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Inactivation of the dnaK gene in 
Clostridium difficile 630 ∆erm 
yields a temperature-sensitive 
phenotype and increases biofilm-
forming ability
Shailesh Jain1, Deborah Smyth1, Barry M. G. O’Hagan1, John T. Heap2, Geoff McMullan3,  

Nigel P. Minton4 & Nigel G. Ternan  1

Clostridium difficile infection is a growing problem in healthcare settings worldwide and results 

in a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibiotic 

resistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenging 

gut environment still remains incompletely understood. We previously reported that clinically relevant 

heat-stress (37–41 °C) resulted in a classical heat-stress response with up-regulation of cellular 
chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 
∆erm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 ∆erm 

and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of 
the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental 
strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of 
class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the 

non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. 
Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli 
dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.

Clostridium di�cile is recognised as the most common cause of infectious antibiotic-associated bacterial diar-
rhoea in healthcare settings worldwide1. During dysbiosis in the gut, C. di�cile infects human colonic epithelial 
cells, whereupon its toxins disrupt epithelial cell ultrastructure and thus the integrity of the gut epithelial bar-
rier2,3. Symptoms include mild, self-limiting diarrhoea, cramping and low-grade fever (up to 40.6 °C); however, 
untreated C. di�cile infection (CDI) can be life threatening4. Treatment generally comprises oral administration 
of antibiotics such as metronidazole, vancomycin or the recently introduced �daxomycin5,6.

Cases of CDI have been exacerbated by the recent emergence of new, hypervirulent strains of the organism, 
and are associated with more severe infections, higher recurrence rates and higher mortality7. Antibiotic resist-
ance plays an important role in driving these epidemiological changes, but despite extensive characterisation of 
the organism’s pathogenesis8–11, and its epidemiology and global spread12–16, the survival strategy of C. di�cile in 
the challenging gut environment still remains incompletely understood17,18.

Genomic investigations have shown that, worldwide, a variety of lineages of C. di�cile exist with di�erences 
in genome content16,19,20. Post-genomic comparative approaches have subsequently provided insights into genes, 
pathways and metabolic processes modulated under clinically relevant in vitro culture conditions (e.g. heat, 
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antibiotics, oxygen, pH) or in in vivo models of CDI21–28. However, the precise function of clostridial genes has 
been di�cult to determine considering the lack of genetic manipulation tools. Since the 1990s, techniques includ-
ing physical and chemical mutagenesis29, homologous recombination, antisense RNA, mobile group II introns 
(ClosTron) and more recently, CRISPR-Cas9 genome editing tools have been deployed for ever more precise 
genome editing in clostridia30,31. �e ClosTron, developed by Heap et al.32,33, utilises a retargeted mobile group II 
intron to allow targeted, permanent gene disruptions and the introduction of an erythromycin resistance gene, 
ermB, that enables positive selection of mutants. ClosTron disruption mutants generated for a variety of genes 
involved in infection, virulence and primary metabolism have allowed insights into their individual roles and 
their in�uence on the global physiology of the cell. �e reader is referred to Kuehne and Minton34 for a compre-
hensive summary of the ClosTron technology, intron design procedures and mutant nomenclature.We previously 
demonstrated up-regulation of class I heat shock genes in C. di�cile strain 630 in response to mild, clinically rele-
vant heat-stress ranging from 37 °C to 41 °C26–28. Class I heat shock genes are members of the heat-inducible HrcA 
regulon and chaperone proteins encoded by the groESL and dnaJK–GrpE operons play pivotal roles in refolding 
denatured cellular proteins under stressful conditions such as pH (acid/alkali), O2 or antibiotic stresses21,26–28. To 
dissect the C. di�cile heat-stress response in detail, we utilised ClosTron to attempt to create knockout mutants 
of the class I molecular chaperones dnaK and groEL, in addition to their negative transcriptional regulator hrcA.

Results
We previously reported on the e�ects of clinically relevant heat-stress on the proteome and transcriptome of C. 
di�cile strain 630, showing that a 4 °C temperature upshi� (37–41 °C) resulted in a classical heat-stress response 
characterised by the up-regulation of various class I and III chaperones and cell-surface adhesins in addition to 
increased expression of Fe-only hydrogenases. A decrease in expression was noted for peptidyl prolyl cis-trans 
isomerases, tcdA, various cellular transport systems and certain motility-associated genes, including the �agellar 
gene �iC26–28. In the current work, we hypothesised that disruption of key cellular chaperones would lead to plei-
otropic changes in the physiology of C. di�cile.

ClosTron mutant construction. For the dnaK gene (target site 722|723a; score 6.925), PCR screening of 
erythromycin-resistant colonies con�rmed the generation of a ClosTron knockout mutant (Fig. 1a). Southern 
blot analysis (Fig. 1b) using an intron-speci�c probe for ErmRAM further veri�ed the existence of a single copy 
of the insertion element. As expected, the probe did not hybridise to genomic DNA from the ∆erm strain, but 
hybridised as a single band to genomic DNA from the dnaK mutant strain, thus con�rming the insertion of the 
group II intron into the desired target gene. �e insertion site was veri�ed by sequencing across intron–exon 
junctions (Supplementary Data S1), and con�rmatory PCR of the ErmRAM region was also performed (Fig. 1c). 
In the case of groEL (target site 600|601 s; score 8.766) and hrcA (target site 285|286 s; score 7.971), genomic DNA 
from >100 erythromycin-resistant clones was PCR screened. Despite this, no gene-speci�c disruptions could 
be identi�ed. Another intron insertion site was then chosen for groEL (target site 688|689a; score 6.18) and hrcA 
(target site 199|200a; score 4.19), and plasmids were ordered from DNA2.0, as per Heap et al.33. Despite multiple 
attempts and intensive PCR screening, it was not possible to isolate veri�able disruption mutants of either groEL 
or hrcA in C. di�cile using the ClosTron system.

Other researchers have attributed the inability to recover ClosTron mutants to functional ine�ciency of group 
II introns35; however, it is known that the integration frequency of retargeted introns varies over several orders of 
magnitude, and sometimes the integration frequency is too low to detect32. Whether HrcA and GroEL are essen-
tial in C. di�cile—as reported for certain other bacteria36—remains unclear, but further attempts to isolate groEL 
or hrcA mutants were not pursued.

Growth characteristics of the dnaK mutant. Having isolated and veri�ed the construction of C. di�cile 
strain 630 dnaK::Ll.ltrB-erm (herea�er, the dnaK mutant), we investigated phenotypic changes compared to the 
∆erm strain, initially considering growth rates and temperature sensitivity in BHIS broth. When grown at 37 °C 
(Fig. 2a), the dnaK mutant exhibited a temperature-sensitive phenotype, growing more slowly, and to a lower 
�nal attenuance, than C. di�cile 630 ∆erm. In further experiments, cells were grown to early exponential phase 
(D650nm~0.3) at 37 °C, followed by transfer to 30 °C, 41 °C, or 45 °C. Upon transfer to 30 °C, both C. di�cile 630 
∆erm and the dnaK mutant grew in a comparable manner (Fig. 2b). Raw attenuance data, with associated stand-
ard error of the mean values for these experiments can be found online in Supplementary Data S2. We previously 
determined using C. di�cile strain 630 that there was no substantial di�erence in either growth rate or biomass 
production when the growth temperature was shi�ed from 37 °C to 41 °C26, indicating a certain robustness of this 
strain to temperature upshi�. In the current work, however, we observed a considerable di�erence in the growth 
rate of the dnaK mutant as compared to the parental ∆erm strain following the induction of heat stress (Fig. 2c,d). 
�is altered growth behaviour and thermosensitivity of the dnaK mutant could be interpreted as a direct conse-
quence of dnaK inactivation.

Disruption of dnaK results in impaired motility due to a FliC-deficient phenotype. �e sensitiv-
ity of the dnaK mutant to elevated temperatures led to the hypothesis that a defect in DnaK function places the 
cells in a ‘heat-stress’ mode. �is, we posited, would lead to a similar physiological response—including down reg-
ulation of �iC—to that observed in our earlier heat-stress experiments, where the expression of the gene encoding 
�iC was down-regulated. �us, we assessed cellular motility by the method of Tasteyre et al.37 by stab inoculating 
C. di�cile strains into motility agar tubes (in three replicates) and assessing growth following anaerobic incuba-
tion at 37 °C for 48 h. �e parental C. di�cile 630 ∆erm strain displayed a di�use spreading pattern, with clear 
evidence of growth away from the inoculum stab, indicative of a motile phenotype (Fig. 3a). In contrast, the dnaK 
mutant (Fig. 3b) failed to produce the spreading pattern typical of motile organisms37–39. We hypothesised that 
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this lowered motility could be due to the reduced expression of �iC or the lack of �agella on the dnaK mutant 
cell surface. �is hypothesis was tested using both transmission and scanning electron microscopy (TEM and 
SEM, respectively) on cells grown at 37 °C. TEM with negative staining using phosphotungstic acid revealed that 
the parental C. di�cile 630 ∆erm cells were peritrichously �agellated (Fig. 4a), while dnaK mutant cells did not 
have any visible �agella (Fig. 4b). �is observation validated our hypothesis that the reduced motility of the dnaK 
mutant is attributable to the loss of the structural �agella machinery. TEM images indicated that dnaK disruption 
also resulted in a �lamentous phenotype in the mutant (Fig. 4b), an observation further investigated using SEM, 
which clearly showed that cells of the dnaK mutant (Fig. 4d) were longer than those of the ∆erm strain [mutant 
cells, 9.04 ± 1.42 µm in length; wild-type cells, 6.72 ± 1.28 µm in length; 12 cells of each strain were measured]. In 
general, both wild-type and mutant cells also appeared slightly wrinkled, a phenomenon that can be attributed to 
the acetone dehydration step during the critical-point drying (CPD) process prior to SEM.

Chaperone genes and fliC are differentially expressed in the dnaK mutant. �e lack of both 
motility and observable �agella, combined with the temperature sensitivity exhibited by the dnaK mutant, led us 
to the hypothesis that genes associated with these processes would be altered in the mutant. If, as we hypothesised, 
the dnaK mutant was in the ‘heat-stress mode’, then it was to be expected that expression of other chaperones 
would be increased as well. We also hypothesised that the lack of observable �agella could be underpinned by 
a decrease in �iC expression. Independent biological duplicate cultures of C. di�cile 630 ∆erm and the dnaK 
mutant were grown at 37 °C and total RNA was isolated from cells harvested at the late-log phase, reverse tran-
scribed to cDNA and the relative expression of chaperone genes and �iC was analysed with tpi as reference (see 
Supplementary Data S3 for ratios). Expression of groEL, groES, and grpE was increased in the dnaK mutant, 

Figure 1. Validation of C. di�cile 630 ∆erm::dnaK 723a mutant by PCR screening and Southern blotting. 
Lanes for each gel/experiment were loaded with PCR products as follows: M, 1 kb Plus DNA ladder 
(Invitrogen); Lane 1, C. di�cile 630 ∆erm; Lane 2, dnaK mutant; Lane 3, pMTL007C-E2 plasmid DNA; Lane 
4; negative control (water). (a) PCR across the intron-exon junction using EBS universal and Cdi-dnaK-R 
primers generated a 428 bp product from dnaK mutant (lane 2) showing presence of the intron; (b) Southern 
blot analysis to con�rm single genomic insertion of the intron: An intron-speci�c probe for the ErmRAM was 
hybridised to HindIII-digested: genomic DNA extracted from C. di�cile 630 ∆erm (Lane 1), pMTL007C-E2 
plasmid DNA (Lane 2, positive control), and genomic DNA from the dnaK mutant (Lane 3). (c) Additional 
con�rmatory PCR: (i) PCR using Cdi-dnaK-F and Cdi-dnaK-R primers generated a 210 bp product from C. 
di�cile 630 ∆erm (lane 1), whereas the dnaK mutant produced a 2059 bp product, indicating the insertion 
of the group II intron (lane 2); (ii) PCR using ErmRAM-F and ErmRAM-R primers generated a 900 bp 
product from the dnaK mutant (lane 2) indicative of splicing out of the td group I intron, whereas unmodi�ed 
pMTL007C-E2 template generated a 1300 bp product (lane 3), (iii) PCR across the other intron-exon junction 
using ErmRAM-R and Cdi-dnaK-F primers generated a 1300 bp product from the dnaK mutant only (lane 2). 
�ese experiments con�rm insertion of the group II intron into the C. di�cile 630 ∆erm chromosome at the 
desired site and in the correct orientation, resulting in dnaK inactivation.
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whereas dnaJ expression decreased by more than 4-fold (Fig. 5). �is is in broad accordance with what has been 
reported by other researchers, where increases in transcription of heat shock genes, compared to wild-type 
strains, were observed in dnaK null mutants grown at optimal growth temp eratures40–42. In addition, expression 
of �iC was 4-fold lower in the dnaK mutant, con�rming that lower level of �iC transcript, as opposed to some 
defect in either translation or in the export of FliC monomers, was the primary reason for lack of �agellar motility.

The dnaK mutant exhibits an increased biofilm-forming phenotype. In many bacteria, includ-
ing Pseudomonas aeruginosa, both �agella and type IV pili contribute to motility and bio�lm-forming ability43. 
We therefore assessed the ability of C. di�cile strains to form bio�lms using a modi�ed version of the method 
of O’Toole and Kolter44, with the expectation that the �agella-de�cient dnaK mutant would exhibit reduced 
bio�lm-forming ability. To assess bio�lm development, assays were performed in 96-well polystyrene microtiter 
plates (Orange Scienti�c, Alpha Technologies, UK) with measurements at 24, 48 and 72 h (see Supplementary 
Data S4). We observed that the C. di�cile 630 ∆erm strain formed weak bio�lms (A570 < 0.5, per the classi�cation 
of Varga et al.45) (Fig. 6). In contrast, the dnaK mutant formed moderate to strong bio�lms, and this ability was 
signi�cantly enhanced at 24 h (p = 0.0057), 48 h (p = 0.0020) and 72 h (p = 0.0041) by the addition of 0.9% glucose 
to the BHIS broth (Fig. 6). By contrast, the e�ect of 0.9% glucose addition on bio�lm production by C. di�cile 630 
∆erm was signi�cant only at 48 h (p = 0.0190), although bio�lm biomass was increased at 24 h and 72 h compared 
to the BHIS control.

Discussion
Here we report for the �rst time the successful construction, validation and phenotypic characterisation of a 
C. di�cile dnaK disruption mutant using ClosTron. Our observations of impaired growth rates and lowered 
temperature stress tolerance with the dnaK mutant correspond with those of Selby et al.46 who made dnaK and 
hrcA mutants in C. botulinum. �e C. di�cile dnaK mutant had a lower growth rate and produced less biomass 

Figure 2. Growth of C. di�cile 630∆erm (◆) and C. di�cile 630 ∆erm::dnaK 723a mutant (□) in BHIS broth 
at di�erent temperatures. Temperature shi�s were induced at early exponential phase, 4 h. (a) When grown at 
37 °C, the dnaK mutant exhibited a temperature-sensitive phenotype, growing more slowly than C. di�cile 630 
∆erm. (b) Cells grown to early exponential phase at 37 °C and then transferred to 30 °C grew in a comparable 
manner. Cells grown to early exponential phase at 37 °C were challenged by transfer to temperatures of (c) 41 °C 
and (d) 45 °C, respectively, where temperature sensitivity of the dnaK mutant was more pronounced. D650nm 
values are plotted on a logarithmic scale and are averages of D650nm measurements from biological triplicate 
cultures; error bars represent the standard error of mean.
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Figure 3. Motility of C. di�cile strains in BHIS agar (0.175%). (a) C. di�cile 630 ∆erm, (b) dnaK mutant. 
Motility was visualised as a di�use spreading pattern from the point of stab inoculation.

Figure 4. Electron microscopic analysis of C. di�cile 630 ∆erm and C. di�cile 630 ∆erm::dnaK 723a mutant. 
(a) Transmission electron microscopy image of C. di�cile 630 ∆erm. (b) Transmission electron microscopy 
image of dnaK mutant. Arrows indicate �agellar �laments. (c) Scanning electron microscopy image of C. 
di�cile 630 ∆erm. (d) Scanning electron microscopy image of dnaK mutant. �e images depict the �lamentous 
phenotype of the dnaK mutant in comparison to the wild-type.
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at temperatures between 30 °C and 45 °C (Fig. 2) and in addition was also less able to tolerate heat stress (Fig. 2), 
emphasising the importance of the DnaK chaperone system in protein folding, especially in relation to core cellu-
lar housekeeping functions. �e results obtained using these two clostridial strains correspond with observations 
in other bacteria. In Escherichia coli, dnaK mutants reportedly grow more slowly and exhibit lower viability than 
the wild-type, exhibiting severe defects in DNA and RNA synthesis that account for the inhibited growth and 
reduced viability47–49. Accordingly, we noted that following lethal stress (2 min at 64 °C) and plating on BHIS agar, 
no C. di�cile dnaK mutant cells were recovered, suggesting that dnaK mutation is deleterious to sporulation. 
We subsequently veri�ed the presence of spores in cultures of the C. di�cile dnaK mutant, but nonetheless, this 
markedly altered thermotolerance further emphasises the requirement for a functional DnaK chaperone in C. 

Figure 5. Expressional changes in class 1 chaperone genes and the �agellar �lament gene, �iC, in the C. 
di�cile 630 ∆erm::dnaK 723a mutant. RNA was extracted and reverse transcribed from biological duplicate 
cultures and cDNA was quanti�ed in technical triplicate qPCR reactions. �e ‘calibrator normalised relative 
quanti�cation including e�ciency correction’ experimental mode assessed gene expression using the tpi gene, 
whose expression did not change, as a reference. Bars represent average fold-changes in gene expression in the 
dnaK mutant compared with the ∆erm parental strain. Error bars represent standard deviation of the mean.

Figure 6. Bio�lm-forming ability of C. di�cile 630 ∆erm and C. di�cile 630 ∆erm::dnaK 723a mutant. Bio�lm 
assays were performed in biological triplicates, each with 6 independent technical replicates. Strains were 
classi�ed as strong- (A570 > 1), moderate- (A570 = 0.5−1), or weak- (A570 < 0.5) bio�lm producers45. P values 
represent statistical comparison (Student’s t-test, 2 tailed) between BHIS broth and BHIS broth with 0.9% (w/v) 
additional glucose.
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di�cile physiology. Heat sensitivity has also been reported in Lactococcus lactis41 and Staphylococcus aureus50 
dnaK mutants, yet in Bacillus subtilis, dnaK mutants were thermotolerant and could grow up to 52 °C, in addition 
to exhibiting a �lamentous morphology51. Our motility experiments (Fig. 3) showed that the C. di�cile dnaK 
mutant was less motile than the parental ∆erm strain. Electron microscopy revealed for the �rst time in C. di�-
cile that the C. di�cile dnaK mutant had no �agella (Fig. 4b) and that the mutant cells were approximately 50% 
longer than the parental ∆erm cells (Fig. 4d). �is �lamentous phenotype, reported in several other bacterial 
dnaK mutants31,35,52, could be due to either the accumulation of mutant DnaK proteins52 or some as yet uni-
denti�ed defect in the expression/function of FtsZ, a highly conserved prokaryotic cytoskeleton protein which 
is the �rst protein to localise to the site of bacterial cell division and in turn de�nes the plane of cell division53. 
Sugimoto et al.54 reported that an E. coli dnaK deletion mutant displayed a �lamentous morphology that was 
attributable to increased GrpE abundance which in turn interfered with DnaK chaperone system functionality: 
the imbalance resulted in defective cell division mediated via abnormal FtsZ localisation. �e C. di�cile dnaK 
mutant exhibited 3- to 4-fold increases in the expression of all class I heat shock genes (Fig. 5), with the excep-
tion of dnaJ, the expressions of which was 4-fold lower. We therefore indicate that intracellular concentrations 
of the molecular chaperones encoded by the dnaK operon may directly in�uence the activity and localisation of 
FtsZ (encoded by CD2646) in C. di�cile. �e reduction in dnaJ expression in the dnaK mutant is similar to that 
observed in E. coli49 and could be due to either di�erential transcription or transcriptional attenuation. Our pre-
vious work reported di�erential expression of dnaK operon transcripts and proteins in C. di�cile cells26–28. In B. 
subtilis, both transcriptional and post-transcriptional controls adjust cellular quantities of proteins derived from 
the dnaK operon, and a strategy of di�erential segmental mRNA stability is in place to �ne-tune the expression 
of individual dnaK operon genes. �e B. subtilis dnaK operon transcripts contain stemloop structures that act 
as rho-independent transcription terminators with one of these predicted upstream of dnaJ, and there is also a 
vegetative promoter just upstream of dnaJ in both Bacillus and Clostridium that is not regulated by heat stress55,56. 
Consequently, dnaK disruption may have wider e�ects on C. di�cile transcription factors or mRNA processing. 
�e possibility of dnaK disruption also giving rise to a polar e�ect on dnaJ cannot be discounted. While the dnaK 
ORF is disrupted and thus must be non-functional, a polar e�ect on the expression of neighbouring genes–
including dnaJ–could be an alternative explanation for the observed decrease in dnaJ expression. In Salmonella 
enterica Serovar Typhimurium an insertion in the dnaK gene led to depletion of both DnaK and DnaJ57 and thus 
it could be argued that there may be a dnaJ polar e�ect component to the observed phenotype in C. di�cile. �e 
C. di�cile dnaK mutant exhibited 3- to 4-fold increased expression of the groESL operon at 37 °C. A number of 
possibilities could explain this. In E. coli, the DnaK chaperone system is involved in the negative regulation of 
heat shock response by controlling the synthesis and stability of σ32, the positive regulator42. �e absence of a 
functional DnaK protein leads to σ32 overproduction and thus E. coli dnaK mutants exhibit increased expression 
of molecular chaperones even at optimal growth temperatures40. �is is what we observed in case of the C. di�cile 
dnaK mutant. However, the regulation of heat shock response in Gram-positive microorganisms such as B. sub-
tilis is much more complex, as multiple classes of heat shock genes have been identi�ed58. Transcription of class I 
heat-inducible genes encoded by the groE and dnaK operon genes is negatively regulated by the HrcA repressor 
protein in conjunction with the CIRCE element, a palindromic sequence present in the promoter region of these 
operons59,60. In B. subtilis, GroEL is required for the stabilisation of HrcA, which in turn binds to the CIRCE ele-
ment, blocking the transcription of class I heat-inducible genes at normal growth temperatures61. During stress, 
accumulation of unfolded proteins sequesters the activity of GroEL, causing inactivation of HrcA and allowing 
active transcription of the groE and dnaK operons. �us, dnaK inactivation in B. subtilis does not result in an 
abnormal expression of class I heat shock proteins51,62. If the same mode of regulation holds for C. di�cile, then 
dnaK disruption would not be expected to result in the overexpression of the groESL/dnaK operons. �e C. 
botulinum hrcA mutant46 was reported to overexpress all six class I heat shock genes, as would be expected. Our 
observation that expression of the groESL operon was 4-fold higher in the C. di�cile dnaK mutant suggests that 
in this organism, DnaK, rather than GroES/GroEL, might have a role to play in the stabilisation of HrcA and thus 
in the correct regulation of class I heat shock operons. �ere is clearly considerable diversity in the regulation 
networks and physiological roles of dnaK in di�erent organisms, and regardless of the reasons for altered gene 
expression, the temperature-sensitive phenotype of the C. di�cile dnaK mutant suggests that the protein folding 
defect resulting from dnaK disruption is only partially restored by subsequent increases in GroEL/GroES.

In C. di�cile, the �agellum is an accessory virulence factor that promotes adherence to colonic epithelial 
cells at a level 10-fold higher than that of non-�agellated strains37,38,63. In the current work, the C. di�cile dnaK 
mutant strain was non-motile, lacked surface �agella and �iC mRNA expression was 4-fold lower than that in 
the parental ∆erm strain. �ese observations are consistent with those reported for B. subtilis51 and E. coli64 
where dnaK inactivation also resulted in a non-motile phenotype. It could be hypothesised that non-�agellated 
C. di�cile cells would adhere weakly and thus be less virulent. We used a bio�lm assay model to test adherence in 
vitro and showed that the dnaK mutant formed much more bio�lm than the parental ∆erm strain (Fig. 6). �is 
observation initially appears to be at odds with the literature consensus, that cell surface structure-driven motility 
is a vital factor in bio�lm formation43–45,65,66. However, Hennequin et al.67 demonstrated that upon exposure of C. 
di�cile to heat-shock conditions, GroEL was released into the extracytoplasmic space and became cell-surface 
adsorbed. �ey also provided evidence that in C. di�cile, GroEL plays a role in adhesion, and further proposed 
that GroEL was, by default, associated with the membrane because of its chaperone activities67. �e increased 
GroEL expression in the C. di�cile dnaK mutant and this protein’s known role as an adhesin in C. di�cile and also 
in other organisms such as Salmonella typhimurium68, Helicobacter pylori69 and Lactobacillus johnsonii70 suggest 
that increased GroEL expression is at least one of the factors responsible for the increased adherence and bio�lm 
formation by the dnaK mutant.

To summarise, this paper reports for the �rst time the construction and characterisation of a ClosTron dnaK 
mutant in C. di�cile. Our phenotypic characterisation clearly demonstrates that while DnaK is not essential for 
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the viability of the organism, defects in DnaK functionality lead to altered expression of class I heat shock and 
motility genes, perturbations to the cell surface and adhesion and considerable disruption of global cellular phys-
iology and homeostasis.

Materials and Methods
Bacterial strains and growth conditions. Bacterial strains and plasmids used in this work are listed in 
Table 1. C. di�cile strains were anaerobically grown on BHIS agar or broth, as previously described71. For heat-
stress experiments, liquid cultures growing at 37 °C were transferred to a recirculating 41 °C water-bath set at the 
appropriate temperature, as per Jain et al.26. C. di�cile 630 ∆erm72 was employed to allow selection of ClosTron 
mutants, E. coli TOP10 was used as the cloning host and E. coli CA43473 strain was the donor for conjugative 
transfer of plasmids to C. di�cile 630 ∆erm.

ClosTron mutagenesis procedure. C. di�cile 630 ∆erm72 was used and potential intron target sites in 
genes of interest were identi�ed using the intron design tool available at http://clostron.com. Intron fragments 
for target genes were ampli�ed by splicing overlap of extension (SOE) PCR, HindIII and BsrGI digested and then 
ligated into the ClosTron plasmid pMTL007C-E233. �e construct was electroporated into E. coli TOP10 and 
transformants selected on LB agar with 25 µg/ml chloramphenicol and 8 µg/ml Xgal. �e PCR product-derived 
portion of the retargeted plasmid was veri�ed by sequencing with cspfdx-seq-F1 and pMTL007-R1 primers 
(Table 2). Retargeted, sequence-veri�ed ClosTron plasmids for dnaK, groEL and hrcA were retransformed into 
electrocompetent E. coli CA434 cells, and the transformation mixtures were then used to inoculate 5 ml of ster-
ile LB broth supplemented with 12.5 µg/ml chloramphenicol. Following overnight incubation (37 °C, 200 rpm), 
cells from 1 ml of culture were collected by centrifugation at 4 °C, washed in 0.5 ml sterile PBS and resuspended 
in 200 µl of an overnight culture of C. di�cile 630 ∆erm. �e entire conjugation mixture was pipetted onto fresh 
BHIS agar as a discrete drop and plates were anaerobically incubated for 8–10 h at 37 °C to allow conjugal transfer 
of the retargeted pMTL007C-E2 plasmid from E. coli CA434 to C. di�cile 630 ∆erm.

Following incubation, the mating mixture was recovered from the conjugation plates using a sterile loop and 
resuspended in 1 ml sterile PBS. To counter-select against E. coli, 200 µl of this conjugation slurry was spread 
onto fresh BHIS agar supplemented with C. di�cile selective supplement (250 µg/ml of D-cycloserine and 8 µg/
ml of cefoxitin; Oxoid), in addition to 15 µg/ml thiamphenicol to select for the retargeted pMTL007C-E2 plas-
mid. Following anaerobic incubation at 37 °C for 24–72 h, single, isolated, thiamphenicol-resistant colonies were 
re-streaked and grown on the same medium for a further 24 h. Integrants were then isolated by resuspending 
thiamphenicol-resistant colonies in 300 µl sterile PBS and plating (100 µl neat and 100 µl of 10-fold diluted) onto 
BHIS agar supplemented with 10 µg/ml of erythromycin to select for the presence of the spliced erythromycin 
retrotransposition-activated selectable marker (ErmRAM). Following anaerobic incubation at 37 °C for 24–72 h, 
erythromycin-resistant integrant colonies were re-streaked on the same medium for 24 h to ensure purity. A few 
integrant colonies were also replica plated onto BHIS-thiamphenicol (15 µg/ml) agar to screen for plasmid loss 
by the thiamphenicol-sensitive phenotype. Several erythromycin-resistant, thiamphenicol-sensitive clones were 
subsequently used to inoculate 1 ml of sterile BHIS broth, and cultures were incubated anaerobically at 37 °C 
overnight.

Screening PCR. To con�rm the generation of ClosTron mutants, the correct position of the intron in C. 
di�cile mutant genomes was veri�ed by PCR to determine whether the retargeted plasmid was present, whether 
the ClosTron had integrated and, more importantly, whether integration had taken place into the desired target 
gene in the C. di�cile 630 ∆erm genome. Initial screening of mutants involved forward and reverse primers 
for the respective genes (Table 2) designed to yield ~200 bp amplicons from wild-type dnaK, groEL and hrcA 
genes and a larger ~2 kbp amplicon from ClosTron mutants due to intron insertion in these genes. Additional 
PCRs across the intron–exon junctions and to demonstrate a spliced—and therefore integrated—RAM were also 

Strain or Plasmid Description Source/Reference

Strains

  CD630 Wild-type (WT) strain ATCC BAA-1382

  CD630 ∆erm Erm sensitive WT strain Hussein et al.72

  CD630 ∆erm::dnaK 723a Strain with insertional inactivation of dnaK �is work

  E. coli TOP10 Electrocompetent cloning strain Invitrogen

  E. coli CA434 Conjugation donor strain Heap et al.73

Plasmids

pMTL007-CE2 ClosTron mutagenesis vector Heap et al.33

  pMTL007-CE2::dnaK-722|723a score 6.925 ClosTron mutagenesis vector, intron retargeted to dnaK �is work

  pMTL007-CE2::hrcA-285|286s score 7.971 ClosTron mutagenesis vector, intron retargeted to hrcA �is work

  pMTL007-CE2::hrcA-199|200a score 4.19 ClosTron mutagenesis vector, intron retargeted to hrcA �is work

  pMTL007-CE2::GroeL-600|601s score 8.766 ClosTron mutagenesis vector, intron retargeted to groEL �is work

  pMTL007-CE2::groEL-688|689a score 6.18 ClosTron mutagenesis vector, intron retargeted to groEL �is work

Table 1. Strains/Plasmids used in this work.

http://clostron.com
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performed. Screening PCRs used genomic DNA of wild-type C. di�cile 630 ∆erm as a positive control, retargeted 
plasmid DNA to demonstrate a full-length RAM, or genomic DNA from mutant clones; PCR products were 
puri�ed from agarose gels and sequenced to verify that the intron had indeed integrated into the correct target 
site (Supplementary Data S1).

Southern blotting. Southern hybridisations used an intron-speci�c probe for the ermB marker to con�rm 
integration of the group II intron into the desired target gene of mutants. �e Digoxigenin (DIG) High Prime 
DNA Labelling and Detection Starter Kit II (Roche Diagnostics, Hertfordshire, UK) was used as per manu-
facturer instructions. A 900 bp probe for the ermB marker was created using ErmRAM-F and -R primers, and 
genomic DNA template from the dnaK mutant strain; 1 µg of this was labelled with DIG High Prime and a 
20 µl aliquot hybridised to HindIII-digested DNA (500 ng) of C. di�cile strains on a nylon membrane at 42 °C 
overnight. Anti-DIG antibody conjugated to alkaline phosphatase in combination with chemiluminescent sub-
strate for alkaline phosphatase (CSPD) was used to develop the blot with exposure on a sheet of an X-ray �lm 
(Amersham Hyper�lm™ ECL, GE Healthcare, UK) for 5–10 min at room temperature, and subsequent develop-
ment in a Kodak X-OMAT 1000 automated processor.

Motility assays. Motility assays were performed as previously described by Tasteyre et al.37 Brie�y, fresh 
BHIS broth with 0.175% technical agar No III (Oxoid) was placed in sterile glass test-tubes which were then stab 
inoculated with a clean toothpick using an actively growing colony of the respective strain. �e tubes were incu-
bated under strict anaerobic conditions at 37 °C for 48 h, following which growth of the mutant strain was visually 
compared to that of the wild-type. Motility assays were performed in three independent biological replicates.

Electron microscopy. All microscopy-related work was performed at Ulster’s FEI Centre for Advanced 
Bioimaging. For SEM, glass cover slips (10 mm diameter) were cleaned using 10% Decon 90 detergent, rinsed and 
then soaked in a solution of 2% (v/v) 3-aminopropyltriethoxysilane (APES, Sigma Aldrich) and 100% methanol 
for 5 s. Following rinsing with 100% methanol and then deionised water, the cover slips were dried overnight 
at 37 °C. C. di�cile cells from overnight cultures were collected by centrifugation (8000 × g) and washed with 

Strain or Plasmid Description

Intron retargeting*

Cdi-dnaK-722a -IBS AAAAAAGCTTATAATTATCCTTAAATTCCTTCTTAGTGCGCCCAGATAGGGTG

Cdi-dnaK-722a -EBS1d CAGATTGTACAAATGTGGTGATAACAGATAAGTCTTCTTAGCTAACTTACCTTTCTTTGT

Cdi-dnaK-722a -EBS2 TGAACGCAAGTTTCTAATTTCGATTGAATTTCGATAGAGGAAAGTGTCT

Cdi-hrcA-285s -IBS AAAAAAGCTTATAATTATCCTTACTTATCGAACAAGTGCGCCCAGATAGGGTG

Cdi-hrcA-285s -EBS1d CAGATTGTACAAATGTGGTGATAACAGATAAGTCGAACAATGTAACTTACCTTTCTTTGT

Cdi-hrcA-285s -EBS2 TGAACGCAAGTTTCTAATTTCGATTATAAGTCGATAGAGGAAAGTGTCT

Cdi-hrcA-200a -IBS AAAAAAGCTTATAATTATCCTTACTTTTCCAGATGGTGCGCCCAGATAGGGTG

Cdi-hrcA-200a -EBS1d CAGATTGTACAAATGTGGTGATAACAGATAAGTCCAGATGGATAACTTACCTTTCTTTGT

Cdi-hrcA-200a -EBS2 TGAACGCAAGTTTCTAATTTCGGTTAAAAGTCGATAGAGGAAAGTGTCT

Cdi-groEL-601s -IBS AAAAAAGCTTATAATTATCCTTATTTGTCTCTGCAGTGCGCCCAGATAGGGTG

Cdi-groEL-601s -EBS1d CAGATTGTACAAATGTGGTGATAACAGATAAGTCTCTGCATATAACTTACCTTTCTTTGT

Cdi-groEL-601s -EBS2 TGAACGCAAGTTTCTAATTTCGATTACAAATCGATAGAGGAAAGTGTCT

Cdi-groEL-689a -IBS AAAAAAGCTTATAATTATCCTTACTGGTCATAATTGTGCGCCCAGATAGGGTG

Cdi-groEL-689a -EBS1d CAGATTGTACAAATGTGGTGATAACAGATAAGTCATAATTCTTAACTTACCTTTCTTTGT

Cdi-groEL-689a -EBS2 TGAACGCAAGTTTCTAATTTCGGTTACCAGTCGATAGAGGAAAGTGTCT

EBS universal CGAAATTAGAAACTTGCGTTCAGTAAAC

ClosTron sequencing

cspfdx-seq-F1 GATGTAGATAGGATAATAGAATCCATAGAAAATATAGG

pMTL007-R1 AGGGTATCCCCAGTTAGTGTTAAGTCTTGG

Screening of clones

Cdi-dnaK-F CTACAGCTGGTAACAATAGATTAGGT

Cdi-dnaK-R CTGTAGCAGTTATGAAAGGTAAGTT

Cdi-groEL-F AGTCTCAAACTATGAATACTGAATTAGATG

Cdi-groEL-R GCTTTTTACCTTGTTGAACTATTTGT

Cdi-hrcA-F TAGGGTATTTAATTCAGCCTCATACTTC

Cdi-hrcA-R TGCTACAGTTGTATAGTTTGTTAGTTGC

ErmRAM-F ACGCGTTATATTGATAAAAATAATAATAGTGGG

ErmRAM-R ACGCGTGCGACTCATAGAATTATTTCCTCCCG

Table 2. Oligonucleotides used in this work. *Introns were inserted a�er the indicated number of bases in the 
sense (s) or the antisense (a) orientation from the start of the open reading frame (ORF) of the target gene. Cdi, 
C. di�cile; IBS, intron-binding sites; EBS, exon-binding sites; ErmRAM, erythromycin retrotransposition-
activated selectable marker.



www.nature.com/scientificreports/

1 0SCIENTIFIC REPORTS | 7: 17522  | DOI:10.1038/s41598-017-17583-9

ice-cold PBS, and a drop of cell suspension was applied to the APES-coated coverslip and incubated at room 
temperature for 2 h. �e liquid was removed and a drop of paraformaldehyde �xative (4% v/v in PBS) was added 
for 2 h. �e �xative was removed and the cover slips were gently rinsed with PBS, followed by critical point drying 
(Polaron E5000 critical point drier) using acetone as an intermediary �uid. �e cover slips were then attached to 
adhesive carbon pads on aluminium SEM stubs and sputter coated with an Au/Pd target in a Polaron E5100 sput-
ter coater. Cells were visualised in an FEI (FEI, Eindhoven, Netherlands) Quanta™ ESEM under high vacuum at 
30 kV using spot size 2 in secondary electron mode using an Everhart–�ornley detector. Images were acquired 
using the integrated imaging so�ware.

For TEM, a clean glass microscope slide was dipped into a 0.5% (w/v in chloroform) formvar solution for 30 s. 
Following drying, the �lm was cut at the edges of the glass and �oated on deionised water. A 200-mesh thin-bar 
copper grid (Agar scienti�c Ltd., UK) was placed on the �oating formvar using forceps, and the �lm/grid was 
removed from the water using a Whatman No. 1 paper disc that was then completely dried at room tempera-
ture prior to use. Overnight cultures of C. di�cile were harvested by centrifugation (3000 × g) and washed with 
ice-cold PBS. Formvar-coated grids were �oated on a 50 µl drop of PBS-washed C. di�cile cell suspension for 
2 min, following which the excess cell suspension was wicked o� the grids. �e cells were then stained by �oat-
ing the grid on a drop of 0.25% (w/v) phosphotungstic acid for 1 min prior to visualisation in an FEI Tecnai 12 
transmission electron microscope (FEI, Eindhoven, Netherlands) using a lanthanum hexaboride (LaB6) source. 
�e instrument was operated at 120 kV using spot size 1 and images acquired with a Megaview III camera and 
analySIS® image capture so�ware (So� Imaging Systems GmbH, Műnster, Germany).

RNA isolation and qRT-PCR. RNA was extracted from late-log phase cultures, quality checked by aga-
rose gel electrophoresis and ‘minus RT’-PCR with tpi primers, reverse transcribed using gene-speci�c prim-
ers (Table 3) and gene expression analysis was then performed as previously described26–28. The Relative 
Quanti�cation (RelQuant) so�ware (Roche Diagnostics) was used to assess gene expression levels, as per man-
ufacturer instructions, and target gene expression was reported relative to the expression of the triose phosphate 
isomerase gene tpi (CD3172) in C. di�cile 630 ∆erm.

Biofilm Assays. Bio�lm formation assays were performed using a modi�ed version of the method of O’Toole 
and Kolter44. Working anaerobically, overnight cultures of C. di�cile 630∆erm and of the dnaK mutant strain 
were diluted 100–f old into sterile BHIS broth, as well as into BHIS broths supplemented with 1%, 2% and 5% of 
1 M �lter-sterilised glucose solution (�nal concentrations of 0.38%, 0.56%, and 0.9%, respectively). Subsequently, 
100 µl aliquots of each diluted culture was added to wells of a 96-well �at-bottom polystyrene microtitre plate 
(Orange Scienti�c, Alpha Technologies Ltd., UK) in 6 replicates. Replicates of uninoculated BHIS broth were 
included as the negative controls and to prevent evaporation, microtitre plates were incubated anaerobically at 
37 °C with lids in place in a humidi�ed plastic lunchbox–type container. Bio�lm biomass was quanti�ed at 24 h 
intervals for up to 3 days. Outside the cabinet, planktonic cells were washed from the wells using sterile deionised 
water and the plates air-dried for 30 min at room temperature. A 125 µl aliquot of 0.1% crystal violet solution 
(�lter sterilised, in deionised water) was added to each well and allowed to stain the attached bacterial biomass 
for 15 min. �e excess crystal violet was removed and the wells washed twice with deionised water, following 
which the plates were allowed to air dry at room temperature overnight. �e next day, 200 µl of 95% ethanol was 
added to each well and the dye allowed to solubilise for 15 min. �e crystal violet/ethanol solution in each well 
was mixed brie�y using gentle pipetting and a 125 µl aliquot transferred to a separate 96-well microtitre plate to 
allow measurement of absorbance at 570 nm (A570) using a FLUOstar Omega microplate reader (BMG LabTech, 
UK). Background due to nonspeci�c staining by crystal violet was accounted for by subtracting the average values 
obtained from the wells containing the uninoculated negative controls.

Gene Locus Description PPrimer Sequence (5′ → 3′) Binding position Product size (bp)
Annealing 
temperature (°C) Reference

tpi CD3172
triosephosphate 
isomerase

tpi-Ftpi-R
GCAGGAAACTGGAAAATGCATAA 
CAGATTGGCTCATATGCAACAAC

18–505 488 55 Lemèe et al.74

groES CD0193 10 kDa chaperone groES-FgroES-R
TACCAGGAGCAGCTAAAGAGTAT 
CTCCCACTGTCAATTCC

80–187 108 55 �is study

groEL CD0194
60 kDa 
chaperonin

groEL-FgroEL-R
ATACTGAATTAGATGCTGTTGAA 
GTCTGAAGTAGTTTGCTCTACTTG

544–1069 526 53 Lemèe et al.75

�iC CD0239 �agellin subunit �iC-F�iC-R
GGGGTTAGAATCAAGAGAGC 
GTTTTAGCTGCATCTGTTCC

97–605 509 52 �is study

dnaJ CD2460
Chaperone 
protein

dnaJ-FdnaJ-R
TGGAAGAGCAAGAAGAAGAG 
TCAATCACTTCTCCAGTTCC

339–623 285 54 �is study

dnaK CD2461 chaperone protein dnaK-FdnaK-R
TGTTAGAAGGTGGAGAAGCA 
GTTGCTTGTCTTTGAGCATC

53–389 337 56 �is study

grpE CD2462 heat shock protein grpE-FgrpE-R
AAGCCGAATATGCAAACTAC 
GATTTGCTTCAACTCCATCT

242–541 300 54 �is study

hrcA CD2463
heat-inducible 
transcription 
repressor

hrcA-FhrcA-R
ATGAGTAAAAGCGAATTGGA 
TTGTCATTCATAGCAACCAA

238–440 202 55 �is study

Table 3. PCR primers.
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Equipment and settings. PCR gels were imaged under UV light in an AlphaImager™ 2200 (Alpha 
Innotech, CA, US) equipped with a 1.4 megapixel camera with 12 bit A/D, using default AlphaView Image 
Analysis So�ware settings, and exported in jpg format. �e jpg images were imported into the GNU Image 
Manipulation Program (GiMP) 2.8 for generation of Fig. 1. Growth curve graphs shown in Fig. 2 were pro-
duced using MS Excel, individually exported in PDF and imported into GiMP 2.8 for construction and �nal 
labelling. Motility agar tubes were photographed using a Nikon D3 camera, 60 mm Nikkor macro lens, shutter 
speed 1/200 sec, aperture f/6.3, ISO 640, lit with studio �ash and the resultant jpg images imported into GiMP 
2.8 for construction and labelling of Fig. 3. Electron microscope images (ti� format) were imported into GiMP 
2.8 for construction and labelling of Fig. 4. Gene expression data was used to construct a bar chart in MS Excel, 
prior to chart export in PDF; this was imported into GiMP 2.8 for �nal labelling of Fig. 5. Bio�lm assay data was 
used to construct bar charts in MS Excel. �e charts were individually exported in PDF and imported into GiMP 
for construction of Fig. 6. No alterations to brightness or contrast were made to any of the images during �gure 
construction.

Data availability. All data generated or analysed during this study are included in this published article (and 
in Supplementary Information �les).
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