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Abstract: The Small Set Expansion Hypothesis is a conjecture which roughly states that it is NP-hard
to distinguish between a graph with a small subset of vertices whose (edge) expansion is almost
zero and one in which all small subsets of vertices have expansion almost one. In this work, we
prove conditional inapproximability results with essentially optimal ratios for the following graph
problems based on this hypothesis: Maximum Edge Biclique, Maximum Balanced Biclique, Minimum
k-Cut and Densest At-Least-k-Subgraph. Our hardness results for the two biclique problems are
proved by combining a technique developed by Raghavendra, Steurer and Tulsiani to avoid locality
of gadget reductions with a generalization of Bansal and Khot’s long code test whereas our results
for Minimum k-Cut and Densest At-Least-k-Subgraph are shown via elementary reductions.

Keywords: hardness of approximation; small set expansion hypothesis; maximum edge biclique;
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1. Introduction

Since the PCP theorem was proved two decades ago [1,2], our understanding of approximability
of combinatorial optimization problems has grown enormously; tight inapproximability results have
been obtained for fundamental problems such as Max-3SAT [3], Max Clique [4] and Set Cover [5,6].
Yet, for other problems, including Vertex Cover and Max Cut, known NP-hardness of approximation
results come short of matching best known algorithms.

Khot’s introduction of the Unique Games Conjecture (UGC) [7] propelled another wave of
development in hardness of approximation that saw many of these open problems resolved (see
e.g., [8,9]). Alas, some problems continue to elude even attempts at proving UGC-hardness of
approximation. For a class of such problems, the failure stems from the fact that typical reductions are
local in nature; many reductions from unique games to graph problems could produce disconnected
graphs. If we try to use such reductions for problems that involve some forms of expansion of graphs
(e.g., Sparsest Cut), we are out of luck.

One approach to overcome the aforementioned issue is through the Small Set Expansion Hypothesis
(SSEH) of Raghavendra and Steurer [10]. To describe the hypothesis, let us introduce some notations.
Throughout the paper, we represent an undirected edge-weighted graph G = (V, E, w) by a vertex set
V, an edge set E and a weight function w : E → R>0. We call G d-regular if ∑v:(u,v)∈E w(u, v) = d for
every u ∈ V. For a d-regular weighted graph G, the edge expansion Φ(S) of S ⊆ V is defined as

Φ(S) =
E(S, V \ S)

d min{|S|, |V \ S|}
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where E(S, V \ S) is the total weight of edges across the cut (S, V \ S). The small set expansion problem
SSE(δ, η), where η, δ are two parameters that lie in (0, 1), can be defined as follows.

Definition 1 (SSE(δ, η)). Given a regular edge-weighted graph G = (V, E, w), distinguish between:

• (Completeness) There exists S ⊆ V of size δ|V| such that Φ(S) 6 η.
• (Soundness) For every S ⊆ V of size δ|V|, Φ(S) > 1− η.

Roughly speaking, SSEH asserts that it is NP-hard to distinguish between a graph that has a small
non-expanding subset of vertices and one in which all small subsets of vertices have almost perfect
edge expansion. More formally, the hypothesis can be stated as follows.

Conjecture 1 (SSEH [10]). For every η > 0, there is δ = δ(η) ∈ (0, 1/2] such that SSE(δ, η) is NP-hard.

Interestingly, SSEH not only implies UGC [10], but it is also equivalent to a strengthened version
of the latter, in which the graph is required to have almost perfect small set expansion [11].

Since its proposal, SSEH has been used as a starting point for inapproximability of many problems
whose hardnesses are not known otherwise. Most relevant to us is the work of Raghavendra,
Steurer and Tulsiani (henceforth RST) [11] who devised a technique that exploited structures of
SSE instances to avoid locality in reductions. In doing so, they obtained inapproximability of Minimum
Bisection, Minimum Balanced Separator, and Minimum Linear Arrangement, all of which are not
known to be hard to approximate under UGC.

1.1. Maximum Edge Biclique and Maximum Balanced Biclique

Our first result is an adaptation of RST technique to prove inapproximability of Maximum Edge
Biclique (MEB) and Maximum Balanced Biclique (MBB). For both problems, the input is a bipartite
graph. The goal for the former is to find a complete bipartite subgraph that contains as many edges as
possible whereas, for the latter, the goal is to find a balanced complete bipartite subgraph that contains
as many vertices as possible.

Both problems are NP-hard. MBB was stated (without proof) to be NP-hard in Garey and
Johnson’s seminal book (p. 196 [12]); several proofs of this exist such as one provided in [13]. For MEB,
it was proved to be NP-hard more recently by Peeters [14]. Unfortunately, much less is known when
it comes to approximability of both problems. Similar to Maximum Clique, folklore algorithms
give O(n/ polylog n) approximation ratio for both MBB and MEB, and no better algorithm is
known. However, not even NP-hardness of approximation of some constant ratio is known for
the problems. This is in stark contrast to Maximum Clique for which strong inapproximability results
are known [4,15–17]. Fortunately, the situation is not completely hopeless as the problems are known
to be hard to approximate under stronger complexity assumptions.

Feige [18] showed that, assuming that random 3SAT formulae cannot be refuted in polynomial
time, both problems cannot be approximated to within nε of the optimum in polynomial time for some
ε > 0. (While Feige only stated this for MBB, the reduction clearly works for MEB too.) Later, Feige and
Kogan [19] proved 2(log n)ε

ratio inapproximability for both problems for some ε > 0, assuming that
3SAT /∈ DTIME(2n3/4+δ

) for some δ > 0. Moreover, Khot [20] showed, assuming 3SAT /∈ BPTIME(2nδ
)

for some δ > 0, that no polynomial time algorithm achieves nε-approximation for MBB for some ε > 0.
Ambühl et al. [21] subsequently built on Khot’s result and showed a similar hardness for MEB. Recently,
Bhangale et al. [22] proved that both problems are hard to approximate to within n1−ε factor for every
ε > 0, assuming a certain strengthened version of UGC and NP 6= BPP. (In [22], the inapproximability
ratio is only claimed to be nε for some ε > 0. However, it is not hard to see that their result in fact
implies n1−ε factor hardness of approximation as well.) In addition, while not stated explicitly, the
author’s recent reduction for Densest k-Subgraph [23] yields n1/ polyloglog n ratio inapproximability for
both problems under the Exponential Time Hypothesis [24] (3SAT /∈ DTIME(2o(n))) and this ratio can
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be improved to n f (n) for any f ∈ o(1) under the stronger Gap Exponential Time Hypothesis [25,26]
(no 2o(n) time algorithm can distinguish a fully satisfiable 3SAT formula from one which is only
(1− ε)-satisfiable for some ε > 0); these ratios are better than those in [19] but worse than those
in [20–22].

Finally, it is worth noting that, assuming the Planted Clique Hypothesis [27,28] (no polynomial
time algorithm can distinguish between a random graph G(n, 1/2) and one with a planted clique
of size Ω(

√
n)), it follows (by partitioning the vertex set into two equal sets and delete all the edges

within each partition) that Maximum Balanced Biclique cannot be approximated to within Õ(
√

n)
ratio in polynomial time. Interestingly, this does not give any hardness for Maximum Edge Biclique,
since the planted clique has only O(n) edges, which less than that in a trivial biclique consisting of any
vertex and all of its neighbors.

In this work, we prove strong inapproximability results for both problems, assuming SSEH:

Theorem 1. Assuming the Small Set Expansion Hypothesis, there is no polynomial time algorithm that
approximates MEB or MBB to within n1−ε factor of the optimum for every ε > 0, unless NP ⊆ BPP.

We note that the only part of the reduction that is randomized is the gap amplification via
randomized graph product [29,30]. If one is willing to assume only that NP 6= P (and SSEH),
our reduction still implies that both are hard to approximate to within any constant factor.

Only Bhangale et al.’s result [22] and our result achieve the inapproximability ratio of n1−ε for
every ε > 0; all other results achieve at most nε ratio for some ε > 0. Moreover, only Bhangale et al.’s
reduction and ours are candidate NP-hardness reductions, whereas each of the other reductions either
uses superpolynomial time [19–21,23] or relies on an average-case assumption [18]. It is also worth
noting here that, while both Bhangale et al.’s result and our result are based on assumptions which can
be viewed as stronger variants of UGC, the two assumptions are incomparable and, to the best of our
knowledge, Bhangale et al.’s technique does not apply to SSEH. A discussion on the similarities and
differences between the two assumptions can be found in Appendix C.

Along the way, we prove inapproximability of the following hypergraph bisection problem, which
may be of independent interest: given a hypergraph H = (VH , EH) find a bisection (T0, T1) of VH
such that the number of uncut hyperedges is maximized. ((T0, T1) is a bisection of VH if |T0| = |T1| =
|VH |/2, T0 ∩ T1 = ∅ and VH = T0 ∪ T1.) We refer to this problem as Max UnCut Hypergraph Bisection
(MUCHB). Roughly speaking, we show that, assuming SSEH, it is hard to distinguish a hypergraph
whose optimal bisection cuts only ε fraction of hyperedges from one in which every bisection cuts all
but ε fraction of hyperedges:

Lemma 1. Assuming the Small Set Expansion Hypothesis, for every ε > 0, it is NP-hard to, given a hypergraph
H = (VH , EH), distinguish between the following two cases:

• (Completeness) There is a bisection (T0, T1) of VH s.t. |EH(T0)|, |EH(T1)| > (1/2− ε)|EH |.
• (Soundness) For every set T ⊆ VH of size at most |VH |/2, |EH(T)| 6 ε|EH |.

Here EH(T) , {e ∈ EH | e ⊆ T} denotes the set of hyperedges that lie completely inside of the set
T ⊆ VH .

Our result above is similar to Khot’s quasi-random PCP [20]. Specifically, Khot’s quasi-random
PCP can be viewed as a hardness for MUCHB in the setting where the hypergraph is d-uniform;
roughly speaking, Khot’s result states that it is hard (if 3SAT /∈ ⋂δ>0 BPTIME(2nδ

)) to distinguish
between a d-uniform hypergraph where 1/2d−2 fraction of hyperedges are uncut in the optimal
bisection from one where roughly 1/2d−1 fraction of hyperedges are uncut in any bisection. Note that
the latter is the fraction of uncut hyperedges in random d-uniform hypergraphs and hence the name
“quasi-random”. In this sense, Khot’s result provides better soundness at the expense of worse
completeness compared to Theorem 1.
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1.2. Minimum k-Cut

In addition to the above biclique problems, we prove an inapproximability result for the Minimum
k-Cut problem, in which a weighted graph is given and the goal is to find a set of edges with minimum
total weight whose removal paritions the graph into (at least) k connected components. The Minimum
k-Cut problem has long been studied. When k = 2, the problem can be solved in polynomial time
simply by solving Minimum s − t cut for every possible pairs of s and t. In fact, for any fixed k,
the problem was proved to be in P by Goldschmidt and Hochbaum [31], who also showed that, when k
is part of the input, the problem is NP-hard. To circumvent this, Saran and Vazirani [32] devised two
simple polynomial time (2− 2/k)-approximation algorithms for the problem. In the ensuing years,
different approximation algorithms [33–37] have been proposed for the problem, none of which are
able achieve an approximation ratio of (2− ε) for some ε > 0 in polynomial time. In fact, Saran and
Vazirani themselves conjectured that (2− ε)-approximation is intractible for the problem [32]. In this
work, we show that their conjecture is indeed true, if the SSEH holds:

Theorem 2. Assuming the Small Set Expansion Hypothesis, it is NP-hard to approximate Minimum k-Cut to
within (2− ε) factor of the optimum for every constant ε > 0.

Note that the problem was claimed to be APX-hard in [32]. However, to the best of our knowledge,
the proof has never been published and no other inapproximability is known.

1.3. Densest At-Least-k-Subgraph

Our final result is a hardness of approximating the Densest At-Least-k-Subgraph (DALkS) problem,
which can be stated as follows. Given an edge-weighted graph, find a subset S of at least k vertices
such that the induced subgraph on S has maximum density, which is defined as the ratio between
the total weight of edges and the number of vertices. The problem was first introduced by Andersen
and Chellapilla [38] who also gave a 3-approximation algorithm for the problem. Shortly after,
2-approximation algorithms for the problem were discovered by Andersen [39] and independently by
Khuller and Saha [40]. We show that, assuming SSEH, this approximation guarantee is essentially the
best we can hope for:

Theorem 3. Assuming the Small Set Expansion Hypothesis, it is NP-hard to approximate Densest
At-Least-k-Subgraph to within (2− ε) factor of the optimum for every constant ε > 0.

After our manuscript was made available online, we were informed that Theorem 3 was also
proved independently by Bergner [41]. To the best of our knowledge, this is the only known hardness
of approximation result for DALkS. We remark that DALkS is a variant of the Densest k-Subgraph (DkS)
problem, which is the same as DALkS except that the desired set S must have size exactly k. DkS has
been extensively studied dating back to the early 90s [10,18,20,23,42–52]. Despite these considerable
efforts, its approximability is still wide open. In particular, even though lower bounds have been shown
under stronger complexity assumptions [10,18,20,23,50,52] and for LP/SDP hierarchies [49,53,54],
not even constant factor NP-hardness of approximation for DkS is known. On the other hand,
the best polynomial time algorithm for DkS achieves only O(n1/4+ε)-approximation [49]. Since any
inapproximability result for DALkS translates directly to DkS, even proving some constant factor
NP-hardness of approximating DALkS would advance our understanding of approximability of DkS.

2. Inapproximability of Minimum k-Cut

We now proceed to prove our main results. Let us start with the simplest: Minimum k-Cut.

Proof of Theorem 2. The reduction from SSE(δ, η) to Minimum k-Cut is simple; the graph G remains
the input graph for Minimum k-Cut and we let k = δn + 1 where n = |V|.
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Completeness. If there is S ⊆ V of size δn such that Φ(S) 6 η, then we partition the graph
into k groups where the first group is V \ S and each of the other groups contains one vertex from S.
The edges cut are the edges across the cut (S, V \ S) and the edges within the set S itself. The total
weight of edges of the former type is d|S|Φ(S) 6 ηd|S| and that of the latter type is at most d|S|/2.
Hence, the total weight of edges cut in this partition is at most (1/2 + η)d|S| = (1/2 + η)δdn.

Soundness. Suppose that, for every S ⊆ V of size δn, Φ(S) > 1− η. Let T1, . . . , Tk ⊆ V be any
k-partition of the graph. Assume without loss of generality that |T1| 6 · · · 6 |Tk|. Let A = T1 ∪ · · · ∪ Ti
where i is the maximum index such that |T1 ∪ · · · ∪ Ti| 6 δn.

We claim that |A| > δn−
√

n. To see that this is the case, suppose for the sake of contradiction that
|A| < δn−

√
n. Since |A∪ Ti+1| > δn, we have Ti+1 >

√
n. Moreover, since A = T1 ∪ · · · ∪ Ti, we have

i 6 |A| < δn−
√

n. As a result, we have n = |T1 ∪ · · · ∪ Tk| > |Ti+1 ∪ · · · ∪ Tk| > (k − i)|Ti+1| >√
n ·
√

n = n, which is a contradiction. Hence, |A| > δn−
√

n.
Now, note that, for every S ⊆ V of size δn, Φ(S) > 1− η implies that E(S) 6 ηdδn/2 where E(S)

denotes the total weight of all edges within S. Since |A| 6 δn, we also have E(A) 6 ηdδn/2. As a
result, the total weight of edges across the cut (A, V \ A), all of which are cut by the partition, is at least

d|A| − ηdδn > (1− η)dδn− d
√

n =

(
1− η − 1

δ
√

n

)
δdn.

For every sufficiently small constant ε > 0, by setting η = ε/20 and n > 100/(ε2δ2), the ratio
between the two cases is at least (2− ε), which concludes the proof of Theorem 2.

3. Inapproximability of Densest At-Least-k-Subgraph

We next prove our inapproximability result for Densest At-Least-k-Subgraph, which is also very
simple. For this reduction and the subsequent reductions, it will be more convenient for us to use a
different (but equivalent) formulation of SSEH. To state it, we first define a variant of SSE(δ, η) called
SSE(δ, η, M); the completeness remains the same whereas the soundness is strengthened to include all
S of size in

[
δ|V|
M , δ|V|M

]
.

Definition 2 (SSE(δ, η, M)). Given a regular edge-weighted graph G = (V, E, w), distinguish between:

• (Completeness) There exists S ⊆ V of size δ|V| such that Φ(S) 6 η.

• (Soundness) For every S ⊆ V with |S| ∈
[

δ|V|
M , δ|V|M

]
, Φ(S) > 1− η.

The new formulation of the hypothesis can now be stated as follows.

Conjecture 2. For every η, M > 0, there is δ = δ(η, M) ∈ (0, 1/2] such that SSE(δ, η, M) is NP-hard.

Raghavendra et al. [11] showed that this formulation is equivalent to the earlier formulation
(Conjecture 1); please refer to Appendix A.2 of [11] for a simple proof of this equivalence.

Proof of Theorem 3. Given an instance G = (V, E, w) of SSE(δ, η, M), we create an input graph
G′ = (V′, w′) for Densest At-Least-k-Subgraph as follows. V′ consists of all the vertices in V and an
additional vertex v∗. The weight function w′ remains the same as w for all edges in V whereas v∗ has
only a self-loop with weight dδn/2. (If we would like to avoid self-loops, we can replace v∗ with two
vertices v∗1 , v∗2 with an edge of weight dδn/2 between them.) In other words, E′ = E ∪ {(v∗, v∗)} and
w′((v∗, v∗)) = dδn/2. Finally, let k = 1 + δn where n = |V|.

Completeness. If there is S ⊆ V of size δn such that Φ(S) 6 η, consider the set S′ = S ∪ {v∗}.
We have |S′| = k and the density of S′ is (dδn/2 + E(S)) /k where E(S) denote the total weight of
edges within S. This can be written as
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(
δn
k

)(
dδn/2 + E(S)

δn

)
=

(
δn
k

)(
d
2
+

(
1−Φ(S)

2

)
d
)
>

dδn(1− η/2)
k

.

Soundness. Suppose that Φ(S) > 1− η for every S ⊆ V of size |S| ∈ [δn/M, δnM]. Consider any
set T′ ⊆ V of size at least k. Let T = T′ \ {v∗} and let E(T) denote the total weight of edges within T.
Observe that the density of S is at most (dδn/2 + E(T))/|T′|. Let us consider the following two cases.

1. |T| 6 δnM. In this case, Φ(T) > 1− η and we have

dδn/2 + E(T)
|T′| 6

dδn
2k

+ d
(

1−Φ(T)
2

)
6

dδn
2k

+ dη/2 =
dδn

(
1
2 + η

2

(
1 + 1

δn

))
k

6
dδn(1/2 + η)

k
.

2. |T| > δnM. In this case, we have

dδn/2 + E(T)
|T′| <

d
2M

+
d
2
=

dδn
k

(
1
2
+

1
2M

)(
1 +

1
δn

)
6

dδn
(

1
2 + 1

δn + 1
M

)
k

.

Hence, in both cases, the density of T′ is at most dδn
(

1/2 + max{η, 1
δn + 1

M}
)

/k.
For every sufficiently small constant ε > 0, by picking η = ε/20, M = 40/ε and n > 800/(εδ),

the ratio between the two cases is at least (2− ε), concluding the proof of Theorem 3.

4. Inapproximability of MEB and MBB

Let us now turn our attention to MEB and MBB. First, note that we can reduce MUCHB to
MEB/MBB by just letting the two sides of the bipartite graph be EH and creating an edge (e1, e2) iff
e1 ∩ e2 = ∅. This immediately shows that Lemma 1 implies the following:

Lemma 2. Assuming SSEH, for every δ > 0, it is NP-hard to, given a bipartite graph G = (L, R, E) with
|L| = |R| = n, distinguish between the following two cases:

• (Completeness) G contains K(1/2−δ)n,(1/2−δ)n as a subgraph.
• (Soundness) G does not contain Kδn,δn as a subgraph.

Here Kt,t denotes the complete bipartite graph in which each side contains t vertices.

We provide the full proof of Lemma 2 in Appendix A. We also note that Theorem 1 follows from
Lemma 2 by gap amplification via randomized graph product [29,30]. Since this has been analyzed
before even for biclique (Appendix D [20]), we defer the full proof to Appendix B.

We are now only left to prove Lemma 1; we devote the rest of this section to this task.

4.1. Preliminaries

Before we continue, we need additional notations and preliminaries. For every graph
G = (V, E, w) and every vertex v, we write G(v) to denote the distribution on its neighbors weighted
according to w. (That is, Pru′∼G(v)[u′ = u]is w((v, u))/d if (v, u) ∈ E and is zero otherwise.)
Moreover, we sometimes abuse the notation and write e ∼ G to denote a random edge of G weighted
according to w.

While our reduction can be understood without notation of unique games, it is best described in a
context of unique games reductions. We provide a definition of unique games below.

Definition 3 (Unique Game (UG)). A unique game instance U = (G = (V , E ,W), [R], {πe}e∈E )

consists of an edge-weighted graph G = (V , E ,W), a label set [R] = {1, . . . , R}, and, for
each e ∈ E , a permutation πe : [R] → [R]. The goal is to find an assignment
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F : V → [R] such that valU (F) , Pr(u,v)∼G[π(u,v)(F(u)) = F(v)] is maximized; we call an edge (u, v) such
that π(u,v)(F(u)) = F(v) satisfied.

Khot’s Unique Games Conjecture (UGC) [7] states that, for every ε > 0, it is NP-hard to distinguish
between a unique game in which there exists an assignment satisfying at least (1− ε) fraction of edges
from one in which every assignment satisfies at most ε fraction of edges.

Finally, we need some preliminaries in discrete Fourier analysis. We state here only few facts that
we need. We refer interested readers to [55] for more details about the topic.

For any discrete probability space Ω, f : ΩR → [0, 1] can be written as ∑σ∈[|Ω|]R f̂ (σ)φσ where
{φσ}σ∈[|Ω|]R is the product Fourier basis of L2(ΩR) (see [55] (Chapter 8.1)). The degree-d influence on

the j-th coordinate of f is infld
j ( f ) , ∑σ∈[|Ω|]R ,σj 6=1,#σ6d f̂ 2(σ) where #σ , |{i ∈ [R] | σi 6= 1}|. It is well

known that ∑R
j=1 infld

j ( f ) 6 d (see [56] (Proposition 3.8)).
We also need the following theorem. It follows easily from the so-called “It Ain’t Over Till It’s

Over” conjecture, which is by now a theorem ([56] (Theorem 4.9)). For more details on how this version
follows from there, please refer to [57] (p. 769).

Theorem 4 ([56]). For any β, εT , γ > 0, there exists κ > 0 and t, d ∈ N such that, if any functions
f1, . . . , ft : ΩR → {0, 1} where Ω is a probability space whose probability of each atom is at least β satisfy

∀i ∈ [t], E
x∈ΩR

[ fi(x)] 6 0.99 and ∀j ∈ [R], ∀1 6 i1 6= i2 6 t, min{infld
j ( fi1), infld

j ( fi2)} 6 κ,

then

Pr
x∈ΩR ,D∼SεT (R)

[
t∧

i=1

fi(CD(x)) ≡ 1

]
< γ

where D ∼ SεT (R) is a random subset of [R] where each i ∈ [R] is included independently w.p. εT , CD(x) ,
{x′ | x′[R]\D = x[R]\D} and fi(CD(x)) ≡ 1 is a shorthand for ∀x′ ∈ CD(x), fi(x′) = 1.

We remark that the constant 0.99 in Theorem 4 could be replaced by any constant less than one;
we use it only to avoid introducing more parameters

4.2. Bansal-Khot Long Code Test and A Candidate Reduction

Theorem 4 leads us nicely to the Bansal-Khot long code test [58]. For UGC hardness
reductions, one typically needs a long code test (aka dictatorship gadget) which, on input
f1, . . . , ft : {0, 1}R → {0, 1}, has the following properties:

• (Completeness) If f1 = · · · = ft is a long code, the test accepts with large probability. (A long code
is simply j-junta (i.e. a function that depends only on the xj) for some j ∈ [R].)

• (Soundness) If f1, . . . , ft are balanced (i.e. E f1 = · · · = E ft = 1/2) and are “far from being a long
code”, then the test accepts with low probability.

A widely-used notion of “far from being a long code”, and one we will use here, is that the
functions do not share a coordinate with large low degree influences, i.e., for every j ∈ [R] and
every i1 6= i2 ∈ [t], at least one of infld

j ( fi1) and infld
j ( fi2) is small.

Bansal-Khot long code test works by first picking x ∼ {0, 1}R and D ∼ SεT (R). Then, test whether
fi evaluates to 1 on the whole CD(x). This can be viewed as an “algorithmic” version of Theorem 4;
specifically, the theorem (with Ω = {0, 1}) immediately implies the soundness property of this test.
On the other hand, it is obvious that, if f1 = · · · = ft is a long code, then the test accepts with
probability 1/2− εT .
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Bansal and Khot used this test to prove tight hardness of approximation of Vertex Cover.
The reduction is via a natural composition of the test with unique games. Their reduction also
gives a cadidate reduction from UG to MUCHB, which is stated below in Figure 1.

Input: A unique game (G = (V , E ,W), [R], {πe}e∈E) and parameters ` ∈ N and εT ∈ (0, 1).
Output: A hypergraph H = (VH , EH).
The vertex set VH is V × {0, 1}R and the hyperedges are distributed as follows:

• Sample u ∼ V and sample v1 ∼ G(u), . . . , v` ∼ G(u).
• Sample x ∼ {0, 1}R and a subset D ∼ SεT (R).
• Output a hyperedge e = {(vp, x′) | p ∈ [`], x′ ∈ CD(x)}.

Figure 1. A Candidate Reduction from UG to MUCHB.

As is typical for gadget reductions, for T ⊆ VH , we view the indicator function
fu(x) , 1[(u, x) ∈ T] for each u ∈ V as the intended long code. If there exists an assignment φ

to the unique game instance that satisfies nearly all the constraints, then the bisection corresponding to
fu(x) = xφ(u) cuts only small fraction of edges, which yields the completeness of MUCHB.

As for the soundness, we want to decode an UG assignment from T ⊆ VH of size at most |VH |/2
which contains at least ε fraction of hyperedges. In terms of the tests, this corresponds to a collection
of functions { fu}u∈V such that Eu∼V Ex∼{0,1}R fu(x) 6 1/2 and the Bansal-Khot test on fv1 , . . . , fvt

passes with probability at least ε where v1, . . . , vt are sampled as in Figure 1. Now, if we assume that
Ex fu(x) 6 0.99 for all u ∈ V , then such decoding is possible via a similar method as in [58] since
Theorem 4 can be applied here.

Unfortunately, the assumption Ex fu(x) 6 0.99 does not hold for an arbitrary T ⊆ VH and the
soundness property indeed fails. For instance, imagine the constraint graph G of the starting UG
instance consisting of two disconnected components of equal size; let V0,V1 be the set of vertices in
the two components. In this case, the bisection (V0 × {0, 1}R,V1 × {0, 1}R) does not even cut a single
edge! This is regardless of whether there exists an assignment to the UG that satisfies a large fraction
of edges.

4.3. RST Technique and The Reduction from SSE to MUCHB

The issue described above is common for graph problems that involves some form of expansion
of the graph. The RST technique [11] was in fact invented to specifically circumvent this issue. It works
by first reducing SSE to UG and then exploiting the structure of the constructed UG instance when
composing it with a long code test; this allows them to avoid extreme cases such as one above. There are
four parameters in the reduction: εV , β ∈ (0, 1) and R, k ∈ N such that R is divisible by k. Before we
describe the reduction, let us define additional notations:

• Let G⊗R denote the R-tensor graph of G = (V, E, w); the vertex set of G⊗R is VR and, for every
A, B ∈ VR, the edge weight between A, B is the product of w(Ai, Bi) in G for all i ∈ [R].

• For each A ∈ VR, TV(A) denote the distribution on VR where the i-th coordinate is set to Ai with
probability 1− εV and is uniformly randomly sampled from V otherwise.

• Let ΠR,k denote the set of all permutations π’s of [R] such that, for each j ∈ [k], π({R(j− 1)/k +
1, . . . , Rj/k}) = {R(j− 1)/k + 1, . . . , Rj/k}.

• Let {0, 1,⊥}β denote the probability space such that the probability for 0, 1 are both β/2 and the
probability for ⊥ is 1− β.

The first step of reduction takes an SSE(δ, η, M) instance G = (V, E, w) and produces a unique
game U = (G = (V , E ,W), [R], {πe}e∈E) where V = VR and the edges are distributed as follows:
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1. Sample A ∼ VR and Ã ∼ TV(A).
2. Sample B ∼ G⊗R(Ã) and B̃ ∼ TV(B).
3. Sample two random πA, πB ∼ ΠR,k.
4. Output an edge e = (πA(Ã), πB(B̃)) with π(A,B) = πB ◦ π−1

A .

Here εV is a small constant, k is large and R/k should be think of as Θ(1/δ). When there exists a set
S ⊆ V of size δ|V| with small edge expansion, the intended assignment is to, for each A ∈ VR, find the
first block j ∈ [k] such that |A(j) ∩ S| = 1 where A(j) denotes the multiset {AR(j−1)/k+1, . . . , ARj/k}
and let F(A) be the coordinate of the vertex in that intersection. If no such j exists, we assign F(A)

arbitrarily. Note that, since R/k = Θ(1/δ), Pr[|A(j)∩ S| = 1] is constant, which means that only 2−Ω(k)

fraction of vertices are assigned arbitrarily. Moreover, it is not hard to see that, for the other vertices,
their assignments rarely violate constraints as εV and Φ(S) are small. This yields the completeness.
In addition, the soundness was shown in [10,11], i.e., if every S ⊆ V of size δ|V| has near perfect
expansion, no assignment satisfies many constraints in U (see Lemma 7).

The second step is to reduce this UG instance to a hypergraph H = (VH , EH). Instead of making
the vertex set VR×{0, 1}R as in the previous candidate reduction, we will instead make VH = VR×ΩR

where Ω = {0, 1,⊥}β and β is a small constant. This does not seem to make much sense from the
UG reduction standpoint because we typically want to assign which side of the bisection (A, x) ∈ VH
is according to xF(A) but xF(A) could be ⊥ in this construction. However, it makes sense when we
view this as a reduction from SSE directly: let us discard all coordinates i’s such that xi = ⊥ and
define A(j, x) , {Ai | i ∈ {R(j − 1)/k + 1, . . . , Rj/k} ∧ xi 6= ⊥}. If there exists a block j ∈ [k]
such that |A(j, x) ∩ S| = 1, then let j∗(A, x) be the first such block (i.e. min{j | |A(j, x) ∩ S| = 1}),
let i∗(A, x) be the coordinate in the intersection between A(j∗(A, x), x) and S, and assign (A, x) to
Txi∗(A,x) . (Recall that (T0, T1) is the intended bisection.) Otherwise, if no such block exists, assign
(A, x) arbitrarily.

Observe that, in the intended solution, the side that (A, x) is assigned to does not change if (1) Ai
is modified for some i ∈ [R] s.t. xi = ⊥ or (2) we apply some permutation π ∈ ΠR,k to both A and
x. In other words, we can “merge” two vertices (A, x) and (A′, x′) that are equivalent through these
changes together in the reduction. For notational convenience, instead of merging vertices, we will just
modify the reduction so that, if (A, x) is included in some hyperedge, then every (A′, x′) reachable
from (A, x) by these operations is also included in the hyperedge. More specifically, if we define
Mx(A) , {A′ ∈ VR | A′i = Ai for all i ∈ [R] such that xi 6= ⊥} corresponding to the first operation,
then we add π(A′, x) to the hyperedge for every A′ ∈ Mx(A) and π ∈ ΠR,k. The full reduction is
shown in Figure 2.

Input: An edge-weighted graph G with vertex set V and parameters R, k, ` ∈ N and εT , εV , β ∈
(0, 1).
Output: A hypergraph H = (VH , EH).
VH , VR ×ΩR where Ω , {0, 1,⊥}β and the hyperedges are distributed as follows:

• Sample A ∼ VR and Ã1, . . . , Ã` ∼ TV(A).
• Sample B1 ∼ G⊗R(Ã1), . . . , B` ∼ G⊗R(Ã`) and B̃1 ∼ TV(B1), . . . , B̃` ∼ TV(B`)
• Sample x ∈ ΩR and a subset D ∼ SεT (R).
• Output a hyperedge e = {π(B′, x′) | p ∈ [`], π ∈ ΠR,k, x′ ∈ CD(x), B′ ∈ Mx′(B̃p)}.

Figure 2. Reduction from SSE to Max UnCut Hypergraph Bisection.

Note that the test we apply here is slightly different from Bansal-Khot test as our test is on
Ω = {0, 1,⊥}β instead of {0, 1} used in [58]. Another thing to note is that now our vertices and
hyperedges are weighted, the vertices according to the product measure of VR ×ΩR and the edges
according to the distribution produced from the reduction. We write µH to denote the measure on the
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vertices, i.e., for T ⊆ VR × {0, 1,⊥}R, µH(T) = PrA∼VR ,x∼ΩR [(A, x) ∈ T], and we abuse the notation
EH(T) and use it to denote the probability that a hyperedge as generated in Figure 2 lies completely in
T. We note here that, while the MUCHB as stated in Lemma 1 is unweighted, it is not hard to see that
we can go from weighted version to unweighted by copying each vertex and each edge proportional
to their weights. (Note that this is doable since we can pick β, εV , εT to be rational.)

The advantage of this reduction is that the vertex “merging” makes gadget reduction non-local;
for instance, it is clear that even if the starting graph V has two connected components, the resulting
hypergraph is now connected. In fact, Raghavendra et al. [11] show a much stronger quantitative
bound. To state this, let us consider any T ∈ VH with µH(T) = 1/2. From how the hyperedges are
defined, we can assume w.l.o.g. that, if (A, x) ∈ T, then π(A′, x) ∈ T for every A′ ∈ Mx(A) and
every π ∈ ΠR,k. Again, let fA(x) , 1[(A, x) ∈ T]. The following bound on the variance of Ex fA(x) is
implied by the proof of Lemma 6.6 in [11]:

E
A∼VR

(
E

x∼ΩR
fA(x)− 1/2

)2
6 β.

The above bound implies that, for most A’s, the mean of fA cannot be too large. This will indeed
allow us to ultimately apply Theorem 4 on a certain fraction of the tuples (B̃1, . . . , B̃`) in the reduction,
which leads to an UG assignment with non-negligible value.

4.4. Completeness

In the completeness case, we define a bisection similar to that described above. This bisection
indeed cuts only a small fraction of hyperedges; quantitatively, this yields the following lemma.

Lemma 3. If there is a set S ⊆ V such that Φ(S) 6 η and |S| = δ|V| where δ ∈
[

k
10βR , k

βR

]
, then there is

a bisection (T0, T1) of VH such that EH(T0), EH(T1) > 1/2−O(εT/β)−O(η`/β)−O(εV`/β)− 2−Ω(k)

where O(·) and Ω(·) hide only absolute constants.

Proof. Suppose that there exists S ⊆ V of size |S| = δ|V| where
[

k
10βR , k

βR

]
and Φ(S) 6 η.

For A ∈ VR, x ∈ {0, 1,⊥}R, we will use the following notations throughout this proof:

• For j ∈ [k], let W(A, x, j) denote the set of all coordinates i in j-th block such that xi 6= ⊥ and
Ai ∈ S, i.e., W(A, x, j) = {i ∈ {R(j− 1)/k + 1, . . . , Rj/k} | Ai ∈ S ∧ xi 6= ⊥}.

• Let j∗(A, x) denote the first block j with |W(A, x, j)| = 1, i.e., j∗(A, x) = min{j ∈ [k] |
|W(A, x, j)| = 1}. Note that if such block does not exist, we set j∗(A, x) = −1.

• Let i∗(A, x) be the only element in W(A, x, j∗(A, x)). If j∗(A, x) = −1, let i∗(A, x) = −1.

To define T0, T1, we start by constructing T′0 ⊆ T0 and T′1 ⊆ T1 as follows: assign each (A, x) ∈ VH
such that j∗(A, x) 6= −1 to Txi∗(A,x) . Finally, we assign the rest of the vertices arbitrarily to T0 and T1 in
such a way that µH(T0) = µH(T1). Since T′0 ⊆ T0, T′1 ⊆ T1, it suffices to show the desired bound for
EH(T′0), EH(T′1). Due to symmetry, it suffices to bound EH(T′0). Recall that EH(T′0) = Pr[e ⊆ T′0] where
e is generated as detailed in Figure 2.

To compute EH(T′0), it will be most convenient to make a block-by-block analysis. In particular,
for each block j ∈ [k], we define Gj to denote the event that j∗(B′, x′) = j for some (B′, x′) ∈ e. We will
be interested in bounding the following conditional probabilities:

• c1 , Pr[j∗(A, x) = j | j∗(A, x) > j− 1]
• c2 , Pr[Gj | j∗(A, x) > j ∧ ¬G1 ∧ · · · ∧ ¬Gj−1]

• c3 , Pr[e * T′0 | j∗(A, x) = j ∧ ¬G1 ∧ · · · ∧ ¬Gj−1]

Here and throughout the proof, e, A, Ã1, . . . , Ã`, B1, . . . , B`, B̃1, . . . , B̃` are as sampled by our
reduction in Figure 2. Note also that it is clear that c1, c2, c3 do not depend on j.
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Before we bound c1, c2, c3, let us see how these probabilities can be used to bound EH(T′0).

Pr
e∼EH

[e ⊆ T′0] >
k

∑
j=1

Pr
e∼EH

[e ⊆ T′0 ∧ j∗(A, x) = j]

>
k

∑
j=1

Pr
e∼EH

[e ⊆ T′0 ∧ j∗(A, x) = j ∧ ¬G1 ∧ · · · ∧ ¬Gj−1]

=
k

∑
j=1

Pr
e∼EH

[e ⊆ T′0 | j∗(A, x) = j ∧ ¬G1 ∧ · · · ∧ ¬Gj−1]Pr[j∗(A, x) = j ∧ ¬G1 ∧ · · · ∧ ¬Gj−1] (1)

= (1− c3)
k

∑
j=1

Pr[j∗(A, x) = j ∧ ¬G1 ∧ · · · ∧ ¬Gj−1]

= (1− c3)
k

∑
j=1

Pr[j∗(A, x) = j]Pr[¬G1 ∧ · · · ∧ ¬Gj−1 | j∗(A, x) = j].

The probability that j∗(A, x) = j is in fact simply

Pr[j∗(A, x) = j] = Pr[j∗(A, x) = j | j∗(A, x) > j− 1]∏
j−1
q=1 Pr[j∗(A, x) 6= q | j∗(A, x) > q− 1] = c1(1− c1)

j−1.

Moreover, Pr[¬G1 ∧ · · · ∧ ¬Gj−1 | j∗(A, x) = j] can be written as

Pr[¬G1 ∧ · · · ∧ ¬Gj−1 | j∗(A, x) = j] =
j−1

∏
q=1

Pr[¬Gq | j∗(A, x) = j ∧ ¬G1 ∧ · · · ∧ ¬Gq−1] = (1− c2)
j−1.

Plugging these two back into Equation (1), we have

EH(T′0) > (1− c3)
k

∑
j=1

c1(1− c1)
j−1(1− c2)

j−1

> c1(1− c3)
k

∑
j=1

(1− c1 − c2)
j−1

= c1(1− c3)

(
1− (1− c1 − c2)

k

c1 + c2

)
(2)

= (1− c3)(1− (1− c1 − c2)
k)

(
1

1 + c2/c1

)
> (1− c3)(1− (1− c1)

k)(1− c2/c1)

> 1− c3 − (1− c1)
k − c2/c1.

With Equation (2) in mind, we will proceed to bound c1, c2, c3. Before we do so, let us state two
inequalities that will be useful: for every i ∈ [R], p ∈ [`], we have

Pr[B̃p
i ∈ S | Ai /∈ S] 6 2εVδ + 2ηδ (3)

and

Pr[B̃p
i /∈ S | Ai ∈ S] 6 2εV + η. (4)

The first inequality comes from the fact that, for B̃p
i to be in S when Ai /∈ S, at least one

of the following events must occur: (1) Ai 6= Ãp
i and Ãp

i ∈ S, (2) Bp
i 6= B̃p

i and B̃p
i ∈ S,

(3) (Ãp
i , B̃p

i ) ∈ (V \ S)× S. Each of first two occurs with probability εVδ whereas the last event occurs
with probability at most ηδ/(1− δ) 6 2ηδ. On the other hand, for the second inequality, at least one of



Algorithms 2018, 11, 10 12 of 22

the following events must occur: (1) Ai 6= Ãp
i , (2) Bp

i 6= B̃p
i , (3) (Ãp

i , B̃p
i ) ∈ S× (V \ S). Each of first

two occurs with probability εV whereas the last event occurs with probability at most η.
Bounding c1. To compute c1, observe that Pr[j∗(A, z) = j | j∗(A, z) > j− 1] is the probability that,

for exactly one i in the j-th block, Ai ∈ S and xi 6= ⊥. For a fixed i, this happens with probability βδ.
Hence, c1 = (R/k)βδ(1− βδ)R/k−1. Since δ ∈

[
k

10βR , k
βR

]
, we can conclude that c1 is simply a constant

(i.e. c1 ∈ [10−5, 0.5]).
Bounding c2. We next bound c2. If j∗(A, x) > j, we know that |W(A, x, j)| 6= 1. Let us consider

the following two cases:

1. W(A, x, j) = ∅. Observe that, if Gj occurs, then there exist p ∈ [`] and i ∈ {R(j − 1)/k +
1, . . . , Rj/k} such that B̃p

i ∈ S, and xi 6= ⊥ or i ∈ D. For brevity, below we denote the conditional
event j∗(A, x) > j ∧ ¬G1 ∧ · · · ∧ ¬Gj−1 ∧W(A, x, j) = ∅ by E. By union bound, our observation
gives the following bound.

Pr[Gj | E]

6
Rj/k

∑
i=R(j−1)/k+1

Pr[∃p ∈ [`], B̃p
i ∈ S ∧ (xi 6= ⊥∨ i ∈ D) | E] (5)

=
Rj/k

∑
i=R(j−1)/k+1

(
Pr[∃p ∈ [`], B̃p

i ∈ S ∧ xi 6= ⊥ | E] + Pr[∃p ∈ [`], B̃p
i ∈ S ∧ xi = ⊥∧ i ∈ D | E]

)

We can now bound the first term by

Pr[∃p ∈ [`], B̃p
i ∈ S ∧ xi 6= ⊥ | E] 6 Pr[∃p ∈ [`], B̃p

i ∈ S | xi 6= ⊥∧ E]

6
`

∑
p=1

Pr[B̃p
i ∈ S | xi 6= ⊥∧ E] (6)

(Since W(A, j) = ∅) =
`

∑
p=1

Pr[B̃p
i ∈ S | Ai /∈ S]

(From Equation (3)) 6 `(2εVδ + 2ηδ).

Consider the other term in Equation (5). We can rearrange it as follows.

Pr[∃p ∈ [`], B̃p
i ∈ S ∧ xi = ⊥∧ i ∈ D | E]

= εT Pr[∃p ∈ [`], B̃p
i ∈ S ∧ xi = ⊥ | i ∈ D ∧ E]

6 εT Pr[∃p ∈ [`], B̃p
i ∈ S | xi = ⊥∧ i ∈ D ∧ E] (7)

6 εT
(
Pr[Ai ∈ S | xi = ⊥∧ i ∈ D ∧ E] + Pr[∃p ∈ [`], B̃p

i ∈ S | Ai /∈ S ∧ xi = ⊥∧ i ∈ D ∧ E]
)

= εT
(
Pr[Ai ∈ S | xi = ⊥] + Pr[∃p ∈ [`], B̃p

i ∈ S | Ai /∈ S]
)

(From (3)) 6 εT (δ + 2εV δ`+ 2ηδ`) .

Combining Equations (5)–(7) and from δ 6 k
βR , we have

Pr[Gj | E] 6 1/(βδ) (2εVδ`+ 2ηδ`+ εTδ + 2εVδ`+ 2ηδ`) 6 O(εT/β) + O(η`/β) + O(εV`/β).

2. |W(A, x, j)| > 1. Let i∗1 and i∗2 be two different (arbitrary) elements of W(A, x, j).
Again, for convenient, we use E to denote the conditional event j∗(A, x) > j ∧ ¬G1 ∧ · · · ∧
¬Gj−1 ∧ {i∗1 , i∗2} ⊆W(A, x, j). Now, let us first split Pr[Gj|E] as follows.
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Pr[Gj | E] 6 Pr[i∗1 ∈ D] + Pr[i∗2 ∈ D] + Pr[Gj | E ∧ i∗1 , i∗2 /∈ D]

= 2εT + Pr[Gj | E ∧ i∗1 , i∗2 /∈ D]. (8)

Observe that, when i∗1 , i∗2 /∈ D, x′i∗1
, x′i∗2 6= ⊥ for every x′ ∈ CD(x). Hence, for Gj to occur,

there must be p ∈ [`] such that at least one of B̃p
i∗1

, B̃p
i∗2

is not in S. In other words,

Pr[Gj | E ∧ i∗1 , i∗2 /∈ D] 6 Pr[∃p ∈ [`], B̃p
i∗1

/∈ S ∨ B̃p
i∗2

/∈ S | E ∧ i∗1 , i∗2 /∈ D]

6
`

∑
p=1

(
Pr[B̃p

i∗1
/∈ S | E ∧ i∗1 , i∗2 /∈ D] + Pr[B̃p

i∗2
/∈ S | E ∧ i∗1 , i∗2 /∈ D]

)
(9)

(From i∗1 , i∗2 ∈W(A, x, j)) =
`

∑
p=1

(
Pr[B̃p

i∗1
/∈ S | Ai∗1 ∈ S] + Pr[B̃p

i∗2
/∈ S | Ai∗2 ∈ S]

)
(From Equation (4)) 6 2εV`+ η`.

Combining this with Equation (8), we have Pr[Gj | E] 6 O(εT) + O(η`) + O(εV`).

As a result, we can conclude that c2 is at most O(εT/β) + O(η`/β) + O(εV`/β).
Bounding c3. Finally, let us bound c3. First, note that the probability that xi∗(A,x) = 1 is 1/2 and

that the probability that i∗(A, x) ∈ D is εT . This means that

c3 6 1/2 + εT + Pr[e * T′0 | E].

where E is the event xi∗(A,x) = 0∧ i∗(A, x) /∈ D ∧ j∗(A, x) = j ∧ ¬G1 ∧ · · · ∧ ¬Gj−1.
Moreover, since Ai∗(A,x) ∈ S, from Equation (4) and from union bound, we have

Pr
[
∃p ∈ [`], B̃p

i∗(A,x) /∈ S
∣∣∣ E
]
6 2εV`+ η`.

From the above two inequalities, we have

c3 6 1/2 + εT + 2εV`+ η`+ Pr
[
e * T′0

∣∣∣ E ∧
(
∀p ∈ [`], B̃p

i∗(A,x) ∈ S
)]

.

Conditioned on the above event, e * T′0 implies that there exists p ∈ [`] and some i 6= i∗(A, x)
in this (j-th) block such that B̃p

i ∈ S, and xi 6= ⊥ or i ∈ D. We have bounded an almost identical
probability before in the case W(A, x, j) = ∅ when we bound c2. Similarly, here we have an upper
bound of O(εT/β) + O(η`/β) + O(εV`/β) on this probability. Hence,

c3 6 1/2 + O(εT/β) + O(η`/β) + O(εV`/β)

By combining our bounds on c1, c2, c3 with Equation (2), we immediately arrive at the
desired bound:

EH(T′0) > 1/2−O(εT/β)−O(η`/β)−O(εV`/β)− 2−Ω(k).

4.5. Soundness

Let us consider any set T such that µH(T) 6 1/2. We would like to give an upper bound on EH(T).
From how we define hyperedges, we can assume w.l.o.g. that (A, x) ∈ T if and only if π(A′, x) ∈ T
for every A′ ∈ Mx(A) and π ∈ ΠR,k. We call such T ΠR,k-invariant.
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Let f : VR ×ΩR → {0, 1} denote the indicator function for T, i.e., f (A, x) = 1 if and only if
(A, x) ∈ T. Note that EA∼VR ,x∼ΩR f (A, x) = µH(T) 6 1/2. Following notation from [11], we write
fA(x) as a shorthand for f (A, x). In addition, for each A ∈ VR, we will write B̃ ∼ Γ(A) as a shorthand
for B̃ generated randomly by sampling Ã ∼ TV(A), B ∼ G⊗R(Ã) and B̃ ∼ TV(B) respectively. Let us
restate Raghavendra et al.’s [11] lemma regarding the variance of Ex fA(x) in a more convenient
formulation below.

Lemma 4 ([11] (Lemma 6.6)). For every A ∈ VR, let µA , Ex∼ΩR fA(x). We have

E
A∼VR

(
E

B̃∼Γ(A)
µB̃ − µH(T)

)2

6 β.

Note that Lemma 6.6 in [11] requires a symmetrization of f ’s, but we do not need it here since T
is ΠR,k-invariant.

To see how the above lemma helps us decode an UG assignment, observe that, if our test
accepts on fB̃1 , . . . , fB̃` , x, D, then it also accepts on any subset of the functions (with the same x, D);
hence, to apply Theorem 4, it suffices that t of the functions have means 6 0.99. We will choose ` to be
large compared to t. Using above lemma and a standard tail bound, we can argue that Theorem 4 is
applicable for almost all tuples B̃1, . . . , B̃`, as stated below.

Lemma 5. For any positive integer t 6 0.01`,

Pr
A∼VR ,B̃1,...,B̃`∼Γ(A)

[|{i ∈ [`] | µB̃i 6 0.99}| > t] > 1− 10β− 2−`/100.

Proof. First, note that, since µH(T) 6 1/2, we can use Cherbychev’s inequality and Lemma 4 to arrive
at the following bound, which is analogous to Lemma 6.7 in [11]:

Pr
A∼VR

[
E

B̃∼Γ(A)
µB̃ > 0.9

]
6 10β. (10)

Let us call A ∈ VR such that EB̃∼Γ(A) µB̃ > 0.9 bad and the rest of A ∈ VR good.
For any good A ∈ VR, Markov’s inequality implies that PrB̃∼Γ(A)[µB̃ > 0.99] 6 0.9/0.99 < 0.95.

As a result, an application of Chernoff bound gives the following inequality.

Pr
B̃1,...,B̃`∼Γ(A)

[|{i ∈ [`] | µB̃i 6 0.99}| < t | A is good] 6 2−`/100. (11)

Finally, observe that Equations (10) and (11) immediately yields the desired bound.

4.5.1. Decoding an Unique Games Assignment

With Lemma 5 ready, we can now decode an UG assignment via a similar technique from [58].

Lemma 6. For any εT , γ, β > 0, let t = t(εT , γ, β), κ = κ(εT , γ, β) and d = d(εT , γ, β) be as in Theorem 4.
For any integer ` > 100t, if there exists T ⊆ VH of such that µH(T) 6 1/2 and EH(T) > 2γ+ 10β+ 2−`/100,
then there exists F : VR → [R] such that

Pr
A∼VR ,B̃∼Γ(A),πA ,πB∼ΠR,k

[π−1
A (F(πA(Ã))) = π−1

B (F(πB(B̃)))] >
γκ2

4d2`2 .
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Proof. The decoding procedure is as follows. For each A ∈ VR, we construct a set of candidate labels
Cand[A] , {j ∈ [R] | infld

j ( fA) > κ}. We generate F randomly by, with probability 1/2, setting F(A)

to be a random element of Cand[A] and, with probability 1/2, sampling B̃ ∼ Γ(A) and setting F(A) to
be a random element from Cand[B]. Note that, if the candidate set is empty, then we simply pick an
arbitrary assignment.

From our assumption that T is ΠR,k-invariant, it follows that, for every A ∈ VR, π ∈ ΠR,k and
j ∈ [R], PrF[π

−1(F(π(A))) = j] = PrF[F(A) = j]. In other words, we have

Pr
F,A∼VR ,B̃∼Γ(A),πA ,πB∼ΠR,k

[π−1
A (F(πA(Ã))) = π−1

B (F(πB(B̃)))] = Pr
F,A∼VR ,B̃∼Γ(A)

[F(Ã) = F(B̃)]. (12)

Next, note that, from how our reduction is defined, EH(T) can be written as

EH(T) = Pr
A∼VR ,B̃1,...,B̃`∼Γ(A),x∼ΩR ,D∼SεT (R)

[∧̀
i=1

fB̃i (CD(x)) ≡ 1

]
.

From EH(T) > 2γ + 10β + 2−`/100 and from Lemma 5, we can conclude that

Pr
A,B̃1,...,B̃`,x,D

[(∧̀
i=1

fB̃i (CD(x)) ≡ 1

)
∧
(
|{i ∈ [`] | µB̃i 6 0.99}| > t

)]
> 2γ.

From Markov’s inequality, we have

γ 6 Pr
A,B̃1,...,B̃`

[
Pr
x,D

[(∧̀
i=1

fB̃i (CD(x)) ≡ 1

)
∧
(
|{i ∈ [`] | µB̃i 6 0.99}| > t

)]
> γ

]

= Pr
A,B̃1,...,B̃`

[(
Pr
x,D

[∧̀
i=1

fB̃i (CD(x)) ≡ 1

]
> γ

)
∧
(
|{i ∈ [`] | µB̃i 6 0.99}| > t

)]
.

A tuple (A, B̃1, . . . , B̃`) is said to be good if Prx∼ΩR ,D∼SεT (R)

[∧`
i=1 fB̃i (CD(x)) ≡ 1

]
> γ and

|{i ∈ [`] | µB̃i 6 0.99}| > t. For such tuple, Theorem 4 implies that there exist i1 6= i2 ∈ [`], j ∈ [R] s.t.
infld

j ( fB̃i1 ), infld
j ( fB̃i2 ) > κ. This means that Cand(B̃i1) ∩Cand(B̃i2) 6= ∅.

Hence, if we sample a tuple (A, B̃1, . . . , B̃`) at random, and then sample two different
B̃, B̃′ randomly from B̃1, . . . , B̃`, then the tuple is good with probability at least γ and, with probability
1/`2, we have B̃ = B̃i1 , B̃′ = B̃i2 . This gives the following bound:

Pr
A,B̃,B̃′

[
Cand(B̃) ∩Cand(B̃′) 6= ∅

]
>

γ

`2 .

Now, observe that B̃ and B̃′ above are distributed in the same way as if we pick both of them
independently with respect to Γ(A). Recall that, with probability 1/2, F(A) is a random element
of Cand(B̃) where B̃ ∼ Γ(A) and, with probability 1/2, F(B̃′) is a random element of Cand(B̃′).
Moreover, since the sum of degree d-influence is at most d (Proposition 3.8 [56]), the candidate sets are
of sizes at most d/κ. As a result, the above bound yields

Pr
A∼VR ,B̃′∼Γ(A)

[F(A) = F(B̃′)] >
γκ2

4d2`2 ,

which, together with Equation (12), concludes the proof of the lemma.
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4.5.2. Decoding a Small Non-Expanding Set

To relate our decoded UG assignment back to a small non-expanding set in G, we use the following
lemma of [11], which roughly states that, with the right parameters, the soundness case of SSEH implies
that only small fraction of constriants in the UG can be satisfied.

Lemma 7 ([11] (Lemma 6.11)). If there exists F : VR → [R] such that

Pr
A∼VR ,B̃∼Γ(A),πA ,πB∼ΠR,k

[π−1
A (F(πA(Ã))) = π−1

B (F(πB(B̃)))] > ζ,

then there exists a set S ⊆ V with |S||V| ∈
[

ζ
16R , 3k

εV R

]
with Φ(S) 6 1− ζ

16k .

By combining the above lemma with Lemma 6, we immediately arrive at the following:

Lemma 8. For any εT , γ, β > 0, let t = t(εT , γ, β), κ = κ(εT , γ, β) and d = d(εT , γ, β) be as in Theorem 4.
For any integer ` > 100t and any εV > 0, if there exists T ⊆ VH with µH(T) 6 1/2 such that EH(T) > 2γ +

10β + 2−`/100, then there exists a set S ⊆ V with |S||V| ∈
[

ζ
16R , 3k

εV R

]
with Φ(S) 6 1− ζ

16k where ζ = γκ2

4d2`2 .

4.6. Putting Things Together

We can now deduce inapproximability of MUCHB by simply picking appropriate parameters.

Proof of Lemma 1. The parameters are chosen as follows:

• Let β = ε/30, γ = ε/6, and k = Ω(log(1/ε)) so that the term 2−Ω(k) in Lemma 3 is 6 ε/4.
• Let εT = O(βε) so that the error term O(εT/β) in Lemma 3 is at most ε/4.
• Let t = t(εT , γ, β), κ = κ(εT , γ, β) and d = d(εT , γ, β) be as in Theorem 4.

• Let ζ = γκ2

4d2`2 be as in Lemma 8 and let ` = max{100t, 1000 log(1/ε)}.
• Let εV = O(εβ/`) where so that the error term O(εV`/β) in Lemma 3 is at most ε/4.
• Let η = min{ ζ

32k , O(εβ/`)} so that the error term O(η`/β) in Lemma 3 is at most ε/4.

• Let M = max{ 16k
βζ , 3β

εV
}.

• Finally, let R = k
βδ where δ = δ(η, M) is the parameter from the SSEH (Conjecture 2).

Let G = (V, E, w) be an instance of SSE(η, δ, M) and let H = (VH , GH) be the hypergraph resulted
from our reduction. If there exists S ⊆ V of size δ|V| of expansion at most η, Lemma 3 implies that
there is a bisection (T0, T1) of VH such that EH(T0), EH(T1) > 1/2− ε.

As for the soundness, Lemma 8 with our choice of parameters implies that, if there exists a
set T ⊆ VH with µ(T) 6 1/2 and EH(T0) > ε, there exists S ⊆ V with |S| ∈

[
δ|V|
M , δ|V|M

]
whose

expansion is less than 1− η. The contrapositive of this yields the soundness property.

5. Conclusions

In this work, we prove essentially tight inapproximability of MEB, MBB, Minimum k-Cut and
DALkS based on SSEH. Our results, expecially for the biclique problems, demonstrate further the
applications of the hypothesis and particularly the RST technique [11] in proving hardness of graph
problems that involve some form of expansion. Given that the technique has been employed for
only a handful of problems [11,59], an obvious but intriguing research direction is to try to utilize
the technique to other problems. One plausible candidate problem to this end is the 2-Catalog
Segmentation Problem [60] since a natural candidate reduction for this problem fails due to a similar
counterexample as in Section 4.2.

Another interesting question is to derandomize graph product used in the gap amplification
step for biclique problems. For Maximum Clique, this step has been derandomized before [17,61];
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in particular, Zuckerman [17] derandomized Håstad’s result [4] to achieve n1−ε ratio NP-hardness
for approximating Maximum Clique. Without going into too much detail, we would like to note that
Zuckerman’s result is based on a construction of dispersers with certain parameters; properties
of dispersers then imply soundness of the reduction whereas completeness is trivial from the
construction since Håstad’s PCP has perfect completeness. Unfortunately, our PCP does not have
perfect completeness and, in order to use Zuckerman’s approach, additional properties are required in
order to argue about completeness of the reduction.
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Appendix A. Reduction from MUCHB to Biclique Problems

Proof of Lemma 2 from Lemma 1. The reduction from MUCHB to the two biclique problems are
simple. Given a hypergraph H = (VH , EH), we create a bipartite graph G = (L, R, E) by letting
L = R = EH and creating an edge (e1, e2) for e1 ∈ L, e2 ∈ R iff e1 ∩ e2 = ∅.

Completeness. If there is a bisection (T0, T1) of VH such that |EH(T0)|, |EH(T1)| > (1/2− ε)|EH |,
then EH(T0) ⊆ L and EH(T1) ⊆ R induce a complete bipartite subgraph with at least (1/2− ε)n
vertices on each side in G.

Soundness. Suppose that, for every T ⊆ VH of size at most |VH |/2, we have |EH(T)| 6 ε|VH |.
We will show that G does not contain Kεn+1,εn+1 as a subgraph. Suppose for the sake of contradiction
that G contains Kεn+1,εn+1 as a subgraph. Consider one such subgraph; let e1, . . . , eεn+1 ∈ L and
e′1, . . . , e′εn+1 ∈ R be the vertices of the subgraph. From how the edges are defined, T0 , e1 ∪ · · · ∪ eεn+1

and T1 , e′1 ∪ · · · ∪ e′εn+1 are disjoint. At least one of the two sets is of size at most |VH |/2, assume
without loss of generality that |T0| 6 |VH |/2. This is a contradiction since T0 contains at least εn + 1
hyperedges e1, . . . , eεn+1.

By picking ε = δ/2 and n > 2/ε, we arrive at the desired hardness result.

Appendix B. Gap Amplification via Randomized Graph Product

In this section, we provide a full proof of the gap amplification step for biclique problems,
thereby proving Theorem 1. The argument provided below is almost the same as the randomized graph
product-based analysis of Khot (Appendix D [20]), which is in turn based on the analysis of Berman and
Schnitger [29], except that we modify the construction slightly so that the reduction time is polynomial.
(Using Khot’s result directly would result in the construction time being quasi-polynomial.)

Specifically, we will prove the following statement, which immediately implies Theorem 1.

Lemma A1. Assuming SSEH and NP 6= BPP, for every ε > 0, no polynomial time algorithm can, given a
bipartite graph G′ = (L′, R′, E′) with |L′| = |R′| = N, distinguish between the following two cases:

• (Completeness) G′ contains KN1−ε ,N1−ε as a subgraph.
• (Soundness) G′ does not contain KNε ,Nε as a subgraph.

Proof. Let ε > 0 be any constant. Assume without loss of generality that ε < 1. Consider any bipartite
graph G = (L, R, E) with |L| = |R| = n. Let δ = 2−4/ε, k = log n and N = (1/δ)k. We construct a
graph G′ = (L′, R′, E′) where |L′| = |R′| = N as follows. For i ∈ [N], pick random elements Ui ∼ Lk

and Vi ∼ Rk, and add them to L′ and R′ respectively. Finally, for every U ∈ L′ and V ∈ R′, there is an



Algorithms 2018, 11, 10 18 of 22

edge between U and V in G′ if and only if there is an edge in the original graph G between Uj1 and Vj2
for every j1, j2 ∈ [k].

Completeness. Suppose that the original graph G contains K(1/2−δ)n,(1/2−δ)n as a subgraph.
Let one such subgraph be (S, T) where S ⊆ L and T ⊆ R. Observe that (L′ ∩ Sk, R′ ∩ Tk) induces
a biclique in G′. For each i ∈ [N], note that Ui ∈ Sk with probability (1/2− δ)k > (1/4)k = N−ε/2

independent of each other. As a result, from Chernoff bound, |L′ ∩ Sk| > N1−ε with high probability.
Similarly, we also have |R′ ∩ Tk| > N1−ε with high probability. Thus, G′ contains KN1−ε ,N1−ε as a
subgraph with high probability.

Soundness. Suppose that G does not contain Kδn,δn as a subgraph. We will show that, with
high probability, G′ does not contain KNε ,Nε as a subgraph. To do so, we will first prove the
following proposition.

Proposition A1. For any set A, let P(A) denote the power set of A. Moreover, let F : P(Lk ∪ Rk) →
P(L ∪ R) be the “flattening” operation defined by F (A) , ∪U∈A{Ui | i ∈ [k]}. Then, with high probability,
we have |F (S′)| > δn for every subset S′ ⊆ L′ of size Nε and |F (T′)| > δn for every subset T′ ⊆ R′

of size Nε.

Proof of Proposition A1. Let us consider the probability that there exists a set S′ ⊆ L′ of size Nε such
that |F (S′)| < δn. This can be bounded as follows.

Pr[∃S′ ⊆ L′, |S′| = Nε ∧ F (S′) < δn] = Pr[∃S ⊆ L, |S| < δn ∧ |Sk ∩ L′| > Nε]

6 ∑
S⊆L,|S|<δn

Pr[|Sk ∩ L′| > Nε]

= ∑
S⊆L,|S|<δn

Pr

 ∑
i∈[N]

1[Ui ∈ Sk] > Nε

 .

Observe that, for each i ∈ [N], 1[Ui ∈ Sk] is simply an independent Bernoulli random variable
with mean (|S|/n)k < δk = 1/N. Hence, by Chernoff bound, we have

Pr[∃S′ ⊆ L′, |S′| = Nε ∧ F (S′) < δn] 6 ∑
S⊆L,|S|<δn

2−Ω(Nε) 6 ∑
S⊆L,|S|<δn

2−Ω(n2) = 2−Ω(n2)

as desired.
Analogously, we also have |F (T′)| > δn for every subset T′ ⊆ R′ of size Nε with high probability,

thereby concluding the proof of Proposition A1.

With Proposition A1 ready, let us proceed with our soundness proof. Suppose that the event
in Proposition A1 occurs. Consider any subset S′ ⊆ L′ of size Nε and any subset T′ ⊆ R′ of size
Nε. Since |F (S′)| > δn, |F (T′)| > δn and G does not contain Kδn,δn as a subgraph, there exists
u ∈ F (S′) and v ∈ F (T′) such that (u, v) /∈ E. From the definition of G′, this implies that S′ and T′

do not induce a biclique in G′. As a result, G′ does not contain KNε ,Nε as a subgraph. From this and
from Proposition A1, G′ does not contain KNε ,Nε as a subgraph with high probability, concluding our
soundness argument.

Since Lemma 2 asserts that distinguishing between the two cases above are NP-hard (assuming
SSEH) and the above reduction takes polynomial time, we can conclude that, assuming SSEH and NP
6= BPP, no polynomial time algorithm can distinguish the two cases stated in the lemma.

Appendix C. Comparison Between SSEH and Strong UGC

In this section, we briefly discuss the similarities and differences between the classical Unique
Games Conjecture [7], the Small Set Expansion Hypothesis [10] and the Strong Unique Games
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Conjecture [58]. Let us start by stating the Unique Games Conjecture, proposed by Khot in his
influential work [7]:

Conjecture A1 (Unique Games Conjecture (UGC) [7]). For every ε, η > 0, there exists R = R(ε, η) such
that, given an UG instance (G = (V , E ,W), [R], {πe}e∈E ) such that G is regular, it is NP-hard to distinguish
between the following two cases:

• (Completeness) There exists an assignment F : V → [R] such that valU (F) > 1− ε.
• (Soundness) For every assignment F : V → [R], valU (F) 6 η.

In other words, Khot’s UGC states that it is NP-hard to distinguish between an UG instance which
is almost satisfiable from one in which only small fraction of edges can be satisfied. While SSEH as
stated in Conjecture 1 is not directly a statement about an UG instance, it has a strong connection with
the UGC. Raghavendra and Steurer [10], in the same work in which they proposed the conjecture,
observed that SSEH is implied by a variant of UGC in which the soundness is strengthened so that
the constraint graph is also required to be a small-set expander (i.e. every small set has near perfect
edge expansion). In a subsequent work, Raghavendra, Steurer and Tulsiani [11] showed that the two
conjectures are in fact equivalent. More formally, the following variant of UGC is equivalent to SSEH:

Conjecture A2 (UGC with Small-Set Expansion (UGC with SSE) [10]). For every ε, η > 0, there exist
δ = δ(ε) > 0 and R = R(ε, η) such that, given an UG instance (G = (V , E ,W), [R], {πe}e∈E ) such that G is
regular, it is NP-hard to distinguish between the following two cases:

• (Completeness) There exists an assignment F : V → [R] such that valU (F) > 1− ε.
• (Soundness) For every assignment F : V → [R], valU (F) 6 η. Moreover, G satisfies Φ(S) > 1− ε for

every S ⊆ V of size δn.

While our result is based on SSEH (which is equivalent to UGC with SSE), Bhangale et al. [22]
relies on another strengthened version of the UGC, which requires the following additional properties:

• There is not only an assignment that satisfies almost all constraints, but also a partial assignment
to almost the whole graph such that every constraint between two assigned vertices is satisfied.

• The graph in the soundness case has to satisfy the following vertex expansion property: for every
not too small subset of V , its neighborhood spans almost the whole graph.

More formally, the conjecture can be stated as follows.

Conjecture A3 (Strong UGC (SUGC) [58]). For every ε, η, δ > 0, there exists R = R(ε, η, δ) such that,
given an UG instance (G = (V , E ,W), [R], {πe}e∈E ) such that G is regular, it is NP-hard to distinguish
between the following two cases:

• (Completeness) There exists a subset S ⊆ V of size at least (1− ε)|V| and a partial assignment F : S→ [R]
such that every edge inside S is satisfied.

• (Soundness) For every assignment F : V → [R], valU (F) 6 η. Moreover, G satisfies |Γ(S)| > (1− δ)|V|
for every S ⊆ V of size δn where Γ(S) denote the set of all neighbors of S.

The conjecture was first formulated by Bansal and Khot [58]. We note here that the name “Strong
UGC” was not given by Bansal and Khot, but was coined by Bhangale et al. [22]. In fact, the name
“Strong UGC” was used earlier by Khot and Regev [8] to denote a different variant of UGC, in which
the completeness is strengthened to be the same as in Conjecture A3 but the soundness does not
include the vertex expansion property. Interestingly, this variant of UGC is equivalent to the original
version of the conjecture [8]. Moreover, as pointed out in [58], it is not hard to see that the soundness
property of SUGC can also be achieved by simply adding a complete graph with negligible weight to
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the constraint graph. In other words, both the completeness and soundness properties of SUGC can be
achieved separately. However, it is not known whether SUGC is implied by UGC.

To the best of our knowledge, it is not known if one of Conjecture A2 and Conjecture A3 implies
the other. In particular, while the soundness cases of both conjectures require certain expansion
properties of the graphs, Conjecture A2 deals with edge expansion whereas Conjecture A3 deals
with vertex expansion; even though these notations are closely related, they do not imply each other.
Moreover, as pointed out earlier, the completeness property of SUGC is stronger than that of UGC
with SSE; we are not aware of any reduction from SSE to UG that achieves this while maintaining the
same soundness as in Conjecture A2.

Finally, we note that both soundness and completeness properties of SUGC are crucial for Bhangale
et al.’s reduction [22]. Hence, it is unlikely that their technique applies to SSEH. Similarly, our reduction
relies crucially on edge expansion properties of the graph and, thus, is unlikely to be applicable
to SUGC.
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