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Inactivation of the Integrin [36 Subunit Gene Reveals a Role of 

Epithelial Integrins in Regulating Inflammation in the 

Lungs and Skin 

Xiao-Zhu Huang, *§ll Jian Feng Wu,*ll Darrell Cass, ~ David J. Erle,*ll David Corry,*ll Stephen G. Young, *§ll 
Robert V. Farese, Jr., *~l[ and Dean Sheppard *~FI 

*Lung Biology Center, *J. David Gladstone Institute for Cardiovascular Research, §Cardiovascular Research Institute; and the 
Departments of I/Medicine and tSurgery, University of California, San Francisco, California 94143 

Abstract. The integrin av[36 is only expressed in epi- 

thelial cells. In healthy adult epithelia, this receptor is 

barely detectable, but expression is rapidly induced fol- 

lowing epithelial injury. Mice homozygous for a null 

mutation in the gene encoding the 1~6 subunit had juve- 
nile baldness associated with infiltration of macro- 

phages into the skin, and accumulated activated lym- 

phocytes around conducting airways in the lungs. 136 -/- 

mice also demonstrated airway hyperresponsiveness to 

acetylcholine, a hallmark feature of asthma. These re- 

suits suggest that the epithelial integrin av136 partici- 

pates in the modulation of epithelial inflammation. Ge- 

netic or acquired alterations in this integrin could thus 
contribute to the development of inflammatory dis- 

eases of epithelial organs, such as the lungs and skin. 

I 
NTEGRINS are heterodimeric receptors for extracetlular 
matrix and cell surface ligands that have been sug- 
gested to play important roles in development, in- 

flammation, wound healing, and tumorigenesis (Hynes, 
1987, 1992; Ruoslahti and Pierschbacher, 1987). In vitro, 
integrins have been shown to contribute to cell adhesion, 
spreading and migration, and to more complex processes 
including cell proliferation, apoptosis, and the regulation 
of gene expression (Hynes, 1992; Juliano and Haskill, 
1993). In vivo, the biological importance of integrins has 
been most clearly demonstrated for control of leukocyte 
migration and platelet aggregation. At least some integrins 
play critical roles in development, as demonstrated by the 
findings that the inactivation of the genes encoding two 
different integrin ~ subunits, a4 (Yang et al., 1995) and ~5 
(Yang et al., 1993), are embryonic lethal mutations. How- 
ever, although epithelial cells express several different in- 
tegrins, the roles epithelial integrins play in health and dis- 
ease remain largely unknown. 

The integrin [36 subunit is expressed exclusively in epi- 
thelial cells, and only in a single integrin heterodimer, 
av[36, a receptor for the extracellular matrix proteins fi- 
bronectin (Busk et al., 1992; Weinacker et al., 1994) and 
tenascin (Prieto et al., 1993). av[36 is highly expressed in 
the lung, skin, and kidney during organogenesis (Breuss et 
al., 1995). In epithelia of healthy adults, this receptor is ex- 
pressed at very low levels, except in the endometrium, 
where av[36 is highly expressed during the secretory phase 
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of the menstrual cycle, and in the lung and kidney, where 
cw136 is often expressed in a patchy distribution associated 
with subclinical inflammation (Breuss et al., 1995). av[36 is 
highly expressed in response to injury or inflammation, 
and in malignant epithelial neoplasms (Breuss et al., 1995). 
For example, in experimental skin wounds, av136 is highly 
expressed in the keratinocytes at the wound edge within a 
few days of wounding, where it remains expressed until 
soon after wound closure is complete. In the respiratory 
epithelium, av136 mRNA expression is induced within 5 h 
of acute injury, and c~v136 protein can be detected in the 
epithelium of patients with a variety of inflammatory lung 
diseases (Breuss et al., 1995; Weinacker et al., 1995). 
These findings suggest a role for this receptor in the re- 
sponse of epithelia to injury. 

To examine the role(s) that cxv[36 plays in vivo, we have 
generated mice lacking 136 expression using homologous 
recombination in embryonic stem cells. These mice de- 
velop and reproduce normally, but develop functionally 
significant infiltration of their skin and lungs with inflam- 
matory cells. In the conducting airways of the lung, these 
morphologic changes are associated with enhanced bron- 
choconstrictor sensitivity to acetylcholine, the central 
physiologic abnormality in human asthma. 

Materials and Methods 

Inactivation of the f16 Subunit Gene in Mouse 
Embryonic Stem Cells 

We initially amplified a 240-bp fragment of mouse [36 cDNA by poly- 
merase chain reaction (PCR) with degenerate mixtures of oligonucle- 

otides based on the human and guinea pig 136 sequences (Sheppard et al., 
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1990). We then used the resultant fragment as a probe to screen a genomic 

mouse 129 strain library, and obtained a 15-kb clone containing two exons 
and portions of three large introns. The most 5' exon extended to within 

50 amino acids of the predicted 5' end of the mature protein, predicted on 
the basis of the human sequence. We used a 7-kb EcoRI fragment of this 

clone to construct a replacement vector that contained a neomycin resis- 

tance gene inserted into the second of the two exons in our clone, and a 
thymidine kinase gene at the 5' end (see Fig. 1). We introduced this vector 

into 129 strain mouse embryonic stem (ES) I cells and identified targeted 
clones by Southern blotting with two different probes and by PCR. The 

ES cell line used, RF8, was derived from agouti 129/terSV mice (a gift 

from Dennis Huszar, GenPharm International, Mountain View, CA) and 
cultured on SNL76/7 mitotically inactive feeder cells (a gift from Allan 

Bradley, Baylor College of Medicine, Houston, TX). Only targeted clones 

resulting from a single integration event (as judged by Southern blotting 

using a neo probe) were used for blastocyst injection. Targeted clones were 
injected into C57B1/6 blastocysts, and one of these clones produced two 

90% chimeric male offspring that transmitted the inactivated gene 

through the germline, as determined by both Southern blotting and PCR. 
Heterozygous offspring of crosses between these high percentage chimeras 

and pure C57B1/6 females were crossed to produce mice that were ho- 

mozygous for the null mutation, and homozygous wild-type litter mates 
that served as controls in subsequent experiments. The 240-bp fragment 

used for library screening was originally amplified by PCR with 13 subunit 

primers B1AF (5'-CCIA(G)TIGAC(T)C(AT)TTAC(T)T(A)T(A)IC- 

(T)TIATGGA -3') and B2AR (5 '-GGICTT(C)CCACCIA(G)AICTA- 
(G)CGG(T)TAITACG-3'). The resultant fragment was reamplified with 

degenerate 136 primers 1363F (5'-GA(TC)GA(TC)CTIAA(CT)ACIAT- 
(CAT)AA(GA)GA-3') and 1364R (5'-TC(GA)TI'(GA)AA(CT)CT(CT)- 

TCIGC(GA)TC(GA)Tr-3')  designed based on human and guinea pig 136 
sequences (Sheppard et al., 1990). 

Detection of Recombinant Clones by PCR and 
Southern Blot 

RF8 embryonic stem cells were grown in embryonic stem cell complete 
media. The targeting vector was linearized at a unique SacII site and trans- 

fected into RF8 ES cells by electroporation. Selection medium containing 
the neomycin analogue G418 (0.15 mg/ml) and FIAU (0.2 p.m) was used to 

obtain resistant clones. Individual colonies were screened by PCR and South- 
ern blotting. PCR was performed with a forward primer from within the 

introduced neomycin resistance gene (neoF-5 'CAGTAAATCGTTGTC- 

AACAG)  and a reverse primer from the mouse 136 gene 3' of the target- 
ing vector (Km136R-5'GTGGATCTGCTAAGTI'AACC).  For Southern 

blotting, genomic DNA digested with BamHI was blotted with two differ- 

ent probes, one specific for mouse 136 and the other for the inserted neo- 

mycin resistance gene, and only clones with a single integration were used 
for blastocyst injection. 

Generation of Germline Chimeras 

Chimeras were generated as described by Bradley (1987). ES cells were 

injected into C57B1/6 blastocysts and the injected embryos were trans- 

ferred into the uteri of pseudopregnant recipients. Chimeras identified by 

the presence of an agouti coat color were test-mated with C57Bl/6J fe- 
males. Offspring were tested for the targeted 136 gene by PCR and South- 
ern blotting. 

Keratinocyte Culture and Immunoprecipitation 

Mouse skin was removed and placed in 0.1% protease (Sigma Chem. Co., 

St. Louis, MO) at 4°C overnight. The following day the skin was trans- 
ferred to 0.05% trypsin and the epithelial layer was scraped off with a sur- 

gical blade. After 30 min incubation in trypsin, cells were disaggregated by 
pipetting, and passed through a 150-~m nylon mesh to remove residual 
hair. The cells were suspended in keratinocyte growth medium (Clonetics, 
San Diego, CA), plated onto dishes coated with collagen, and grown to 
confluence. After overnight labeling with [35S]methionine, cells were lysed 

in immunoprecipitation buffer (100 mM Tris-HC1, pH 7.5, 0.1% SDS, 1% 
Triton X-100, 0.1% NP-40, 300 mM NaC1) and immunoprecipitated with 

Ab 206 which was raised against the cytoplasmic domain of human 136. 

1. Abbreviations used in this paper: ES, embryonic stem; IL-4, interleukin-4; 
RL, pulmonary resistance. 

Samples were analyzed by SDS-PAGE on 7.5% acrylamide gels and ex- 
posed to film at -80°C. 

Reverse Transcriptase-PCR 

Total RNA was harvested from lung and kidney tissue using Trizol re- 

agent (BRL, Grand Island, NY) and cDNA was synthesized using Su- 
perscript reverse transcriptase (BRL). A 360-bp fragment of murine 136 

flanking the neomycin resistance gene insertion site using primers m1366F 

(5' C A G T r C T G A C A T T G T T C A G A  3') and m1365R (5' TGTTAATGG-  
C A A A A T G T G C T  3'). 

Collection of Lung Cells and Flow Cytometry 

Mouse lungs were perfused with PBS via the main pulmonary artery to re- 
move intravascular cells. The lungs were removed and minced into fine 

fragments that were gently dispersed into RPMI medium (GIBCO BRL) 

using a syringe plunger and passed through a 0.75-tLm nylon mesh filter. 

Cells from minced mouse lungs were stained with phycoerythrin-, fluores- 
cein isothiocyanate-, or biotin-conjugated antibodies against CD4, CD8, 

B220, and CD25 (Caltag, South San Francisco, CA) and analyzed for surface 

expression using a FACSCAN flow cytometer (Becton Dickinson, Moun- 
tain View, CA). 

Histology and Immunohistochemistry 

Freshly isolated organs were embedded in OCT and quick frozen in liquid 

nitrogen. Serial 5-~m sections were prepared and fixed in Histochoice 

(Fisher Scientific, Pittsburgh, PA) for hematoxylin and eosin staining. For 
immunohistochemistry, frozen sections were fixed in cold acetone for 5-10 

rain and air-dried. Sections were blocked for endogenous peroxidase and 

biotin activities with Peroxoblock solution (Zymed Labs, S. San Francisco, 
CA) and Avidin/Biotin Blocking Kit (Vector Labs, Inc., Burlingame, CA) 

at room temperature. After rinsing, sections were blocked with 0.25% 
casein/0.025% thimerosal in PBS for 15 min and then incubated overnight 

at 4°C in biotin-labeled primary antibodies against CD3 (T cells), B220 (B 

cells), and F4/80 (macrophages) (all from Caltag). After washing, sections 

were incubated in ABC avidin/peroxidase reagent (Vector) for 1 h at 

room temperature. Chromagen was developed using the DAB Plus Kit 
(Zymed). Finally, sections were dehydrated and mounted with permount 
onto clean slides. 

Measurement of Airway Resistance 

Mice were anesthetized with pentobarbital (50 mg/kg, i.p.), the chest was 
opened, and a tracheotomy tube was inserted. The mice were paralyzed 

with pancuronium bromide (0.1 mg/kg), and then ventilated with 100% 
oxygen by a Harvard small animal ventilator at a rate of 150 breaths/ 
minute and a tidal volume of 9 I~l/gm. In pilot experiments, we determined 

that these settings result in near normal values of arterial (left ventricular) 

pH and pCO 2. A heparinized, indwelling catheter was placed in the tail 
vein, and the animal was placed in an airtight plexiglass plethysmograph, 

with the venous catheter threaded through a small hole in the plethysmo- 
graph. Airway pressure and plethysmograph pressure were continuously 

measured by differential pressure transducers and recorded on a Hewlett- 

Packard chart recorder. Pulmonary resistance (RL), tidal volume, flow, 
and dynamic lung compliance were continuously calculated by a Buxco 

Pulmonary Mechanics analyzer. RL was calculated on each inspired 
breath as the ratio of driving pressure to airflow at 70% of inspired tidal 

volume. Increasing concentrations of acetylcholine were administered 
through the tail vein catheter at 2-min intervals, and peak pulmonary re- 

sistance in response to each concentration was determined. 

Elispot Assay 

Elispot assay were performed as described (Corry et ak, 1996). This assay 

is a modification of a sandwich ELISA that allows the identification of in- 
dividual cells that are secreting specific antigens. Briefly, wells of 96-well 
microtiter plates (Dynatech, Chantilly, VA) were coated with either mAb 

against IFN-7 (R46A2) or IL-4 (BVD4-1Dll.2) at 4°C overnight and 
blocked with 10% FBS. Pooled cells from minced lungs were plated and 
incubated at 37°C overnight. Plates were incubated for I h with biotiny- 
luted secondary antibodies XMG-1.2 to IFN-7 and BVD6-24G.2 to IL-4, 
and then with streptavidin-conjugated alkaline phosphatase (Jackson Im- 
munoResearch, West Grove, PA) for another hour. Between incubations, 
plates were washed with phosphate buffered saline supplemented with 
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0.05% Tween-20. Final color development was obtained by incubating 
plates with 5-bromo-4-chloro-3-indolyl phosphate (Sigma) in 2-amino-2- 
methyl-l-propanol buffer (Sigma) suspended in 0.6% agarose low-melt 
gel. After solidification of the agarose, individual blue spots were counted 
under an inverted microscope. 

Results 

Mice Homozygous for  a Null  Mutation in the ~6 
Subunit Develop Juvenile Baldness 

To assess whether /36 - / -  mice produced [36 m R N A ,  we 

amplified c D N A  obtained from the lung and kidney of 

/36 - / -  and/36 +/+ mice by PCR using oligonucleotide prim- 

ers flanking the exon disrupted by our targeting vector 

(Fig. 1). The expected 360-bp fragment could be amplified 

from the c D N A  of/36 +/+ mice, but no amplification prod- 

uct was detectable from the c D N A  of/36 -/-  mice (Fig. 2 A). 

To confirm that/36 - / -  mice were not capable of  making [36 

protein, we at tempted to immunoprecipitate 136 from met- 

abolically labeled lysates of cultured keratinocytes with an 

antibody raised against a peptide based on the cytoplasmic 

domain sequence of  human 136 (Ab 206 [Busk et al., 

1992]). The anti-J36 antibody immunoprecipitated two 

bands of the appropriate apparent molecular masses to be 

av  and 136, f rom/36 +/+ keratinocytes, but no bands were 

immunoprecipitated from/36 - / -  keratinocytes (Fig. 2 B). 

Mice homozygous for the null mutation were born at ap- 

proximately the expected Mendelian frequency from het- 

erozygous intercrosses (30% + /+ ,  48% + / - ,  and 22% - / -  

of 234 offspring analyzed), demonstrating that this integrin 

subunit, in contrast to a4 (Yang et al., 1995) and a5 (Yang 

et al., 1993), is not absolutely required for embryonic de- 

velopment. However,  /36 -/-  mice were not completely 

normal. All /36 -/- mice failed to develop hair normally 

over the tops of their heads, the backs of their necks, and 

the inner surface of their thighs (Fig. 3 A). These abnor- 

malities were visually apparent  by postnatal day 5, and 

persisted through day 20-30. After  this time, hair growth 

resumed over the head and neck but remained sparse over 

the inner surface of the thighs. No gross abnormalities in 

Figure 2. (A) RT-PCR analysis of mRNA from/36 +/+ and/36 -/- 
mice. Total RNA was extracted from mouse lung and kidney and 
transcribed to complementary DNA (cDNA). A 360-bp amplifi- 
cation fragment was detectable in tissues of/36 +/+ mice but not of 
/36 -/- mice with primers specific for wild-type 136 cDNA. (B) Im- 
munoprecipitation of av136. Primary cultures of keratinocytes 
from/36 +/+ and/36 -/- were labeled overnight with [3SS]methio- 
nine and cell lysates were immunoprecipitated with Ab 206, 
raised against the human [36 cytoplasmic domain. Immunoprecip- 
itated proteins were analyzed by 7.5% SDS-PAGE under nonre- 
ducing conditions. The positions of molecular size markers (in 
kD) are shown to the left. 

any other organs have been apparent  in mice followed for 

up to 6 mo. Furthermore, /36 - / -  mice gained weight nor- 

mally and were fertile. 

The Dermis in Bald Areas of  f16 - / -  Mice Is Infiltrated 
with Macrophages 

The hair loss seen in/36 - / -  mice was associated with mor- 

phologic abnormalities in the dermis of affected areas. In 

comparison to/36 +/+ mice, 136 - / -  mice had fewer hair folli- 

cles, and numerous degenerating hair follicles surrounded 

by foci of mononuclear  cells (Fig. 3 C). The mononuclear  

cells resembled tissue macrophages and stained with the 

monocyte/macrophage marker  F4/80. Furthermore,  stain- 

ing with F4/80 demonstrated increased numbers of mono-  

cytes/macrophages throughout  the dermis of  the bald ar- 

eas in /36 - / -  mice (Fig. 3 E). Staining with antibodies 

specific for mouse T cells and B cells did not demonstrate 

Figure 1. (A) Replacement 
vector for inactivation of the 
136 gene in mouse embryonic 
stem (ES) cells. Top panel 
shows the structure of a 15-kb 
fragment of the mouse 136 gene 
isolated from a 129 strain ge- 
nomic library. The two exons 
in this fragment are shown as 
solid boxes. Middle panel 
shows the targeting plasmid 
constructed in pBluescript 
(Stratagene, La Jolla, CA) and 
linearized at a unique SacII 

site. A neomycin-resistance gene under the control of the RNA polymerase II promoter (neo) and herpes simplex virus thymidine ki- 
nase (HSV-tk) gene (gifts from Kirk Thomas, University of Utah, Salt Lake City, UT) are shown as shaded boxes. Bottom panel shows 
the expected structure of the [36 gene after homologous recombination. The arrowheads represent PCR primers used to identify homol- 
ogous recombination events in ES cell colonies. The forward primer is located in the neo gene and the reverse primer is 3' of the target- 
ing vector. These primers generated a 1.2-kb fragment in targeted clones. The locations of the two probes used for Southern blotting are 
shown as lines. Hybridization of either probe with genomic DNA digested with BamHI yielded a new 6.8-kb band in targeted clones. 
(B) Southern blot analysis of wild-type (first two lanes) and targeted (last two lanes) ES clones digested with BamHI and hybridized with 
the external probe (probe 2). 
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Figure 3. (A) Photograph of a f16 -/- mouse (left) and a t36 +/+ littermate (right) at 10 d of age. In contrast to the/36 +/+ mouse, the 136 -j- 
mouse demonstrates the typical pattern of juvenile baldness over the head and neck. 136 -/- mice also lack hair over the inside of their 
thighs. B and C are low power photomicrographs of sections of frozen inner thigh skin from a/36 +/+ (B) and a/36 -/- mouse (C) stained 
with hematoxylin and eosin (H and E), and demonstrate loss of hair follicles and infiltration of the dermis in the/36 -/- animal. D and E 
are higher power photomicrographs of frozen sections of skin from the same areas of the same 136 +/+ (D) or 136 -/- mouse (E) stained 
with the monocyte/macrophage marker F4180, and lightly counterstained with H and E. Hair follicles are marked with arrows. Infiltrat- 
ing macrophages are marked with arrowheads. Note the marked increase in F4/80 positive cells in the/36 -/- mouse. 

any increase in lymphocytes in the skin lesions (data not 

shown). No morphologic abnormalities were seen in skin 

taken from unaffected areas. 

Expression of  av136 is induced within a few days of cuta- 

neous wounding, is expressed only in the keratinocytes at 

the wound edge, and remains expressed until wounds are 

completely closed (Breuss et al., 1995). The two known 

ligands for etv136, fibronectin (Busk et al., 1992; Weinacker 

et al., 1994), and tenascin (Prieto et al., 1993), are compo- 

nents of the provisional matrix across which keratinocytes 

must migrate during wound repair. Therefore,  we hypoth- 

esized that this integrin might be critical for normal cuta- 

neous wound healing. However,  when either incisional or 

excisional wounds (2 or 4 mm in diameter punch biopsy 

wounds) were made in the backs or necks of/36 - t -  or/36 +I+ 

mice, the rate of  healing and the morphology of healing 

wounds was similar in both groups for mice examined 2, 4, 6, 

or 12 d after wounding. In both groups, all incisional 

wounds were completely healed by day 6, and all exci- 

sional wounds were healed by day 12. These data indicate 

that etv136 is not required for normal wound healing. This 

result could be explained by the expression of  other kera- 

tinocyte fibronectin and tenascin receptors. For  example, 

the fibronectin receptor, a5131, was found to be increased 

at the wound edge in both 136 - / -  and ~6 ÷/+ mice, and the 

tenascin receptor, et9131 (Palmer et al., 1993; Yokosaki  et 

al., 1994), was constitutively expressed on keratinocytes 

from both types of  mice (data not shown). 

f16 -/- Mice Demonstrate Infiltration of the Conducting 
Airways of the Lung by Activated Lymphocytes 

The other significant pathologic finding observed in 136 - / -  

mice was in the lungs. Lung morphology was normal in 

mice examined up to 13 d after birth. However,  beginning 

at ~21 d,/36 - t -  mice developed infiltration of the walls of 

the conducting airways with mononuclear  cells (Fig. 4). 

These cells morphologically resembled lymphocytes. In 

contrast to the skin lesions, the lung lesions did not contain 
increased numbers of F4/80 + cells, but did contain a mix- 

ture of cells that stained with the B cell marker, B220, or 

the T cell marker  CD3 (data not shown). This pathology 

The Journal of Cell Biology, Volume 133, 1996 924 



Figure 4. Lung histology. Low 
power photomicrograph of H 
and E stained frozen section of 
a conducting airway from a 
/36 +/+ (A) and a /36 -/- mouse 
(B) demonstrate accumula- 
tion of mononuclear cells (ar- 
rowheads) diffusely around a 
large conducting airway in the 
/36 -/- mouse. This pathology 
was seen in all 11 /36 -/- mice 
examined, but in none of 16 
/36 +/- or /36 +/+ mice. (C) 
Higher power photomicro- 
graph of the same airway 
shown in B. 

was seen in all 11/36 -/- mice analyzed after 21 d of age. No 

similar lesions were observed in 16/36 +/+ or/36 +/- mice. 

Flow cytometry of cells obtained from minced lungs dem- 

onstrated approximately threefold increases in the per- 

centages of B cells and CD4+ and CD8+ T cells in/36 -/- 

mice. These mice also demonstrated a marked increase in 

the number of CD4+ T cells that expressed the activation 

marker CD25 (Fig. 5). These abnormalities in lung mor- 

phology and cellularity were not likely to be due to lung 

infection, since all animals were housed together in a bar- 

rier facility. Sentinel mice were examined weekly and 

found to be free of specific pathogenic viruses. 

86 -/- Mice Demonstrate Increased 
Airway Responsiveness 

Despite the progressive abnormalities in lung morphology 

noted in the /36 -/- mice, these mice appeared healthy, 

without noticeable respiratory distress. However, because 

activated T cells have been implicated in the development 

of asthma (Gavett et al., 1994), we sought to determine 

whether these animals would demonstrate one of the hall- 

mark features of asthma, airway hyperresponsiveness to 

bronchoconstrictor agents such as acetylcholine (Boushey 

et al., 1980). Groups of/36 -/- and/36 +/+ mice were anes- 

thetized, tracheostomized, and ventilated in a whole body 

plethysmograph, and pulmonary resistance (RL) was mea- 

sured at baseline and after intravenous administration of 

increasing concentrations of acetylcholine. Baseline RL 

was the same in both groups of mice (Fig. 6). The/36 +/+ 

mice developed only small increases in RL, even after ad- 

ministration of the highest concentrations of acetylcholine 

used, whereas the /36 -/- mice demonstrated markedly 

larger responses to each of the two highest concentrations 

(P < 0.001). 

Cells Obtained from the Lungs of  86 -I- Mice 
Express the Th2-associated Cytokine IL-4, but Not 
the Th rassociated Cytokine lnterferon-~ 

In the most widely studied experimental model of asthma, 

antigen-induced airway hyperresponsiveness, increased 
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Figure 5. Lymphocyte subsets in mouse lungs. Lung cells were 
obtained by mincing lungs pooled from groups of/36 +/+ (open 
bars) and/36 -/ mice (shaded bars). Cells were stained with anti- 
bodies specific for mouse B cells (B220), or T cell markers CD4 
or CD8, and analyzed by flow cytometry. To identify activated 
CD4+ T cells, cells were simultaneously stained with antibodies 
to CD4 and to the lymphocyte activation antigen CD25. 

airway responses to acetylcholine are associated with the 

presence of T cells in the airway wall that express the so- 

called Th2 (T helper 2) phenotype,  characterized by ex- 

pression of the cytokines interleukin-4 (IL-4), IL-5, and 

IL-10. In contrast, Thl  ceils, thought to be important for 

cytotoxic T cell responses, express the cytokine Inter- 

feron--/(IFN--/),  but not IL-4, IL-5, or IL-10. Recent  data 

using antibodies against IL-4 and IL-4 knockout  mice, sug- 

gest that IL-4, in particular, is crucial to the development 
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of airway hyperresponsiveness in this model (Brusselle et 

al., 1995; Corry et al., 1996). To determine whether the 

lymphocytes in the lungs of/76 - / -  mice were expressing ei- 

ther Th l  or Th2 cytokines, we performed Elispot assays to 

detect IL-4 or IFN-~/ secretion from cells obtained from 

minced lungs of 136 - / -  or/36 +/+ mice. These assays, which 

allow us to count individual lung cells secreting each cyto- 

kine, demonstrated a fourfold increase in the percentage 

of lung cells that secrete IL-4 with no increase in the per- 

centage of cells that secrete IFN-~/ in /36 - / -  mice (Fig. 7). 

Discussion 

Multiple members of the integrin family are expressed in 

vivo in epithelial cells, including a2~31, et3131, a9131, et6134, 

etv~35, and etv136. Of these, a6134 is a critical component  of 

the hemidesmosomes that basal epithelial cells use for at- 

tachment to the underlying basement membrane,  but the 

functions each of the other integrins play in epithelial tis- 

sues remain largely unknown, o~vl36 is the only known 

member  of the integrin family that is restricted in its distri- 

bution to epithelial cells. However,  unlike most epithelial 

integrins, av136 is not constitutively expressed in healthy 

epithelia, but is rapidly and transiently induced in re- 

sponse to local injury or inflammation. The principal 

ligands identified for oLv136, fibronectin and tenascin, are 

also absent from healthy epithelia, but present in most in- 

jured and inflamed epithelia. Based on these observations, 

we and others hypothesized that otv~6 might play some 

critical role in the repair of injured epithelial tissues. Be- 

cause of the known in vitro roles played by integrins in cell 

spreading, migration and proliferation, we presumed that 

any in vivo role of av136 would probably involve one or 

more of these functions. Such effects of etv136 would also 

be consistent with the induction of av136 during organo- 

genesis, its high level expression in secretory phase en- 

dometrium, and its expression in tumors derived from epi- 

thelia; since cell migration, spreading, and proliferation 

are important in organ development,  endometrial regener- 

ation, and tumorigenesis. 

The results of the present study are therefore somewhat 

surprising. /36 - / -  mice develop and reproduce normally, 

and are fully capable of healing cutaneous wounds. Al- 

though these observations by no means prove that ave6  
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Figure 6. Airway responsiveness to acetylcholine in /36 +/+ and 
/36 -/- mice. Total pulmonary resistance (RL) was measured in a 
whole body plethysmograph in seven /36 +/+ mice (open circles) 
and in six /36 -/- mice (closed squares) from matched litters, at 
baseline (B.L.) and after the administration of successively in- 
creasing doses of acetylcholine into an indwelling tail vein cathe- 
ter. Data are plotted as the mean (-SD). Pulmonary resistance a. 
was calculated using an analogue computer (model 6, Buxco, 
Sharon, CT) (22) in mice that were anesthetized, paralyzed, and 
ventilated breathing 100% oxygen with a rodent ventilator (Har- 
vard-Ealing, Millis, MA) at a rate of 150 breaths/min and a tidal 
volume of 9 Ixl/g, settings that resulted in normal arterial blood 
gases in pilot experiments. *P < 0.0001 as determined by Stu- 
dent's t test for unpaired data, adjusted for multiple comparisons. 

• 4- 

IL-4 IFN-y 

Figure 7. Cytokine production by lung cells. Purified lung cells 
were assessed for secretion of IL-4 and IFN-',/using an Elispot as- 
say to detect cytokine secretion from individual cells. Data are 
expressed as the mean (_+ SD) number of positive spots/106 cells. 
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does not normally contribute to development reproduc- 
tion, and/or wound healing, they do suggest that other re- 
ceptors can serve the same functions. However, our obser- 
vation that 136 -/- mice all develop inflammatory cell 
infiltrates in the skin and lungs suggest a previously unex- 
pected role for this integrin in modulating inflammation in 
these epithelial organs. 

It is unclear why the pathology seen in [36 -/-  mice has 
thus far been confined to the lungs and skin. In addition to 
these two organs, av[~6 can be expressed on epithelial cells 
in a variety of other organs, including the kidney, uterus, 
testes, ovary, salivary glands, and gall bladder (Breuss et 
al., 1993). At least in the kidney, as in the lung and skin, 
av136 expression is dramatically upregulated by injury or 
inflammation. In the present study, the mice we describe 
were housed continuously in a specific pathogenic virus 
free barrier facility, so they were largely protected from 
environmental insults. However, the conducting airways 
of healthy mammals are repeatedly exposed to aspirated 
gastric contents, and we hypothesize that focal areas of in- 
jury or inflammation might be routine events, even in ani- 
mals maintained in an environmentally controlled barrier 
facility. In addition, even in a barrier facility, mice are po- 
tentially exposed to inhaled antigens from their food and 
bedding. Similarly, the pattern of abnormality seen in the 
skin of/36 -/- mice might be explained by repeated low- 
level injury. Baldness and macrophage infiltration of the 
skin was most prominent in the head and neck skin of mice 
that had not yet been weaned, and resolved by ~30 d of 
age. This pattern corresponds to the area used by mothers 
to lift and move mouse pups. The inside of the thighs is 
also an area that could be subjected to continuous low- 
level irritation. In this region, hair loss persists even in 
adult/36 -/- mice. 

One explanation for our findings is that c~vl36 partici- 
pates in the regulation of local factors that are responsible 
for activation, recruitment and/or proliferation of lympho- 
cytes and/or monocytes. For example, expression of av136 
following epithelial injury could modulate the synthesis of 
inflammatory cytokines by epithelial cells, contributing to 
the termination of the local inflammatory response. Inacti- 
vation of c~vl36, especially in sites such as the airways and 
skin that are repeatedly exposed to injurious stimuli, 
would thus lead to persistent inflammation. A role for in- 
tegrins in regulation of cytokine gene expression has been 
demonstrated in mononuclear cells, where the regulation 
of expression of several cytokine genes can be dramati- 
cally altered by plating cells on different extracellular ma- 
trix substrates, an effect that is mediated by integrins 
(Haskill et al., 1988; Juliano and Haskill, 1993; Miyake et 
al., 1993). It is now well-recognized that epithelial cell- 
derived chemokines and other cytokines play important 
roles in initiating and modulating inflammatory responses 
in epithelial organs, including the lungs and skin (Becker 
et al., 1994; Bellini et al., 1993; DiCosmo et al., 1994; Elias et 
al., 1994; Sousa et al., 1994). For example, one of the cyto- 
kines synthesized by airway epithelial cells, IL-6, induces 
the proliferation of both B lymphocytes and T lympho- 
cytes, and also induces lymphocyte activation, as detected 
by expression of the interleukin-2 receptor, CD-25 (Lotz 
et al., 1988; Tosato et al., 1988; Tosato and Pike, 1988). 
Overexpression of IL-6 in the airway epithelium of trans- 

genic mice induced a very similar pathology to that seen in 
the/36 -/- mice we describe, including large accumulations of 
B cells and T cells adjacent to conducting airways (DiCosmo 
et al., 1994). 

One surprising feature of our results is that the charac- 
ter of the inflammatory ceils in the skin and lungs of/36 -/- 
mice is different. The cells in the skin are principally macro- 
phages, whereas the cells in the lung are principally B and T 
lymphocytes. This difference suggests that either the ef- 
fects of ~v~6 ligation on keratinocytes and airway epithe- 
lial cells are different, or that the subsequent cellular re- 
sponses to any effects of avt36 ligation are different in the 
microenvironments of the skin and lungs. Differential ef- 
fects of cytokines in different tissues are well described. 
For example, transgenic mice overexpressing interleukin-6 
in airway epithelial cells develop loci of lymphocytes sur- 
rounding conducting airways in a pattern quite similar to 
that seen in the ~6 -/-  mice we describe (DiCosmo et al., 
1994). However, mice overexpressing IL-6 in keratinocytes 
do not develop lymphocytic infiltrates in the skin (Turksen 
et al., 1992). 

The /36 -/- mice we describe demonstrate dramatic in- 
creases in bronchomotor responsiveness to acetylcholine, 
the hallmark feature of asthma in humans (Boushey et al., 
1980). Lymphocytes are thought to play an important role 
in induction of airway hyperresponsiveness in human 
asthma (Robinson et al., 1992; Walker et al., 1991) and are 
the principal cell type recruited to the airways in these 
mice. Furthermore, as in human asthma, the CD4+ T cells 
in the airways of 136 -/- mice appear to be activated. Fi- 
nally, the lungs of ~6 -/-  mice contain many more IL-4 se- 
creting cells than do the lungs of 136 +/+ mice. Two recent 
studies in which airway hyperresponsiveness was tran- 
siently induced in ovalbumin-sensitized mice by inhalation 
of ovalbumin suggested that IL-4 played an important role 
in the induction of airway hyperresponsiveness. In one of 
these studies, IL-4 deficient mice were shown to be resis- 
tant to ovalbumin-induced airway hyperresponsiveness 
(Brusselle et al., 1995), and in the other study, ovalbumin- 
induced airway hyperresponsiveness was prevented by ad- 
ministration of an anti-IL-4 antibody (Corry et al., 1996). 
One feature that distinguishes the animals we describe 
from most people with asthma, and from ovalbumin-sensi- 
tized and challenged animals is the absence of eosinophils 
in the airways. Despite the absence of eosinophils,/36 -/- 
mice demonstrated marked airway hyperresponsiveness, 
suggesting that eosinophils are not required for induction 
of this physiologic abnormality. These data are consistent 
with the recent report that treatment of ovalbumin-sensi- 
tized and challenged mice with anti-IL-5 antibody pre- 
vents airway eosinophilia but has no effect on the induc- 
tion of airway hyperresponsiveness. 

As discussed above, in the most widely studied experi- 
mental models of asthma, lymphocytes are recruited to the 
airways and activated in response to inhalation of specific 
allergens (Gavett et al., 1994). These models suffer from a 
high degree of variability and from the transient nature of 
the airway hyperresponsiveness induced. Moreover, many 
patients with asthma are not atopic, and most clinical exac- 
erbations of asthma are provoked by nonimmunologic 
stimuli (Boushey et al., 1980). Many of these stimuli, in- 
cluding viral infection and inhalation of irritant gases, are 
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likely to directly affect the airway epithelium. Further- 
more, one nearly universal feature of human asthma is an 
alteration in the amount and composition of extracellular 
matrix in the airway wall (Djukankovic et al., 1990; James 
et al., 1989; Laitinen and Laitinen, 1994). The results of the 
present study suggest that these changes in the matrix, de- 
tected by integrins, could modulate recruitment and acti- 
vation of airway lymphocytes, and that genetic or environ- 
mental inactivation of the airway epithelial integrin, c~vl36, 

could induce or potentiate the airway lymphocytosis and 
airway hyperresponsiveness that characterize human asthma. 
Similarly, alterations in signals initiated through epithelial 
integrins could contribute to inflammatory diseases affect- 
ing other epithelial organs. 
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