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INADMISSIBILITY RESULTS FOR THE BEST INVARIANT
ESTIMATOR OF TWO COORDINATES OF
A LOCATION VECTOR!

By JaAMES O. BERGER

Purdue University

Let X = (X1, Xz, X3) be a random vector with density f(x — 6), where
0 = (01, 02, 03) is unknown. It is desired to estimate (6, 62) using an esti-
mator (91(X), 02(X)), and under a loss function L(d; — 6y, 62 — 05). (Note
that 0 is a nuisance parameter.) Under certain conditions on fand L, it
is shown that the best invariant estimator of (6;, 6;) is inadmissible.

1. Introduction. The problem of inadmissibility of the best invariant esti-
mator of a p-dimensional location vector has received considerable study since
Stein (1955) first demonstrated that it could be inadmissible if p > 3. For the
situation of estimating the full location vector, the answers are now quite com-
plete. Brown (1966) showed for quite general distributions and loss functions
that if p > 3 then the best invariant estimator is inadmissible, while if p = 1
the best invariant estimator is admissible. Brown and Fox (1974) demonstrated
that if p = 2, then the best invariant estimator is usually admissible. (The
above results hold subject only to certain moment conditions and technical as-
sumptions.)

A long outstanding problem in this field has been to determine inadmissibility
results when only some coordinates of the location vector are of interest. (The
other coordinates are then nuisance parameters.) The two significant problems
in this area which cannot be subsumed into the framework of Brown (1966) or
Brown and Fox (1974) are (i) estimating one coordinate of a p-dimensional loca-
tion vector with p > 3, and (ii) estimating two coordinates of a p-dimensional
location vector with p > 3. Problem (i) was recently considered in Berger
(1976a) and Berger (1976b). In Berger (1976a) it was shown that if p > 4,
then the best invariant estimator of one coordinate of a location vector is often
inadmissible. In Berger (1976b) it was shown that if p < 3, then the best in-
variant estimator of one coordinate of a location vector is usually admissible.
(The conditions needed for the results were fairly restrictive and did leave some
questions unanswered.) Portnoy (1975) had earlier obtained similar results for
a specially constructed class of distributions and squared error loss.

In this paper, problem (ii) is considered. It is shown that in a wide variety
of situations, the best invariant estimator of two coordinates of a three or more
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dimensional location vector is inadmissible. (For simplicity only the three-
dimensional case is explicitly considered, since inadmissibility in a three-dimen-
sional subproblem will imply inadmissibility in the full problem.) The results
obtained in this paper (and in Berger (1976a) and Berger (1976b)) essentially
substantiate conjectures of James and Stein (1960).

Section 2 introduces notation, and states and discusses the assumptions that
will be made. Section 3 gives some needed technical lemmas. Section 4 deals
with the main inadmissibility theorem. The technique of proof used in the
theorem is basically due to Brown (1974). The idea is to approximate the risk
functions through the use of Taylor expansions, using a ‘“‘randomization-of-the-
origin” argument to handle the nondominant terms. See Brown (1974) and
Berger (1976a) for more general discussions of the relevant techniques used.
The proof given in this paper does employ a new idea to significantly reduce
the needed technical detail. This idea is discussed in the proof of Theorem 1.
The simplified proof is one which should easily generalize to other location
parameter problems.

Section 5 of the paper gives two examples of applications of the theory. It
should be mentioned that, as in Berger (1976a), the theory will not apply to
estimating a normal mean vector. See the beginning of Section 5 for a short
discussion of this.

2. Notation and assumptions. Let X = (X, X,, X,) be a three-dimensional
random vector with density f(x — 6) with respect to Lebesgue measure. Here
0 = (0,, 0,, ;) is unknown and it is desired to estimate §* = (0, ¢,). Assume
that the loss incurred in estimating 6* by d* = (d,, ) is L(d* — 6*).

The notation E[ ] will be used for the expectation of the argument. If the
argument is a vector or a matrix, the expectation is to be taken componentwise.
Subscripts on E will denote parameter values under which the expectation is to
be taken. Superscripts on E will be used to clarify the random variable with
respect to which the expectation is being taken. When obvious, subscripts or
superscripts will be suppressed.

Under a suitable parameterization of the problem, the best invariant estimator
(we assume it exists) will be given by d,(X) = X* = (X;, X;). For an arbitrary
estimator d: R®* — R* (R* is k-dimensional Euclidean space), define the risk
function

R(0, 0) = E)[L(6(X) — 6%)].
Also define
A,(0) = R(0, ) — R(0y, 0) = E[L(0(X) — 0*) — L(X* — 6%)].
It will be shown that, under certain assumptions, there exists an estimator 4 for
which A,(f) < 0 for all 6 € R%, and hence that the best invariant estimator g, is

inadmissible.
For notational convenience, partial derivatives of an appropriately differentiable
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function # will be denoted by

* 4 ¢
x), etc.
S e

(2

RO (x) = ai M), () =
X;

Also define
my; = E[LY(X*)X;], my, = E[LY(X*)X; X,],
VL(X*) = (L®(X*), LY(X*))t, and M = E[VL(X*)X*].

Note that M is the 2 X 2 matrix with elements m,; (i < 2, j < 2). Let |x| denote

the usual Euclidean norm of the vector x, and for x* = (x,, x,) define
[|x¥|| = x*M~(1, 1) and [x¥| = |x|* 4+ |x,|* .

(Though ||x*|| and |x*|, are not necessarily norms, the notation will prove very
convenient.) Also for convenience, K will be used as a generic constant through-
out the paper.

The following assumptions are needed:

1. L(x*) = 0. :

2. All second order partial derivatives of L exist.

3. If y* = (1, yy) and |p*| < D < oo, then for some K < oo

[LED(x* + y¥)| < K(1 + [LY(x%)])

4. Fori=1,2andj=1,2, E[L(X*)] < oo, E[|X|"] < oo, E[|X[T|LO(X*)|] <
oo, and E[|X[H|L4I(X*)]] < oo.
5. (@) (w.lo.g.) E[LV(X*)] = E[L®(X*)] = 0.
(b) M is nonsingular.
(¢) (w.lo.g.)my=my =0.
(d) my, = 0 or my, == 0 or both.
(d) (w.lo.g.) my, = my, = —1.

Discussion of assumptions. Assumptions 2, 3 and 4 are technical assumptions
and could probably be somewhat weakened. In their present form, however,
they do encompass a broad range of losses and densities and are relatively straight-
forward to. verify. Note that if L is a quadratic loss and if the eighth absolute
moment of the density is finite, then Assumptions 1 through 4 are trivially
satisfied.

The purpose of Assumption 5 is to ensure that X, is related to X* in a suitable
way. Some restriction is clearly necessary, for if X, and X* are independent
then §,(X) = X* is admissible for estimating 6*. (Independence reduces the
problem to two dimensions, where Brown and Fox (1974) show that the best
invariant estimator is admissible.)

Assumption 5 (a) is explicitly included only for ease in applications, since it is
really an immediate consequence of the assumption that the problem has been
parameterized so that d,(X) = X* is the best invariant estimator. (If X* is the
best invariant estimator, then E,L(X* + (c,, ¢,)) is minimized at ¢, = ¢, = 0.
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Under Assumptions 1 through 4 it is easy to check by differentiating under the
integral sign that 5(a) must then hold.)

Assumption 5(b) is quite weak, being satisfied in virtually all situations of
practical interest. As an example, if L is the quadratic loss L(x*) = x*Q(x*)
(where Q is a 2 X 2 positive definite matrix), then an easy calculation gives
M = 2Q¥ (where ¥ is the covariance matrix of X*). Providing X* is non-
degenerate, it is clear that M is nonsingular.

Assumption 5(c) can be satisfied without loss of generality. To see this, con-
sider linear transformations of the problem defined by Y = XP, where P is a
3 X 3 nonsingular matrix with elements p,; which satisfy p;, = p;, = 0. Note
that the matrix P* having elements p,; (i < 2, j < 2) is then nonsingular also,
and that the transformed loss function is L*(y*) = L(y*(P*)~?). The transformed
problem is clearly equivalent to the original problem in terms of admissibility,
amounting to nothing more than a change of variables in all risk expressions.
Furthermore, Assumptions 1 through 4, 5(a) and 5(b) remain valid in the trans-
formed problem. (To see that 5(b) is still satisfied, note that

@.1) VL*(Y*) = (P*)"VL(X) ,
and hence that
M* = EJVL*(Y*)Y*] = (P*)-"MP* ,

which is clearly nonsingular.) To ensure that Assumption 5(c) is satisfied, it
suffices to consider the transformed problem defined by

Y*=X*,  Y,= X, — X*M~(m,, my)*.

An easy calculation shows that for the transformed problem

(Z:li) — E[{VL*(Y*)}Y,] = E, [{VL(X*)} {X3 — XM (”’13>H

Mgy
- ()0 (2)-)
m23 m23 0
and hence that 5(c) is satisfied. '

Assumption 5(d) is needed to, in some sense, specify the exact problem which
is to be dealt with. (In terms of the more general discussion in Berger (1976a), it
is needed to specify the “moment structure.” See also Brown (1974).) This
assumption essentially states that Y, and Y* are “related” through the moments
myg, and my,,. This should be the most common situation in problems in which
X* and Y, are not independent. Assumption 5(d’) can be made, without loss
of generality, providing that 5(d) holds. To see this, consider the transforma-
tion Y, = X; and Y* = X*P*, where P* is nonsingular. Calculation, using
(2.1), gives

(M, M)t = E[VL*(Y*)Y?] = (P*)TE[VL(X)X;'] = (P*) (M55 Mags)’ .

It is easy to check that providing either m,; or m,, is nonzero, (P*)~* can be
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chosen so that mf, = m§; = —1. Hence Assumption 5(d’) would be satisfied
in the transformed problem. (Again it is easy to check that the previous assump-
tions also still hold.) Section 5 gives examples of the above procedure of trans-
forming a problem to satisfy Assumption 5.

3. Preliminary lemmas. In this section four rather technical lemmas will be
given. The first three are fairly straightforward to verify and their proofs are
omitted.

LemMMA 1.

(@) If a > 0, then 2=*/*|x*|* < [x*|, < 2|x*|~
(b) If @, B, ¢y, ¢y, dy, and d, are all positive constants, then there exist numbers
0 <K, < o0and0 < K, < oo such that

Kjx¥|=* < [xalfes + 1xal/en Kyjx*|=* .
[xX[P/dy + [x,|?/dy —

©) Ifa, >0, a0, >0, and a = a, + a,, then

(1 )™ < 3(1 A x| (1 o [yt
LEMMA 2. If 0 < a < 3 and ||x*|| > O, then there exists K < oo such that
{1 4 x)/2[[x*[)}* exp{—(1 + x7)/2[Ix*|N} = K1 A+ []x*[[=)(L + [ .

LemMa 3. (a) Fori=1,2,3, assume that 0 < a;, < 1.02, and that t;: R® X
R®*— [0, 1] is a measurable function. Then there exists K < oo such that for j =
1,2and 0 < k < 3,

GBI EJfIX — 0L — 0%)| TTioa (1 + [1(X, 0) X, + {1 — £(X, 6)}0,])7]
S KIT (A 0=
(b) There exists K < oo such that forj = 1,2 and k = 1, 2,
E{1 4 L8P — 09T (1 4+ [X[)7] < K T (1 + 1647

Proor. The proof is a fairly straightforward Chebyshev type argument, car-
ried out consecutively on the three coordinates. It is for this lemma that the
large number of moments of Assumption 4 are needed. []

The following lemma plays a crucial role in the inadmissibility proof. Let
¥ = (J1» Y y5) and define
R (y) = TIii (1 + oly*™)*.

LEmMMA 4. Assume g: R*—[0, ) is a measurable function satisfying
$z9(y)dy = co. Let K, < oo be an arbitrary fixed constant. There exists 0 <
p < 1 such that for all 6 ¢ R®, '

K, §ps i(Nh(y — 0) dy < Spa 9(p)h(y — 0) dy .
Proor. Clearly
2) Sk —0)dy = T1i1 17 (1 + |27 + ply: — 0+ dy, .
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Break up the ith integral on the right-hand side of (3.2) into two integrals, I,
and I,, over W, = {y, e R*: |y, — 0,] > |6,//2}and Wy°. If y,e W,, it is clear that

(1 + ply; — 0,7 = (1 + p[|0,]/2]")7" .
Hence

(3.3) L=V, (L4 )70+ plys — 04) 7 dy, < K(1 + o[|6/2]+%)7" -
If y, e W, then |y,| = |0,]/2. It follows that
(3.4 I = (wpe (1 + |y~ (A + ply; — 0.+ dy;
< KU+ [104/217) 7 Sy (1 + plye — 0.7) 7" dy; .
A simple change of variables and the condition p < 1 gives that
S e (1 + ply; — 0" dy, < K™% < Ko™t
Using this with (3.4) shows that if p(|0,[/2)"® = 1, then
(3.5) L= Ko '(1+ [16:/2]"%)7" < K(o[|6:]/2]") " < 2K(1 + el|0:]/2]%)7" -
Note next that
Yoo (14 plys — 07 dy < Yy e dys = 104] -
Using this with (3.4) shows that if p(]0,|/2)"* < 1, then
(3:6) I, < KI6J(1 + [8J/21%) < 4K(1 + [16/2]-)
< 4K(1 + p"M)0,]/2]-) < 4K(1 + ol]0.|/2] %) .
Combining (3.2), (3.3), (3.5) and (3.6) gives that for some K, < oo,
(3.7 Voo Li(Dh(y — 0) dy < Ky TTR- (1 + o[|0/217%)7"
Define V, = {ye R*: |y, < n,i=1,2,3}. Choose n large enough so that
(3-8) Vv, 9(y) dy > K K45 .
Finally, choose p = (2rn)~*®. Now if |¢;| < n and |y,| < n, then
(3.9) (1 + plye — O™ = (1 + p[2n]) 7 = 271
If |0,] > n and |y,| < n, then
(3.10) (1 + ply, — 0.7 = (1 4 p[|0:] + n[*")7* = (1 + [2(6:/]")7
= 4701 + p[]0/2])7"
Combining (3.9) and (3.10) gives that if 6 € R* and y ¢ V,,, then
(3.-11) h(y — 0) = 47 Tl (1 + o[10:]/2T-%)7" -
Using (3.7), (3.8), (3-11) and the fact that g > O finally gives
Vus 9Ny — O) dy = §y, 9By — 0) dy

= 470§, g(y)dy TI- (1 + o[10:/2]%)7

> KK, ITi-i (1 + p[10:]/21-%)7

=K, (s hl(y)hﬂ(.y —0)dy. 0
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4. Inadmissibility of the best invariant estimator. Let Q = {z e R®: ||z*|| > 0}
and let I(z) denote the usual indicator function on . Define y: R* — R* by

—(x*M™) 1 4 x2
4.1) () = =M oy {— 3}I(x).
T+ ) DU 2]
Let 7, (i = 1, 2) be the coordinate functions of y, and define d(x) = x* + r(x).
Finally, let Y = (Y,, Y;, Y;) be a random vector with density K,4,(y) (K, being
the normalizing constant), and define the randomized estimator 6°: R®* X R*—
R’ by

3o(X, Y) = 6(X + Y) — Y*.

THEOREM 1. If Assumptions 1 through 5 of Section2 hold, then the best invariant
estimator, 0((X) = X*, is inadmissible for estimating 0%. Indeed there exists 0 <
o < 1 such that A;,(8) < O for all § € R®.

(Note that if L is convex, then Jensen’s inequality shows that the nonran-
domized estimator 0*(X) = E, 7 (0°(X, Y)) is also better than 4,.)
Proor. Clearly '
A,(0) = EFEF{L(0°(X, Y) — 6*) — L(X* — 6*)}
(4.2) = E/EJ{LOX + Y) — [6* + Y*])
— L([X* + Y*] = [0* + Y]}
= E Efp{L(O(X) — [6* + Y*]) — L(3y(X) — [0* + Y*])}
=EYA0+ 7).

Define

(4.3) 9(0) = (:02)(1 + [0*];..5)* exp{—(1 + 65°)/(2]|6*[|)}a(0) -
It will be shown that there exists K, < oo such that

(4.4) A;(0) = —9(8) + 1), where |r(0)| < K, h,(0) .

Assume for the moment that this is true. From the definition of ||#*|| and the
fact that M~ is nonsingular, it is clear that Q is a half plane in R®. It is thus
easy to check (integrating out first over 6,) that {3 g(f) d6 = co. It can be con-
cluded from Lemma 4 that there exists 0 < p < 1 such that
EJ[K MmO + Y)] < EF[9(0 + Y)] .
Using this, together with (4.2), (4.3) and (4.4), shows that
A(0) = EFA,(0 +Y)

SE[-90 +Y)+r@ + Y)]

< —EX[9(0 + V)] + E[Kh(0 + Y)] < 0.
The proof will thus be complete as soon as (4.4) is verified. The above argu-

ment is basically a “randomization-of-the-origin” argument, first used by Brown.
(See Brown (1974) and Berger (1976a) for other examples.) In previous proofs
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using this type of argument, a region such as Q was found in which A,(f) < 0.
The estimator was then randomized to “spread out” the improvement in risk to
include all of R®. The arguments involved in proving that A,¢) < 0 for all
0 e Q are often quite formidable technically. In this paper it is only shown that
A,(0) = —g(6) + r(6), where |r()] < Kky(f). No attempt is made to show that
—9g(0) + r(6) < 0 for all § Q. The error term, r, is instead handled by a
slightly more involved randomization-of-the-origin argument. This different
approach results in a significantly easier proof. For example, the present proof
is considerably shorter than the analogous proof in Berger (1976a). (Of course,
generalized Bayes estimators were also considered in that paper, which precluded
the use of a randomization-of-the-origin argument.)

To prove (4.4) first L and then 7 will be expanded in Taylor expansions. Since
several such arguments have previously been used (Brown (1975), Brown (1974),
Berger (1976a), Berger (1976b), and Berger (1976¢)), an attempt is made to
suppress details not unique to this particular problem.

By definition,

(4.5)  A(0) = Sp[LOe* + 7(x) — 0%) — L(x* — 6%)]f(x — 0) dx .
Expanding L(x* + y(x) — 6*) in a Taylor expansion about (x* — %) gives
L(x* + 7(x) — 0%) = L(x* — 0%) + Lo r()LO(x* — 0%)
+ 3 Dl Dia ra@rs (LA (x* — 0% 4 1(x, 0%)7(x)) ,

where 0 < #(x, %) < 1. Using this expansion in (4.5) results in
(4.6) A,(0) = D(0) + M0) + A%0) ,
where

AYO) = § s 1i(X)LD(x* — O0)f(x — O)dx, i=1,2,
and

A%(0) = § Nias Diaa S (D) ()LD (x* — 0% + 1p)fix — 0) dx .

Consider A%(#) first. From the definitions of  and 7, it is clear that |r7] is
bounded. Assumption 3 thus gives that
4.7)  |80) = K Zia Dia Sas [rF(1 + L2 (x* = 0%))f(x — 0) dx .
From (4.1) and Lemmas 1 and 2 it is easy to see that

[P = K(1 + )" exp{—x%/2[|x*|])}
< K(1 4 [Py (1 (]9 o)
§ K(l _|_ |xlI1.02)—1(1 + |x2|1.02)—1(1 + |x3|1.02)—1 — Khl(x) .
Using this bound in (4.7) and applying Lemma 3 (b) gives
(4.8) |A%0)] < Khy(6) -

Consider A'(9) next. From (4.1) it can be seen that y, has continuous second
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order partial derivatives. Hence y,(x) can be expanded in a Taylor series about
0 to give
(4.9) 71(%¥) = 11(0) + X nPO)(x; — 6))

+ & 2 Zian®P(0)(x; — 0.)(x; — 6;)

+ (I = N[Za 23 {n"70 + ((x — 0)) — n“2(0)}

X (x; — 0)(x; — 0;)] dt .
Using this expansion gives
(4.10) N(0) = § o u()LO(* — 6%)f(x — 6) dx

= L(0) + L(9) + L(9) + L),
where I,(0) is the integral resulting from the ith expression on the right-hand
side of (4.9). By Assumption 5(a)
(4.11) L(0) = (s (@)L (x* — 0%)f(x — 0)dx = 0.
By the definitions of the m,; and m,;,, .
12(0) + 13(0) = )i, mlirl(i)(a) + '% Z?:] §=1 my;; rl”""(ﬁ) .

Using Lemmas 1 and 2, a simple calculation shows that |y,"»?(6)| < Kh,(f) unless
i = j = 3. Together with Assumptions 4, 5(c) and 5(d’), this shows that
(4.12)  L0) + I(0) = mur,V(0) + myuy®(0) — 31 *7(0) + (@),
where |r,(0)| £ Kh,(0).

It remains to analyze ,(f). Consider first the terms corresponding to i = 3
or j+ 3. As earlier, Lemmas 1 and 2 will show that |y, + #(x — 0))| <
Khy(0 + t(x — 0)). Using this, together with Lemma 3(a), and interchanging
orders of integration gives

$ze §o (1 = O[r2(0 + #(x — O)| + [n“?(O)I]
(4.13) X |x — O dt |IL®(x* — 0%)|f(x — 0) dx
<2 (1 —r)dt Khy(0) = Khy(0) .
To handle the i = j = 3 term of /,(f), note that y,* has continuous partial
derivatives and hence
(o0 + 1 = 0) = 1°(0))
= 0 T3 (190 + 61(x — 0)1(x, — 6} dr,
Lemmas 1, 2 and 3(a) can again be used to give

$rs §3 §0 |1 ®%2(0 + t,1(x — 0))|(1 — B)t|x — Q|3|L‘1’(x* — 0%)|f(x — 0) dt,dt dx
< Kiy(0) . |
Together with (4.13) this shows that
(4.14) [1,(0)] = Khy(0) -
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Combining (4.10), (4.11), (4.12) and (4.14) finally gives
(4.15) AYO) = myr,(0) + myur,®(0) — §1,0(0) + ry(6)
where |ry(0)| < Khy(9) .
It can similarly be shown that
(4.16)  AX0) = myy,™(0) + my 7, (0) — $7,49(0) + ry(6) ,
where |ry(0)| < Khy(9) .

(A tedious but straightforward calculation shows that

My 71 P(0) + My ®(0) + My, (0) + My, (0) — §1,%%(0) — 4r.>%(0)
= (=-02)(1 + [0%]5.06) 7" exp{—(1 + 657)/(26*[|)}a(0) -

Using this together with (4.6), (4.8), (4.15) and (4.16) finally verifies (4.4) and
completes the proof. []

5. Examples. As mentioned in the introduction, the results of this paper will
not apply to estimating a multivariate normal mean. This is because a linear
transformation of the problem can be made, which will result in the coordinates
being independent. Hence when Assumptions 5(a) and 5(c) are satisfied, 5(d)
will be violated. Indeed it is clear that the best invariant estimator is admissible
for this problem. (The transformed problem reduces, by independence, to esti-
mating a two-dimensional normal mean.) Two examples in which the theory
can be applied follow.

ExAMPLE 1. Suppose Y, =In (X, — 60,),i=1,2,3,andthat Y = (Y, Y,, Y;)
has a multivariate normal density with mean 0 and known positive definite co-
variance matrix ¥ (witfl elements ¢,;). The random vector X = (X, X,, X;) has
a density f(x — 6) which is a version of a multivariate lognormal density. Let
L(x*) = x* + x,>. Assumptions 1 through 4 of Section 2 are clearly satisfied.
Note also that

(5.1) Ei_[ X\ Xy Xy's] = E¥[exp{t,y; + ;2 + £ )3]]
= exp{§(tys tos L) E(1y 1, 1)’} .
Assumption 5 must now be considered. Note that
E[L®(X*)] = 2E[X;] = 2 exp{o,,/2} + 0,
and hence that Assumption 5(a) is violated. To reparameterize, define n* =

0* + (exp{o.,/2}, exp{oy,/2}), n, = 6, and consider the equivalent problem of
estimating »* based on observing X. Clearly for i =1, 2,

E,_[LY(X*)] = 2E,_[X; — exp{o/2}]] =0,

and Assumption 5(a) is satisfied. Assumption 5(b) is clearly true since L is
quadratic and X* has a nondegenerate distribution. (See the discussion of As-
sumption 5(b).) Assumption 5(c) can be satisfied by making the transformation

Zy = Xy — X*M™(myg, my)" Zr = X*,
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as suggested in Section 2. (Formula (5.1) can be used to calculate the m,; and
hence M~'.) It remains only to verify Assumption 5(d), and hence to calculate
mis, = 2E,_[ZX], i =1, 2.

For the special case ¢, =0, 0,; = 0,y = 0,3 = a + 0, and g,;, = 0,, = §, the
calculation was carried out using (5.1). The result was (for i = 1,2)

(5.2)  mi, = deo(ef — 1)(ex — 1)~ eath) — et _ gx | 3ef _ % _ ],

Providing this quantity is nonzero, Assumption 5(d) will be satisfied.

(For example, if « = 1 and 8 = .5, then m}, = 22.4 = 0.) It can then be
concluded that the best invariant estimator d,(X) = X* is inadmissible for esti-
mating »*, and hence that [X* — (exp{a/2}, exp{a/2})] is inadmissible for esti-
mating 6*.

ExXAMPLE 2. Assume that X = (X, X,, X,) has a multivariate normal distri-
bution with mean 0 and a known correlation matrix with elements p,; which
satisfy p,, = 1 (i = 1, 2, 3),and p,; #+ 0 (i = 1, 2). The standard deviations, o,,
are assumed to be unknown, and it is desired to estimate (¢,, 0,). Let the loss
incurred in estimating (g,, 0,) by (d,, d,) be of the form L(In [d,/a,], In [d;/s,]).

Usual invariant estimators of (¢, 0,) are functions of (|Xy|, |X;[). Such esti-
mators can often be shown to be inadmissible by transforming in the usual way
to a location vector problem. Thuslet Y, = In |X,| and 6, = In ¢,. The problem
can now be considered to be one of estimating 6* by an estimator d(Y), and
under loss L(d(Y) — 0%).

As a specific example, suppose L(y*) = y? + y,, o, = 0, and p,; = p,, = .8.
Assumptions 1 through 4 are easy to check. Validating Assumption 5(a) again
requires a reparametrization of the problem. Numerical calculation showed
that »* = 6* — (.63, .63) is the correct reparameterization, to the nearest hun-
dredth. Assumption 5(b) is obviously satisfied. To satisfy 5(c), it was numeri-
cally calculated that the linear transformation Z, = Y, — .35Y, — .35Y, must
be made. A final calculation showed that 5(d) was then satisfied and hence that
Theorem 1 could be applied. The conclusion is that the best invariant estimator
[Y* + (.63, .63)] is inadmissible for estimating 6*, and hence that any invariant
estimator based on (|X,|, |Xj;|) is inadmissible for estimating (,, g,) (for the given
loss and correlation matrix, of course). As in Berger (1976a), this example
could be extended to a more general multiplicative model (i.e., a model where
the random errors are multiplicative).
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