1997) showed that surface resistivity can be considered as a good indication of the variability of other physical properties. The current pattern distributions depend on the medium heterogeneities and are concentrated in a conductive volume. Some linear distributed arrays use four-electrode cells, which are commonly employed in the laboratory for resistivity calibration (Rhoades et al., 1976) and in the field for vertical electrical sounding (Loke, 2001). 
	 Dielectric permittivity survey in soil science [Middle frequencies (MF), 300kHz<f<3MHz] - Analysis in middle frequencies allows the measurement of dielectric permittivity. Fechant and Tabbagh (Fechant and Tabbagh, 1999) developed an interesting approach. They used a MF band for the characterization of permittivity in the natural media. This approach employs an electrostatic quadrupole probe designed to measure resistivity at several centuries of kHz (Tabbagh, 1994).  A quadrupole, working at the frequency 455kHz, measures permittivity for determination of water content (Fechant, 1996). However, this approach requires calibration in laboratory.
	 Electrical resistivity and dielectric permittivity surveys in soil science [low frequencies (LF), 30kHz<f<300kHz] - Analysis in low frequencies allows simultaneous measurements of both electrical resistivity and dielectric permittivity. Tabbagh and Grard, in their experiments (Grard, 1990, a-b)(Grard and Tabbagh, 1991)(Tabbagh et al., 1993), showed that the resistivity and dielectric constant (complex permittivity) of a surface can be measured by a set of four electrodes. This novel approach, first introduced by Wenner, improved the existing system which provided only a resistivity assessment. In the new method the four electrodes are manually inserted into the subjacent medium. Permittivity, which is sensitive to the presence of water, can also be determined employing a LF probe (below 300 kHz) and plays an important role in the detection of anomalies in the subsurface.
	Vannaroni and Del Vento (Vannaroni et al., 2004)(Del Vento and Vannaroni, 2005) used a dielectric spectroscopy probe to determine the complex permittivity of a surface from measurements of transfer impedance of a four-electrode system electrically coupled to the medium. They defined transfer impedance as the ratio of the voltage measured across a pair of receiving electrodes to the current transmitted by a second pair of electrodes (Vannaroni et al., 2004). This impedance measurement, performed in AC regime capacitive coupling, strongly depends on the geometry of the electrode array but also on the complex permittivity of the subsurface. The advantages offered by this method are due to the fact that the exciter current can be injected into the surface even in the absence of galvanic contact, and, in AC regime, both conduction and displacement currents of the medium can be measured, obtaining further information on the polarizability. In this case the frequency band is 10kHz-1MHz. The lower limit is effectively imposed by two facts: a) firstly, the Maxwell-Wagner effect which limits probe accuracy (Frolich, 1990): the most important limitation happens because of interface polarization effects that are stronger at low frequencies, say below 1kHz depending of medium conductivity; b) secondly, the need to maintain the amplitude of the current at measurable levels as, given the capacitive coupling between electrodes and soil, the current magnitude is proportional to the frequency. On the other hand, the upper limit is opportunely fixed to allow the analysis of the system in a regime of quasi static approximation and neglect the velocity factor of the cables used for the electrode harness, that in turn degrades the accuracy of the mutual impedance phase measurements. Thus, it is possible to exploit the analysis of the system in the low and middle frequency band where the electrostatic term results considerable. The general electromagnetic (e.m.) calculation provides lower values than the static case; a high resistivity narrows the differences. So, comparing, above 1 MHz the general e.m. calculation must be preferred, while under 500 kHz the static case should be used and between 500 kHz and 1 MHz both methods could be used (Tabbagh et al. 1993).
	The present paper proposes a theoretical modelling of the simultaneous and non invasive measurement of electrical resistivity and dielectric permittivity, using a quadrupole probe on a subjacent medium. A mathematical-physical model is applied on propagation of errors in the measurement of resistivity and permittivity based on the sensitivity functions tool. The findings are also compared to the results of the classical method of analysis in the frequency domain, which is useful for determining the behaviour of zero and pole frequencies in the linear time invariant (LTI) circuit of the quadrupole. This paper underlines that average values of electrical resistivity and dielectric permittivity may be used to estimate the complex impedance over various terrains and concretes, especially when they are characterized by low levels of water saturation or content (Knight and Nur, 1987) and analyzed within a frequency bandwidth ranging only from LF to MF (Myounghak et al., 2007)(Al-Qadi et al., 1995). In order to meet the design specifications which ensure satisfactory performances of the probe (inaccuracy no more than 10%), the forecasts provided by the theory of error propagation [suggested by (Vannaroni et al., 2004)] applying the sensitivity functions approach, explicitly developed in the paper, are less stringent than those foreseen by the analysis in the frequency domain [suggested by (Grard and Tabbagh, 1991)], deepening here the transfer function method to analyze the zero and pole behaviour (in terms of both a larger band of frequency f and a wider measurable range of resistivity ρ or permittivity εr).
	The paper is organized as follows. Section 2 discusses the Cole-Cole empiric function: for simplicity of analysis, the dielectric dispersion is assumed very low: this operating condition is satisfied when the electrical spectroscopy is performed only on non-saturated water materials and especially in a suitable band of low and middle frequencies. Section 3 introduces the quadrupole probe. Sec. 4  provides a theoretical modelling which applies to both the sensitivity functions approach (Sec 4.a.) and the transfer function method (4.b.). In Sec 5, the configurations of the quadrupole are defined and discussed. Conclusions are drawn in Sec. 6. Finally, an outline of the somewhat lengthy calculations is presented in the Appendices A and B.
	2. Discussing Cole-Cole empiric function.
	  
	 Even if, according to Debye polarization mechanisms (Debye, 1929) or Cole-Cole diagrams (Auty and Cole, 1952), the complex permittivity of various materials in the frequency band from VLF to VHF exhibits several intensive relaxation effects and a non-trivial dependence on the water saturation (Chelidze and Gueguen, 1999)(Chelidze et al., 1999), anyway average values of electrical resistivity and dielectric permittivity may be used to estimate the complex impedance over various terrains and concretes, especially when they are characterized by low levels of water content (Knight and Nur, 1987) and analyzed within a frequency bandwidth ranging only from LF to MF (Myounghak et al., 2007)(Al-Qadi et al., 1995). 
	Many functions have been proposed to fit the data of dielectrics. Among them, there are those obtained by attempts to model the physical processes or those of simple empirical functions, which are used to parameterize the data without the knowledge of the involved mechanisms. A widely used empirical function has been proposed by brothers Cole and it is based on the theory of Debye relaxation, the first one to have treated this phenomenon.
	The Cole-Cole empiric function defines the first order dielectric response of materials in frequency domain,
	  ,  
	consisting of real and imaginary parts:
	  ,  
	  ,  
	where ε0 is the dielectric constant in vacuum.
	The electrical conductivity σ(f) and dielectric permittivity εr(f) exhibit limit values at low and high frequencies, σL, εr,L and σH, εr,H, which are linked by the relaxation time τ,
	  ,  
	so, as it can be noticed, permittivity and conductivity can not vary independently of each other (Frolich, 1990).
	At the characteristic frequency of relaxation, fc=1/(2π·τ), the permittivity εr assumes an  intermediate value between the values of high and low frequency, εr,L and εr,H. Alternately,  the relaxation frequency fc could be considered as that frequency at which the conductivity σ assumes the middle value between the two limit values, σL and σH.
	In reality, the relationship   is a generalization of Debye equation, having the purpose to take into account, through the introduction of another parameter α (inclusive between 0 e 1), the enlargement of dispersion region due to the complexity of structure and the composition of materials. Note that, for α = 0, eq.   can be exactly reduced to Debye equation. It is to be underlined that the parameter α is a increasing function of the water saturation SW, such that α(SW=0)→0, reaching a limit value αL>0 for SW→1 (Knight and Nur, 1987). In fact, the complex dielectric permittivity is flattened decreasing water content or increasing frequency (Myounghak et al., 2007)(Al-Qadi et al., 1995).
	The complex dielectric permittivity   can be approximated to a constant if its dominant term   is a function almost independent from the frequency,
	  .  
	Operating condition   holds when the materials are characterized by low levels of water content, i.e.
	  ,  
	and analyzed over a band lower than middle frequencies, i.e.
	  .  
	In fact, the constant τ depends on the physical process under consideration and it has an order of magnitude that varies from a few picoseconds for the orientation of electrons and small dipolar molecules, up to a few seconds for the effects of counter-ions or for the interfacial polarization (Frolich, 1990).
	So, in the paper, let us refer to the (σ, εr) values in LF-MF bandwidth proposed for various terrains in (Edwards, 1998) and for concretes in (Polder et al., 2000)(Laurents, 2005).
	3.  Quadrupole probe.
	 
	 When using a quadrupole probe [fig. 1] the response depends on geometric parameters, like the height of each electrode above the ground surface and the separation of the electrodes, and on physical parameters including frequency, electrical conductivity and dielectric permittivity. When a medium is assumed to be linear and its response linearly dependent on the electrical charges of the two exciting electrodes, the simplest approach is static calculation (Tabbagh et al., 1993), especially using a low operating frequency. If the electrodes have small dimensions relative to their separations, then they can be considered as points. Moreover, if the current wavelength is much larger than all the dimensions under consideration, then quasi-static approximation applies (Grard, 1990, a-b). 
	 The quadrupole probe [fig. 1] measures a capacitance in vacuum C0(L), which is directly proportional to its characteristic geometrical dimension, i.e. the electrode-electrode distance L, both in a linear (Wenner) configuration [fig. 2.a],
	  ,  
	and in a square arrangement [fig. 2.b],
	  ,  
	which is greater by a factor α=1/(2-21/2)>1, where ε0 is the dielectric constant in vacuum.
	When the quadrupole, specified by the electrode-electrode distance L, has a galvanic contact with the subjacent medium, of electrical conductivity σ and dielectric permittivity εr, it measures a transfer impedance ZN(f,L,σ,εr), which consists of parallel components of resistance RN(L,σ) and capacitance CN(L,εr). The resistance RN(L,σ) depends only on L and σ (Grard and Tabbagh, 1991)
	  ;  
	while CN(L,εr) depends only on L and εr (Grard and Tabbagh, 1991)
	  .  
	As a consequence, if the probe, besides grazing the medium, measures the conductivity σ and permittivity εr working in a frequency f much lower than the cut-off frequency fT=fT(σ,εr)= σ/(2πε0(εr+1)), the transfer impedance ZN(f,L,σ,εr) is characterized by the phase ФN(f,σ,εr) and modulus |Z|N(L,σ). The phase ФN(f,σ,εr) depends linearly on f with a maximum value of  π/4 and is directly proportional to the ratio (εr+1)/σ; while |Z|N(L,σ) does not depends on f, and is  inversely proportional to both L and σ. In fact, if ZN(f,L,σ,εr) consists of the parallel components of RN(L,σ)   and CN(L,εr)  , then it is fully characterized by the high frequency pole fT=fT(σ,εr), which cancels its denominator: the transfer impedance acts as a low-middle frequency band-pass filter with cut-off fT=fT(σ,εr), in other words the frequency equalizing Joule and displacement current. In the operating conditions defined in sec 2, average values of σ may be used over the band ranging from LF to MF, therefore |Z|N(L,σ) is not function of frequency below fT.
	Instead, when the quadrupole probe [fig. 1] has a capacitive contact with the subjacent medium and the geometry of the probe is characterized by the ratio x between the height above ground h and the electrode-electrode distance L, 
	  ,  
	its configurations can be entirely defined by a suitable geometrical factor K(x), which depends on the height/dimension ratio x. It is introduced by (Grard and Tabbagh, 1991) and can be specified for the Wenner configuration [fig. 2.a]
	  ,  
	and the square arrangement [fig. 2.b]
	  ;  
	Actually, Grard and Tabbagh  preferred to introduce the complementary δ(x) of the geometrical factor K(x), i.e.
	  ,  
	where  K(x=0)=1 and δ(x=0)=0. 
	So, if the quadrupole works in the pulse frequency ω=2πf, which can be normalized with respect to the cut-off ωT=2πfT  (Grard and Tabbagh, 1991),
	  ,  
	then the probe measures a transfer impedance Z(Ω,x,σ,εr) which consists of the resistance R(Ω,x,σ,εr) and capacitance C(Ω,x,σ,εr) parallel components (Grard and Tabbagh, 1991),
	  ,  
	  .  
	Inverting eqs.   and  , σ and  εr can be expressed as functions of R and C, i.e.
	  ,  
	  .  
	In our opinion, once fixed the pair’s (f, x) degrees of freedom, it is not suitable to choose (R,C) as independent variables and then (σ, εr) as dependent variables [eqs.  - ]. Instead, it is more appropriate to consider (σ, εr) as quantities of physical interest and consequently eqs.  -  as starting point for the theoretical development. In fact, even if the physics does not forbid to choose (R,C) as independent variables, running the way (R,C) → (σ, εr), anyway the procedures of design should choose (σ, εr) as independent variables, running a preferential way (σ, εr) → (R,C). According to the two following practical approaches: a) [(σ, εr) as independent variables in order] to establish the class of media with conductivity and permittivity (σ, εr) which are investigable by a quadrupole working in a fixed band B and specified by a known geometry x; b) [preferential way (σ, εr) → (R,C) since] once a subjacent medium with electrical conductivity σ and dielectric permittivity εr is selected, one can project the quadrupole probe specifications R and C both in frequency f and in height/dimension ratio x.
	4. Theoretical modelling.
	 The measurements taken using the quadrupole probe are affected by errors mainly originating from uncertainties associated with transfer impedance, from dishomogeneities between the modelled and actual stratigraphy, and from inaccuracy of the electrode array deployment above the surface (Vannaroni et al., 2004). Errors in impedance result mainly from uncertainties in the electronic systems that perform the amplitude and phase measurements of the voltages and currents (Del Vento and Vannaroni, 2005). The above uncertainties were assumed constant throughout the whole frequency band even though their effects, propagating through the transfer function, will produce a frequency dependent perturbation.
	4.1. Sensitivity Functions Approach .
	 
	 This paper proposes to develop explicitly the sensitivity function approach which is implied in the theory of error propagation suggested by (Vannaroni et al., 2004). In fact, the section introduces a mathematical-physical model for the propagation of errors in the measurement of electrical conductivity σ and dielectric permittivity εr, based on the sensitivity functions tool (Murray-Smith, 1987). This is useful for expressing inaccuracies in the measurement of conductivity and permittivity [fig. 3] as a linear combination of the inaccuracies for the transfer impedance, both in modulus |Z| and in phase ΦZ, where the weight functions are inversely proportional just to the sensitivity functions for |Z| and ΦZ relative to σ and εr [fig. 4]. The inaccuracies of transfer impedance depend on the inaccuracies of electrical voltage and current which are assigned by the employed electronics and, in particular, by the sampling methods.
	So, the inaccuracies Δσ/σ, in the measurement of the electrical conductivity σ, and Δεr/εr, in the dielectric permittivity εr, can be expressed as a linear combination of the inaccuracies Δ|Z|/|Z| and ΔΦZ /ΦZ in the measurement of the transfer impedance, respectively in modulus |Z| and in phase ΦZ, 
	  ,  
	  ,  
	where ( , ) and ( , ) are the pairs of sensitivity functions for the transfer impedance, both in |Z| and ΦZ, relative to the conductivity σ and permittivity εr, whose expressions are reported in Appendix A. The conditions σ=const and εr=const in eqs.   and   underline not so much that constant values of electrical conductivity and dielectric permittivity are used to estimate the complex impedance over various terrains and concretes under the operating conditions defined in Sec. 2, as that the quantities σ and εr are not independent of each other, since the electrical displacement shows a phase-shift with respect to the electrical field (Frolich, 1990); so, for need to distinguish the inaccuracies in measurements of conductivity and permittivity, the inaccuracy Δσ/σ can only be calculated assuming there is not uncertainty for εr  (Δεr=0   εr=const) and vice versa.
	Moreover, according to the physical problem, the probe performs measurements of the transfer impedance Z, both in modulus |Z| and in phase ΦZ, which are characterized by the inaccuracies Δ|Z|/|Z|>0 and ΔΦZ /ΦZ>0. Mathematically, it is not allowed to apply the conditions |Z|=const or ΦZ=const. In this context, the sensitivity functions   and   can not be calculated assuming ΦZ=const and then the sensitivities   and   assuming |Z|=const. In fact, as discussed above, once fixed the pair’s (f, x) degrees of freedom, it is not suitable to choose as independent variables (|Z|,ΦZ) [or (R,C)]. Consequently, the sensitivity functions can not be calculated by the dependent variables σ=σ(|Z|, ΦZ) and εr=εr(|Z|, ΦZ) [or by eqs.   and  ]. Instead, the physical problem should be approached recalling that (f, x, σ, εr) have been considered as independent variables. In the simplifying hypothesis that the frequency f and the height/dimension ratio x are characterized by inaccuracies Δf/f≈0 and Δx/x≈0 close to zero, the conditions f=const and x=const can be applied. Necessarily, the inaccuracy Δσ/σ, in the measurement of the electrical conductivity σ, is calculated assuming εr=const, and then the inaccuracy Δεr/εr, for the dielectric permittivity εr, assuming σ=const. As a consequence, the mathematical calculations should be done recalling the fact that eqs.  -  have been considered as starting point for the theoretical development. The inaccuracies Δσ/σ for the conductivity σ and Δεr/εr for the permittivity εr can be more directly expressed as functions of (f, x, σ, εr) by calculating the sensitivity functions ( , ) and ( , ) in the last member of eqs.   and  . These sensitivities are derived from the transfer impedance 1/Z=1/R+jωC reported in eqs.   and  .
	 The interesting physical results obtained using this sensitivity functions approach are discussed below. If the quadrupole probe has a galvanic contact with the subjacent medium, i.e. h=0, then the inaccuracies Δσ/σ in the measurement of the electrical conductivity σ and Δεr/εr in the dielectric permittivity εr are minimized in the frequency band B of the quadrupole, for all its geometric configurations and media; and, even if h≠0, the design of the probe must still be optimized with respect to the minimum value of the inaccuracy Δεr/εr in εr, which is always higher than the corresponding minimum value of the inaccuracy Δσ/σ in the band B of the probe, for all its configurations and media (Tabbagh et al., 1993)(Vannaroni et al., 2004).
	Under quasi static approximation, only if the quadrupole probe is in galvanic contact with the subjacent medium, i.e. h=0, and considering that the sensitivities functions are defined as normalized functions, then our mathematical-physical model predicts that the sensitivities of the transfer impedance relative to the conductivity σ and permittivity εr are independent of the characteristic geometrical dimension of the quadrupole, i.e. electrode-electrode distance L.
	If the probe grazes the medium, then the transfer impedance ZN(σ,L) consists of the resistance RN(σ,L), which is independent of εr, and parallel capacitance CN(εr,L), which is independent of σ, such that: the sensitivity function   for R relative to σ is a constant equal to (-1); the sensitivity   for C relative to εr  is independent of σ, behaving as the function εr/(εr+1) of εr; the   function for R relative to εr and the   function for C relative to σ are identically null. As a consequence, the inaccuracy ΔR/R for R shows the same behaviour versus frequency of the inaccuracy Δσ/σ in the measurement of σ, as ΔR/R=| |Δσ/σ=Δσ/σ, and the inaccuracy ΔC/C for C shows a similar behaviour versus frequency with respect to the inaccuracy Δεr/εr for εr, as ΔC/C=| |Δεr/εr≈Δεr/εr if εr>>1. Moreover, besides the hypothesis h=0, if σ and εr are measured in the cut-off frequency fT=fT(σ,εr), then: the sensitivity functions   and   for the transfer impedance, both in modulus |Z| and in phase ΦZ, relative to σ, are constant, respectively (-1/4) and (-1/π); the sensitivities   and   for |Z| and ΦZ relative to εr are independent of σ, such that they behave as the function εr/(εr+1) of εr. As a consequence, the ratio between Δεr/εr and Δσ/σ is independent of σ, behaving as the function (1+1/εr) of εr, and Δσ/σ is a constant equal to Δσ/σ=4Δ|Z|/|Z|+πΔΦZ /ΦZ. As post-test, only assuming the conditions σ=const and εr=const in eqs.   and  , the sensitivity function approach provides results according to ref. (Vannaroni et al., 2004).
	4.2. Transfer Function method. 
	 This paper proposes to deepen the transfer function method, by analyzing the zero and pole behaviour, which is implied in the frequency domain analysis suggested by (Grard and Tabbagh, 1991). In fact, the section introduces the method of analysis in the frequency domain for determining the behaviour of the zero and pole frequencies in the LTI circuit of the quadrupole probe [fig. 1]. In order to satisfy the operative conditions of linearity for the measurements, if the quadrupole has a capacitive contact with the subjacent medium, then one should impose the frequency f of the probe to be included between the zero zM and the pole pM of the transfer impedance, so its modulus to be almost constant within the frequency band (Grard and Tabbagh, 1991), 
	  .  
	Based on the above conditions, an optimization equation is deduced for the probe, which links the optimal ratio x between its height above ground and its characteristic geometrical dimension only to the dielectric permittivity εr of the medium, so that
	  .  
	In order to satisfy the operative conditions of linearity for the measurements,  if the quadrupole is in galvanic contact with the subjacent medium, then one should impose the working frequency f of the quadrupole to be lower than the cut-off frequency of the transfer impedance, so its modulus to be constant below the cut-off frequency. Just under the above conditions, it is optimal to design the characteristic geometrical dimensions of the probe or establish the measurable ranges of the conductivity σ and permittivity εr of the medium [fig. 5]. The results   and  , derived by the classical transfer function method, are demonstrated in the Appendix B.
	 The interesting physical results obtained using this transfer function method are discussed below. In order to meet the design specifications which ensure satisfactory performances of the probe (inaccuracy no more than 10%), the forecasts provided by the theory of error propagation [suggested by (Vannaroni et al., 2004)] applying the sensitivity functions approach, explicitly developed in the paper, are less stringent than those foreseen by the analysis in the frequency domain [suggested by (Grard and Tabbagh, 1991)], deepening here the transfer function method to analyze the zero and pole behaviour (in terms of both a larger band of frequency f and a wider measurable range of resistivity ρ or permittivity εr) [figs. 6,7]. 
	In fact, given a surface (for example, a non-saturated concrete with low conductivity σ=10-4 S/m and εr=4) with dielectric permittivity εr [fig. 6]:
	 if the quadrupole probe has a capacitive contact with the subjacent medium, i.e. h≠0, then, having defined an optimal ratio xopt=hopt/L between an optimal height hopt above ground and the characteristic geometrical dimension L, the transfer impedance Z(f,xopt) in units of 1/hopt, calculated in xopt, is a function of the working frequency f such that its modulus |Z|(f,xopt), in units of 1/hopt, is almost constant between a zero frequency z(xopt), almost one decade higher than a minimum frequency value fmin(xopt) allowing the inaccuracy Δεr/εr(f,xopt) in the measurement of εr below a prefixed limit (10%), and a pole p(xopt), almost one decade lower than the maximum value of frequency fmax(xopt) satisfying the requirement that the inaccuracy Δεr/εr(f,xopt) for εr is below 10% [fig. 6][fig. 8]; 
	 if h=0, i.e. the quadrupole of electrode-electrode distance L grazes a medium of conductivity σ, then the transfer impedance Z(f,L), calculated in L, is a function of the working frequency f such that its modulus |Z|(f,L) is constant down to the cut-off frequency fT=fT(σ,εr), which is higher than an optimal frequency fopt(L) minimizing the inaccuracy Δεr/εr(f,L). Materials characterized by a low σ or a high εr lead to the effect of leftward shifting of the cut-off frequency fT, so reducing the optimal frequency fopt(L) [fig. 9];
	  usually, on a selected surface, it is possible to verify that the probe in capacitive contact performs optimal measurements over the band [fmin(xopt)<z(xopt), fmax(xopt)>p(xopt)], which is shifted towards lower and higher frequencies compared to the case when the probe is in galvanic contact, where the respective band [fmin, fmax] is narrower of almost one decade in frequency, especially increasing the value of  εr [figs. 8.e, 9.c].
	Moreover, once the frequency band B is fixed [fig. 7]:
	 if the quadrupole probe has a capacitive contact with the subjacent medium, then the ratio x=h/L, between the height h above ground and the characteristic geometrical dimension L, ranges from the lower limit xlow, corresponding to water (εr=81).
	In a preliminary analysis, based on the transfer functions approach, it follows that the quadrupole, designed with the height/dimension ratio x=h/L, optimally measures dielectric permittivity εr,opt; the modulus |Z|(x,σ,εr,opt), in units of 1/h, of its transfer impedance, calculated in x and εr,opt, function of the electrical conductivity σ, is characterized by a zero z(σ,εr,opt) and a pole p(σ,εr,opt) frequency, which respectively fall near the lower and upper limit of B when σ is measured within a range of lower limit   and upper limit  . 
	In a deeper analysis, based on the sensitivity function method, it is possible to verify, still designing the quadrupole with the ratio x=h/L for an optimal measurement of εr,opt, the measurable range of σ; the inaccuracy Δεr/εr(x,σ,εr,opt) in the measurement of εr,opt, a function of σ, is below a prefixed limit (10%) if σ is measured within the range [σlow, σup] larger than   by almost one magnitude order (both right and left side) [fig. 7] [fig. 10] [tabs. 1, 2].
	 If h=0, i.e. the probe of electrode-electrode distance L grazes a medium of conductivity σ and permittivity εr, then the transfer impedance Z(L,σ,εr), calculated in L, is a function of σ and εr such that its cut-off frequency fT=fT(σ,εr), a function of both σ and εr, ranges from fT,min=100kHz to fT,max=1MHz for the materials belonging to an (σ,εr)-domain, almost super-imposable with the corresponding one within which the inaccuracy Δεr/εr(L,σ,εr,) for εr is below about 10% [fig. 11].
	 Usually, having fixed the frequency band, the probe in capacitive contact performs optimal measurements over surfaces of lower conductivities compared to the case when the probe is in galvanic contact, as the respective conductivities are higher even of almost one magnitude order [tabs. 1, 3]. 
	5. Quadrupole configurations.
	 The transfer impedance of a quadrupolar array can be evaluated for any arbitrary configuration. As a general rule it is assumed that subsurface electrical sounding becomes scarcely effective at depths greater than the horizontal distance between the electrodes (Grard and Tabbagh, 1991)(Vannaroni et al., 2004). This paper considers two kinds of probes, i.e. square and linear (Wenner) configurations. The square configuration is an array of two horizontal parallel dipoles with the four electrodes positioned at the corners of a square (Grard and Tabbagh, 1991). Instead, the Wenner arrangement consists of four terminals equally spaced from one another along a straight horizontal line (Vannaroni et al., 2004).
	 If the quadrupole probe [fig. 1] is characterized by a characteristic geometrical dimension L, then the linear (Wenner) configuration [fig. 2.a] measures a capacitance in vacuum C0,W=4πε0·L, while in the square arrangement [fig. 2.b] C0,S=α·C0,W, greater by a factor α=1/(2-21/2)>1.
	 When the quadrupole is in galvanic contact, i.e. h=0, with a subjacent medium of electrical conductivity σ and dielectric permittivity εr, the Wenner configuration measures a resistance RN,W=2ε0/σC0,W and a parallel capacitance CN,W=C0,W·(εr+1)/2, while in the square arrangement  RN,S=RN,W/α and CN,S= α·CN,W, so, at the frequency f, the transfer impedance 1/ZN=1/RN+j2πf·CN for the Wenner configuration is defined by a modulus |Z|N,W=1/[(1/RN,W)2+(2πf·CN,W)]1/2 and a phase ФN,W=arctg(2πf·RN,W··CN,W), while in the square arrangement |Z|N,S=Z|N,W/α, smaller by a factor 1/α [fig. 9.a] and ФN,S=ФN,W, which is maintained invariant in the Wenner or square configurations [fig. 9.b]. Also the cut-off frequency is independent of the configurations, i.e. fT=fT(σ,εr).
	Moreover, if the probe grazes the medium and considering that the sensitivity functions are defined as normalized functions, then the sensitivities   and  , relative to the conductivity σ, and the functions   and  , relative to the permittivity εr, for the transfer impedance, both in modulus |Z| and in phase ΦZ, are invariant in the Wenner or square configurations. Only if h=0, are the inaccuracies Δσ/σ in the measurement of σ and Δεr/εr for εr also independent of the  configurations, so the probe is characterized by the same performances in the frequency band B and in the measurable ranges of  σ and εr [fig. 9.c].
	 Instead, when the quadrupole is in capacitive contact with the subjacent medium, and so the ratio x=h/L between its height h above ground and its electrode-electrode distance L is not null, i.e. 0<x≤1, then the quadrupole is characterized by a geometrical factor K(x) [δ(x)], decreasing (increasing) function of x, which, in the square configuration, slopes down (up) more swiftly than the Wenner arrangement, so assuming smaller (larger) values especially for 1/2<x<1 [fig. 8.a]. As a consequence, a probe with a fixed L, which performs measurements on a medium of dielectric permittivity εr, could be designed with an optimal height/dimension ratio xopt=hopt/L which, in the square configuration, is smaller than the Wenner arrangement, because its factor δ(x) slopes up more swiftly increasing the ratio x, so reaching the prefixed optimal value δopt(εr)≈2/(15εr+17) in correspondence with a smaller xopt. In simpler terms, if the probe is in capacitive contact with the medium, in order to perform optimal measurement of the permittivity, then the square configuration needs to be raised above ground less than the Wenner arrangement, their electrode-electrode distance being equal. In fact, x ranges from xW,low=0.022 in the linear configuration and from xS,low=0.019 in the square arrangement.
	Moreover, in the case of capacitive contact, if the quadrupole, with electrode-electrode distance L, is designed to the optimal height/dimension ratio xopt=hopt/L, working in a frequency f, then the transfer impedance Z(f,xopt) in units of 1/hopt, calculated in xopt, is defined by a phase Φ(f,xopt), which does not depend on the square or Wenner configurations [fig. 8.d], and a modulus |Z|(f,xopt) in units of 1/hopt, which, in the square is shifted down by a factor 1/α with respect to the Wenner configuration [fig. 8.c], maintaining almost unvaried in both configurations not only the shape of the modulus |Z|(f,xopt) but also the position of its zero z(xopt) and pole p(xopt) frequencies [fig. 8.b]
	Finally, the inaccuracies Δσ/σ(f,xopt) in the measurement of the conductivity σ and Δεr/εr(f,xopt) for the permittivity εr, calculated in xopt, do not depend on the two configurations, so the optimal frequency fopt(xopt), which minimizes the inaccuracy Δεr/εr(f,xopt) for εr, together with the minimum and maximum values of frequency, respectively fmin(xopt) and fmax(xopt), allowing the inaccuracy Δεr/εr(f,xopt) below a prefixed limit (10%), are invariant in both the configurations [fig. 8.e]. In simpler words, if the probe is in capacitive contact with the medium, in order to perform an optimal measurement of permittivity, then the design of the two configurations establishes, as regards a different height/dimension ratio, (almost) invariant trends in frequency, both for their transfer impedances and measurement inaccuracies . 
	6. Conclusions.
	 The present paper proposed a theoretical modelling of the simultaneous and non invasive measurement of electrical resistivity and dielectric permittivity, using a quadrupole probe on a subjacent medium. A mathematical-physical model has been applied on propagation of errors in the measurement of resistivity and permittivity based on the sensitivity functions tool. The findings have also been compared to the results of the classical method of analysis in the frequency domain, which is useful for determining the behaviour of zero and pole frequencies in the linear time invariant (LTI) circuit of the quadrupole. This paper underlined that average values of electrical resistivity and dielectric permittivity may be used to estimate the complex impedance over various terrains and concretes, especially when they are characterized by low levels of water saturation or content (Knight and Nur, 1987) and analyzed within a bandwidth ranging only from low (LF) to middle (MF) frequencies (Myounghak et al., 2007)(Al-Qadi et al., 1995). In order to meet the design specifications which ensure satisfactory performances of the probe (inaccuracy no more than 10%), the forecasts provided by the theory of error propagation [suggested by (Vannaroni et al., 2004) applying the sensitivity functions approach, explicitly developed in the paper, are less stringent tham those foreseen by the analysis in the frequency domain [suggested by (Grard and Tabbagh, 1991)], deepening here the transfer function method to analyze the zero and pole behaviour (in terms of both a larger band of frequency f and a wider measurable range of resistivity ρ or permittivity εr).
	It is interesting to compare the results of the present paper with those published in scientific literature (Grard and Tabbagh, 1991)(Vannaroni et al., 2004). In accordance, the sensitivity functions approach, provides the following results: a) if the quadrupole probe is in galvanic contact with the subsurface, i.e. h=0, then the inaccuracies Δσ/σ in the measurement of conductivity σ and Δεr/εr for permittivity εr are minimized in the frequency band B of the quadrupole, for all its geometric configurations and media; b) and, even if h≠0, the design of the probe must be optimized with reference to the minimum value of the inaccuracy Δεr/εr for εr, which is always higher than the corresponding minimum value of the inaccuracy Δσ/σ in the band B, for all its configurations and media. 
	More explicitly than in referred papers, the transfer functions method provides results for which, in order to satisfy the operative conditions of linearity for the measurements: a) if the quadrupole has a capacitive contact with the subjacent medium, then one should impose the frequency f of the probe to be included between the zero zM and the pole pM of the transfer impedance, so its modulus to be almost constant within the frequency band, so an optimization equation is deduced for the probe, which links the optimal ratio x between its height above ground and its characteristic geometrical dimension only to the dielectric permittivity εr of the medium; b) instead, if the quadrupole is in galvanic contact with the subjacent medium, then one should impose the working frequency f of the quadrupole to be lower than the cut-off frequency of the transfer impedance, so its modulus to be constant below the cut-off frequency, so it is optimal to design the characteristic geometrical dimensions of the probe or establish the measurable ranges of the conductivity σ and permittivity εr of the medium.
	Unlike referred papers, the sensitivity functions approach and the transfer functions method provide results which permit an assessment of the performance of the quadrupole probe in galvanic and capacitive contact: a) usually, having selected the surface (for example, a non-saturated concrete with low conductivity σ=10-4 S/m and εr=4), it is possible to verify that the quadrupole in capacitive contact performs optimal measurements over the band [fmin(xopt)<z(xopt), fmax(xopt)>p(xopt)], which is shifted to lower and higher frequencies compared to the case when the probe is in galvanic contact, being the corresponding band [fmin, fmax] narrower of almost one decade in frequency, especially increasing the value of  εr; b) usually, having fixed the frequency band, the quadrupole in capacitive contact provides optimal measurements over surfaces of lower conductivity compared to when the probe is in galvanic contact, being the respective conductivities higher even of almost one magnitude order.
	 On this basis, some constraints were established to design a quadrupole probe for conducting measurements of electrical resistivity and dielectric permittivity in a regime of alternating current at low and middle frequencies (10kHz-1MHz). Measurement is carried out using four electrodes laid on the surface to be analyzed and, through a measurement of transfer impedance, there is the possibility of extracting the resistivity and permittivity of the material. Furthermore, increasing the distance between the electrodes, it is possible to investigate the electrical properties of the sub-surface structures to greater depth. The main advantage of the quadrupole is being able to conduct measurements of electrical parameters with a non destructive technique, thereby enabling characterization of precious and unique materials. Also, in appropriate arrangements, measurements could be carried out with electrodes slightly raised above the surface, enabling completely non-destructive analysis, although with a greater error. The probe is able to perform measurements on materials with high resistivity and permittivity in an immediate way, without subsequent stages of post-analysis of data.
	Appendix A.
	 There follows a discussion of the influence of the inaccuracies in transfer impedance in modulus and phase on the measurement of electrical conductivity and dielectric permittivity. The mathematical tool best suited to this purpose applies the so-called sensitivity functions (Murray-Smith, 1987), which formalize the intuitive concept of sensitivity as the ratio between the percentage error of certain physical quantities (due to the variation of some parameters) and the percentage error of the same parameters.
	The inaccuracies Δσ/σ, in the measurement of the electrical conductivity σ, and Δεr/εr, for the dielectric permittivity εr, can be expressed as linear combinations of the inaccuracies Δ|Z|/|Z| and ΔΦZ /ΦZ in the measurement of transfer impedance, respectively in modulus |Z| and in phase ΦZ, as reported in eqs.   and    [figs. 3]. The pairs of sensitivity functions ( , ) and ( , ) for the transfer impedance, both in |Z| and ΦZ, relative to the conductivity σ and the permittivity εr [figs. 4], 
	  , (A.1)
	   (A.2)
	  , (A.3)
	  , (A.4)
	are, in turn, linear combinations of the sensitivity function pairs ( , ) and ( , ) for transfer impedance, in both the resistance R and capacitance C parallel components, relative to σ and εr, 
	  , (A.5)
	  , (A.6)
	  , (A.7)
	  , (A.8)
	with the weight functions
	  , (A.9)
	  . (A.10)
	Discussing eqs. (A.1)-(A.4), if the modulus |Z| and the phase ΦZ of the transfer impedance provide an indirect measurement of the electrical conductivity σ and dielectric permittivity εr, then the functions |Z|=|Z|(σ, εr) and ΦZ=ΦZ(σ, εr) are invertible, i.e. σ=σ(|Z|, ΦZ) and εr=εr(|Z|, ΦZ). Therefore, the theorem of the derivative for the inverse function can be applied. In fact, under the condition σ=const (or εr=const), both |Z| and ΦZ are invertible functions of εr (or σ), i.e. strictly increasing or decreasing monotonic functions of εr (or σ). 
	Appendix B.
	 By exact calculation, the transfer impedance Z(f,x,σ,εr) measured by the quadrupole probe, in units of the reciprocal height 1/h from the subjacent medium, consists of the resistance R(f,x,σ,εr), in units of 1/h [see eq.  ], which can be expressed as a transfer function characterized by a pole in the origin frequency, pR=0, a zero in higher frequencies zR(f,x,σ,εr)>0, and a static gain KR(f,x,σ), 
	  , (B.1)
	where 
	  , (B.2)
	  , (B.3)
	besides the parallel capacitance C(f,x,σ,εr), in units of 1/h [see eq.  ], which can be expressed as a transfer function characterized by a low frequency pole, pC(f,x,σ,εr), a zero in higher frequencies zC(f,x,σ,εr)>pC(f,x,σ,εr), and a static gain KC(x), 
	  , (B.4)
	where the capacitance pole pC(f,x,σ,εr) coincides with the resistance pole zR(f,x,σ,εr), 
	  , (B.5)
	and
	  , (B.6)
	  . (B.7)
	One can demonstrate that, for values of the ratio x=h/L, between the height h above ground and the characteristic geometrical dimension L, and the paired values of electrical conductivity σ and dielectric permittivity εr which satisfy the condition [fig. 5]
	  , (B.8)
	the modulus |Z|(f,x,σ,εr) can be approximately expressed as a transfer function with a pole in the origin frequency, a low frequency zero, zM(f,x,σ,εr), a pole in higher frequencies pM(f,x,σ,εr)>zM (f,x,σ,εr), and a static gain KM(x) [fig. 8.c], 
	  , (B.9)
	where the zero of the modulus zM(f,x,σ,εr) coincides with the capacitance pole pC(f,x,σ,εr) and the pole of the modulus pM (f,x,σ,εr) with the capacitance zero zC(f,x,σ,εr) [fig. 8.b], 
	  , (B.10)
	  , (B.11)
	and 
	  . (B.12)
	Eq. (B.8) establishes limits on the range for the design specification x of the quadrupole and the measurable range (σ,εr) of the media.
	In order to satisfy the operative conditions of linearity for the measurements, the quadrupole probe, characterized by the height/dimensions ratio x=h/L, should measure the conductivity σ and the permittivity εr of the subjacent medium when its working frequency f falls within the band included between the zero zM(f,x,σ,εr) and the pole pM(f,x,σ,εr) of the transfer impedance, as reported in eq.  .
	Moreover, the quadrupole probe, specified by x=h/L, should measure εr, its geometric factor δ(x) being close to eq.  , a necessary condition for Z(f,x,σ,εr) to show an almost constant modulus within the band  , the modulus in the zero (B.10) coinciding with the corresponding one in the pole (B.11), 
	  , (B.13)
	so that the pole (B.11) is almost four times larger that the zero (B.10),
	  .  (B.14)
	Eq.   can be interpreted as the optimization equation of the quadrupole, so the sizing for the height/dimension ratio x of the probe depends only on the permittivity εr of the medium; instead, eqs.   and (B.14) show that the probe can work optimally only in a small band of frequencies.
	References.
	AL-QADI I. L.; HAZIM O. A.; SU W.; RIAD S. M (1995): Dielectric properties of Portland cement concrete at low radio frequencies, J. Mater. Civil. Eng., 7, 192-198.
	AUTY R.P., COLE R.H. (1952): Dielectric properties of ice and solid, J. Chem. Phys., 20, 1309-1314.
	BANTON O., SEGUIN M. K. and CIMON M. A. (1997): Mapping field scale physical properties of soil with electrical resistivity, Soil Sci. Soc. Am. J., 61, 1010-1017.
	CHELIDZE T.L., GUEGUEN Y., (1999): Electrical spectroscopy of porous rocks: a review-I, Theoretical models, Geophys. J. Int., 137, 1-15.
	CHELIDZE T.L., GUEGUEN Y., RUFFET C. (1999): Electrical spectroscopy of porous rocks: a review-II, Experimental results and interpretation, Geophys. J. Int., 137, 16-34.
	DEL VENTO D. and VANNARONI G. (2005): Evaluation of a mutual impedance probe to search for water ice in the Martian shallow subsoil, Rev. Sci. Instrum., 76, 084504 (1-8).
	DEBYE P. (1929): Polar Molecules (Leipzig Press, Germany).
	FECHANT C. (1996) : Réalisation d’un quadripôle de mesure in situ de la permitivié diélectrique des végétaux. Premier application à la détermination du contenu en eau des épis de blé (These de l’Université Pierre-et-Marie-Curie VI, Paris, 190 pp) (in French).
	FECHANT C. and TABBAGH A. (1999) : Mesure en laboratoire de la permittivité diélectrique moyenne fréquence de végétaux à 430 kHz à l’aide d’un capacimétre. Relation entr permittivité apparente d’un ensemble d’épis de blé et leur contenu en eau, C. R. Acad. Sci. Paris t. 327 Série II b, p. 285-298 (both in French and in English).
	FROLICH H. (1990): Theory of Dielectrics (Oxford University Press, Oxford).
	EDWARDS R. J. (1998): Typical Soil Characteristics of Various Terrains, http://www.smeter.net/grounds/soil-electrical-resistance.php.
	GRARD  R. (1990): A quadrupolar array for measuring the complex permittivity of the ground: application to earth prospection and planetary exploration, Meas. Sci. Technol., 1, 295-301.
	GRARD R. (1990): A quadrupole system for measuring in situ the complex permittvity of materials: application to penetrators and landers for planetary exploration, Meas. Sci. Technol., 1, 801-806. 
	GRARD R. and TABBAGH A. (1991): A mobile four electrode array and its application to the electrical survey of planetary grounds at shallow depth, J. Geophys. Res., 96, 4117-4123.
	KEAREY P., BROOKS M. and HILL I. (2002): An introduction to geophysical exploration (Blackwell Science, Oxford).
	KNIGHT R. J. and NUR A. (1987): The dielectric constant of sandstone, 60 kHz to 4 MHz, Geophysics, 52, 644-654.
	LAURENTS S., BALAYSSAC J. P., RHAZI J., KLYSZ G. and ARLIGUIE G. (2005): Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling, Materials and Structures (M&S), 38, 827-832 (2005).
	LOKE M. H. (2001): Tutorial: 2-D and 3-D electrical imaging surveys, Course Notes for USGS Workshop 2-D and 3-D Inversion and Modelling of Surface and Borehole Resistivity Data, Torrs, CT.
	MURRAY-SMITH D.  J.  (1987): Investigations of methods for the direct assessment of parameter sensitivity in linear closed-loop control systems, in Complex and distributed systems: analysis, simulation and control, edited by TZAFESTAS S. G. and BORNE P. (North-Holland, Amsterdam), pp. 323–328.
	MYOUNGHAK O., YONGSUNG K., JUNBOUM P. (2007): Factors affecting the complex permittivity spectrum of soil at a low frequency range of 1 kHz10 MHz, Environ Geol., 51, 821-833.
	POLDER R., ANDRADE C., ELSENER B., VENNESLAND Ø., GULIKERS J., WEIDERT R. and RAUPACH M. (2000): Test methods for on site measurements of resistivity of concretes, Materials and Structures (M&S), 33, 603-611.
	RHOADES J. D., RAATS P. A. C. and PRATHER R. J. (1976): Effect of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity, Soil Sci. Soc. Am. J., 40, 651-655.
	SAMOUËLIAN A., COUSIN I., TABBAGH A., BRUAND A. and RICHARD G. (2005): Electrical resistivity survey in soil science: a review, Soil  Till,. Res. 83 172-193.
	TABBAGH A. (1994): Simultaneous measurement of electrical and dielectric permittivity of electrical conductivity and dielectric permittivity of soil using a slingram electromagnetic device in medium frequency range, Archaeometry, 36, 159-170. 
	TABBAGH A., HESSE A. and GRARD R. (1993): Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole: field trials on archaeological sites, Geophys. Prospect., 41, 579-597.
	VANNARONI G.  , PETTINELLI E., OTTONELLO C., CERETI A., DELLA MONICA G., DEL VENTO D., DI LELLIS A. M., DI MAIO R., FILIPPINI R., GALLI A., MENGHINI A., OROSEI R., ORSINI S., PAGNAN S., PAOLUCCI F., PISANI A. R., SCHETTINI G., STORINI M. and TACCONI G. (2004): MUSES: multi-sensor soil electromagnetic sounding, Planet. Space Sci., 52, 67–78.
	Figures and captions. 
	Figure 1
	   
	Figure 2.a
	   
	Figure 2.b
	   
	Figure 3.a
	  
	Figure 3.a.bis
	  
	Figure 4.a
	  
	Figure 4.a.bis
	 
	Figure 4.b
	  
	Figure 4.b.bis
	 
	Figure 5
	  
	Figure 6.a.
	   
	Figure 6.b.
	   
	Figure 7.a.
	   
	Figure 7.b.
	   
	Figure 8.a
	 
	Figure 8.b
	  
	Figure 8.c
	  
	Figure 8.d
	  
	Figure 8.e
	  
	Figure 9.a
	  
	Figure 9.b
	  
	Figure 9.c
	  
	Figure 10.a
	  
	Figure 10.b
	  
	Figure 11.a
	  
	Figure 11.b
	  
	Table 1.a
	Permittivity 
	Inaccuracy
	xW, opt
	1.083·10-4
	εr, opt
	6.703
	σopt
	3.52·10-5 S/m
	Table 1.b
	εr, opt=6.703
	σopt=3.52·10-5 S/m
	Δεr/εr≤0.1
	Δσ/σ≤0.1
	xW, low
	≈ 0
	xW, up
	0.475
	Table 1.c
	xW, opt=1.083·10-4
	Δεr/εr≤0.1
	Δσ/σ≤0.1
	εr, low , σlow
	1, 5.333·10-5 S/m
	εr, up , σup
	81, 3.14·10-3 S/m
	Table 2.a
	εr, concrete=4.026
	xW, concrete=0.087
	Sensitivity Function Approach
	Transfer Function Method
	σlow
	4.473·10-6 S/m
	1.78·10-5 S/m
	σup
	3.058·10-4 S/m
	7.12·10-5 S/m
	Table 2.b
	xW, concrete=0.087
	Δεr/εr≤0.1
	Δσ/σ≤0.1
	εr, low , σlow
	1, 1.769·10-6 S/m
	εr, up , σup
	84.458, 1.573·10-3 S/m
	Table 3
	h=0
	Δεr/εr≤0.1
	Δσ/σ≤0.1
	εr, low , σlow
	1, 5.333·10-5 S/m
	εr, up , σup
	81, 3.14·10-3 S/m
	Fig. 1. Equivalent circuit of the quadrupole probe.
	Fig. 2. Quadrupole probe in linear (Wenner) (a) or square (b) configuration.
	Fig. 3. In the hypothesis that Δ|Z|/|Z|=ΔΦZ/ΦZ=10-3, inaccuracy Δεr/εr in the measurement of the dielectric permittivity εr, plotted as: function Δεr/εr(f,x) (a) of both the frequency f in the band  , being flim=1MHz, and the ratio x=h/L between the height h above ground and the characteristic geometrical dimension L, being 0<x≤1, when the quadrupole probe, designed in the Wenner linear configuration, has a capacitive contact on a selected concrete of low electrical conductivity, i.e. σ=10-4 S/m, εr=4; function Δεr/εr(σ,εr) (a.bis) of both the conductivity σ and the permittivity εr, when the quadrupole, working in a fixed band B=100kHz, is in galvanic contact on a class of concretes such that  .
	Fig. 4. Sensitivity functions   and   for the transfer impedance, both in modulus |Z| and in phase ΦZ, relative to the dielectric permittivity εr, plotted as: functions,  (a) and  (b), of both the working frequency f and the height/dimension ratio x=h/L in the same operative conditions of fig.3.a; functions,   (a.bis) and  (b.bis), of both the conductivity σ and the permittivity εr in the same operative conditions of fig. 3.a.bis.
	Fig. 5. Ratio Г=Г1/Г2 between the first member Г1 and the second member Г2 of eq. (B.8), plotted as function Г(x,σ) of both the height/dimension ratio x=h/L and the electrical conductivity σ, being the quadrupole probe designed in the Wenner linear configuration and in capacitive contact on a selected concrete of dielectric permittivity εr=4.
	 
	Fig. 6. Conceptual schemes for the numerical simulations regarding the sensitivity functions approach (a) and the transfer function method (b), in order to design the characteristic geometrical dimensions and the frequency band, limiting inaccuracies in the measurements of the quadrupole probe, in capacitive contact with selected materials as concretes, in the hypothesis that Δ|Z|/|Z|=ΔΦZ/ΦZ=10-3. 
	Fig. 7. Conceptual schemes for the numerical simulations regarding the sensitivity functions approach (a) and the transfer function method (b), in order to establish the measurable ranges of electrical conductivity and dielectric permittivity, limiting inaccuracies in the measurements of the quadrupole probe, in capacitive contact, and fixing its optimum working frequencies and characteristic geometrical dimensions [Δ|Z|/|Z|=ΔΦZ/ΦZ=10-3].
	Fig. 8. With reference to a quadrupole probe designed in the Wenner linear or square configuration and presenting a capacitive contact on a concrete of low electrical conductivity, i.e. σ=10-4 S/m, εr=4; plots, as function of the ratio x=h/L between the height h above ground and the characteristic geometrical dimension L, being 0<x≤1, for the geometrical factor δ(x) (a); semi-logarithmic plots for both the zero zM(x) and pole pM(x) of the transfer impedance in modulus (b); Bode’s diagrams, as function of the frequency f in the band  , being flim=1MHz, for the transfer impedance, both in modulus |Z|(f,xconcrete) [units of 1/h] (c) and phase ΦZ(f,xconcrete) (d); in the hypothesis that Δ|Z|/|Z|=ΔΦZ/ΦZ=10-3, semi-logarithmic plots for both the inaccuracies (e) Δεr/εr(f,xconcrete), in the measurement of the permittivity εr, and Δσ/σ(f,xconcrete), of the conductivity σ, being the height/dimension ratio designed optimally in the Wenner linear (xW,concrete=0.087) and square (xS,concrete=0.078) configurations.
	Fig. 9. With reference to a quadrupole probe designed by an electrode-electrode distance L0=1m and in a galvanic contact on a concrete of low electrical conductivity, i.e. σ=10-4 S/m, εr=4; Bode’s diagrams, as function of the frequency f, for the transfer impedance, both in modulus |Z|(f,L0) (a) and phase ΦZ(f,L0) (b); semi-logarithmic plots for both the inaccuracies (c) Δσ/σ(f), in the measurement of the conductivity σ, and Δεr/εr(f), of the permittivity εr [Δ|Z|/|Z|=ΔΦZ/ΦZ=10-3].
	 
	Fig. 10. In the hypothesis that Δ|Z|/|Z|=ΔΦZ/ΦZ=10-3, referring to both the inaccuracies Δσ/σ(σ,εr), for the electrical conductivity σ, and Δεr/εr(σ,εr), for the dielectric permittivity εr, as functions of σ and εr, and when the quadrupole probe is designed in the Wenner linear configuration, working in a fixed band B=100kHz, with an height/dimension ratio xW,concrete=0.087, which is optimal for a capacitive contact only with a concrete of permittivity εr=4: plots for the orthogonal projections over the (σ,εr) plane satisfying the conditions Δσ/σ(σ,εr)≤0.1 (a) and Δεr/εr(σ,εr)≤0.1 (b) [Tabs. 1, 2].
	Fig. 11. With reference to a quadrupole probe, in galvanic contact, working in a fixed band B=100kHz, plots for the domains (σ,εr) of the electrical conductivity σ and the dielectric permittivity εr such that: the transfer impedance is characterized by a modulus with a cut-off frequency fT=fT(σ,εr)=σ/(2πε0(εr+1)) ranging in the interval  (a); both the inaccuracies Δσ/σ(σ,εr), in the measure of the conductivity σ, and Δεr/εr(σ,εr), of the permittivity εr, result below a prefixed limit of 10% [Δ|Z|/|Z|=ΔΦZ/ΦZ=10-3] (b) [Tabs. 1, 3].

