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Abstract: Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable

incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic

mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds

associated with these pathways. While IEMs may present with multiple overlapping symptoms

and metabolites, early and accurate diagnosis of IEMs is critical for the long-term health of affected

subjects. The prevalence of IEMs differs between countries, likely because different IEM classifications

and IEM screening methods are used. Currently, newborn screening programs exclusively use

targeted metabolic assays that focus on limited panels of compounds for selected IEM diseases.

Such targeted approaches face the problem of false negative and false positive diagnoses that could

be overcome if metabolic screening adopted analyses of a broader range of analytes. Hence, we here

review the prospects of using untargeted metabolomics for IEM screening. Untargeted metabolomics

and lipidomics do not rely on predefined target lists and can detect as many metabolites as possible

in a sample, allowing to screen for many metabolic pathways simultaneously. Examples are given for

nontargeted analyses of IEMs, and prospects and limitations of different metabolomics methods are

discussed. We conclude that dedicated studies are needed to compare accuracy and robustness of

targeted and untargeted methods with respect to widening the scope of IEM diagnostics.

Keywords: mass spectrometry; LC-MS; phenylketonuria; organic aciduria; lysosomal storage disease;

mitochondrial disorders; aminoacidemia

1. Introduction

The measurement of metabolites in the diagnosis of inborn errors of metabolism (IEMs) was

established 55 years ago by Dr. Robert Guthrie for phenylketonuria (PKU) after its discovery by

Dr. Asbjørn Følling three decades earlier [1]. PKU is an inborn error of phenylalanine amino acid

metabolism, characterized by an increase in phenylalanine and its metabolites [2]. More than 10 years

later, gas chromatography coupled to mass spectrometry (GC-MS) was used to extend the initial

IEMs screenings beyond (phased-out) bacterial inhibition assay (BIA) tests, radioimmunoassays,

and enzyme-immunoassays [3]. Newborn screening programs (NBS) were slowly established as part

of preventive medicine. The role of NBS programs is the presumptive identification of diseases in

apparently healthy subjects through application of various specific tests [4]. In 1968, screening guidelines

were proposed by Wilson and Jungner and were supported by the World Health Organization [5]. In the

USA, states initially dedicated NBS programs to only two to three diseases, later gradually increasing

the number of tested diseases [6,7]. In the 1980s, IEMs were screened by gas chromatography/mass

spectrometry (GC/MS). Yet, in the late 1990s, the advent of liquid chromatography/mass spectrometry

(LC-MS) enabled the rapid diagnosis of 22 IEM diseases in parallel [3]. LC-MS/MS based methods target
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a suite of critical metabolites and represent the most widely used metabolomic assays, implemented in

clinical routines worldwide. These methods reduce the demand for previously used, time-consuming

or less accurate measurements [8]. Today, LC-MS and direct infusion tandem mass spectrometry

(MS/MS) are considered the gold standard for measurements of inborn errors in metabolism. Tandem

mass spectrometry screening of IEMs uses commercially available kits to detect several common

disorders with a single injection [9,10]. MS/MS assays expanded the screening list of IEM diseases

from the most common disease categories, aminoacidemia, organic aciduria, urea cycle disorders [11],

and galactosemia [12], to include less common diseases. IEM screening methods now include

fatty acid oxidation defects [13], purines and pyrimidines disorders [14] and other diseases [15–19].

Stable-isotope-labeled reference compounds are now routinely used as internal standards. Metabolic

profiling assays have allowed the study of different phenotypes of the same disease, as it was used

for diagnosis of Mucopolysaccharidoses (Lysosomal Storage Disease) types II, IVA, and VI [20].

This progress has allowed for better disease diagnosis and understanding of IEM categories.

In parallel to measurements by mass spectrometry, genetic screening of IEMs started in the

1990s [21]. Today, next generation sequencing enables genetic screenings as secondary diagnostic

tool [22]. Sequencing based techniques have drawbacks such as cost, delayed results, detection of

variants with uncertain clinical significance [23], and ethical problems [24]. These problems limit its

use in most diagnostic algorithms [23]. Yet, advances in genomics also led to an uneven acceptance

of the Wilson and Jungner guidelines [25]. Genetic variants with uncertain significance may induce

incidental findings outside IEMs [23]. Nonvalidated genetic variances caused by variable penetrance or

random X-chromosome activation affect subsequent adaptation of gene assays for IEM diagnosis [26,27].

In effect, testing for genetic variants in IEMs might best be combined with other omics data, including

metabolomics, to better understand the mechanisms how complex phenotypes are associated with

specific primary mutations [28].

Nowadays, targeted metabolite assays represent the key technology in NBS worldwide [29].

However, there is a high degree of heterogeneity and a lack of consensus in the tested diseases among

various NBS programs. Within Europe, the number of screened IEM diseases in NBS programs is

noticeably different. Finland screens only for congenital hypothyroidism, whereas Austria screens for

of 29 diseases [30]. Even within a country, such as Belgium, the number of screened diseases varies in

different regions and states [29,30], similar to the situation in the USA. This discrepancy in adopting

IEM screening methods also appears in the policies of cost reimbursements [31] or the thresholds of

biomarkers used for screening the same disorder [29,32]. The need to harmonize NBS is challenged

by the lack of sufficient information about various phenotypes, prevalence and natural history of the

diseases [33]. Most current research focuses on a single disorder or a group of linked disorders directed

to a specific group or populations [34–38]. The threshold for reporting false diagnosis also hampers

direct comparisons of NBS results across nations [33,39].

The use of untargeted metabolomics could complement current targeted metabolite assays.

Untargeted metabolomics has the prospect of studying a wider range of metabolic pathways and to

provide a broader view of the true metabolic phenotype of diseases [40]. Untargeted metabolomics

methods can be merged with aspects of classic targeted assays by validating methods for specific known

IEM biomarkers, including the use of stable-isotope labeled internal standards, while simultaneously

broaden the scope of analyses to semiquantified metabolites by accurate mass profiling [41]. Untargeted

metabolomics can deepen the understanding of disease pathways and support new discoveries that

may open up new treatment options [19]. This premise of untargeted metabolomics was exemplified

already 12 years ago, detailing the effects of a single altered gene on multiple biochemical pathways

for two IEM diseases [42]. However, it is yet unclear how untargeted metabolomics will fulfill clinical

requirements with respect to costs, speed, accuracy, and repeatability.

In this review, we will discuss IEM diseases with emphasis on screening and diagnosis using

targeted versus untargeted mass spectrometry (MS) approaches. We will give an overview of studies,

including application of matrices analyzed, instrumentation, and data processing methods. We will
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also discuss challenges and obstacles to adapt untargeted mass spectrometry in IEMs screening

and diagnosis.

2. Overview of Inborn Errors of Metabolism Diseases

IEM diseases are a group of inherited genetic diseases resulting from total or partial absence or

deficient activity of an individual enzyme, structural protein, or transporter molecule [36]. Recent

articles reported more than 1015 known IEMs [43]. There is a lot of discrepancy in the literature

estimating the overall incidence, but recently estimated incidence rates are one in 800–2500 live

births [22,44]. Individual disorders are more frequently diagnosed today, but such diseases are still

uncommon and vary in different countries and regions [45].

A recent attempt for classification associated with the prevalence of each category of IEMs has

been reported by Ferreira and his colleagues, (Figure 1). They used specific solid criteria to establish a

classification and prevalence of IEMs with the intent to form the first formal nosology of IEMs and to

update this categorization regularly [43].

Figure 1. Percentage of each category of inborn errors of metabolism (IEMs) according to inclusion

criteria reported by [43].

Studies from different countries have found wide disparities in the reported incidence rates

of IEM diseases (Figure 2). These discrepancies of IEM categories appear in overall incidence but

also for specific categories including organic acid disorders, lysosomal storage disorders, fatty acid

metabolism disorders, mitochondrial disorders, urea cycle disorders, amino acid metabolism disorders,

and carbohydrate metabolism disorders.

However, there is a lack of data regarding the causes of disparities in overall incidence and rates

of individual disorders worldwide. Higher rates of consanguineous marriage in some countries or

regions can increase the incidence rates up to 50-fold [46]. Regional differences in genetic diversity,

high rates of inbreeding and large family size [47] all contribute to variable incidences of the overall

incidence of IEMs. Further confounding the understanding of overall incident rates of IEMs is the

variation of study methods and duration used for the same disease in different countries [48].
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Figure 2. The prevalence of IEMs diseases globally and among different countries. Numbers on x-axes

are given per 100,000 live births (Table S1).

3. Inheritance and Causes

Most IEMs are inherited in an autosomal recessive (AR) manner [49]. In AR diseases, phenotypes

will only manifest if both parental copies of the mutated allele are inherited. Homozygote gene

mutation inheritance can occur by either consanguineous marriage or by a random mutation in the

second allele in heterozygote parents. Some IEMs are inherited as X-linked alleles, and therefore have

higher incidence rates in males. Due to variable random X-chromosome inactivation syndrome in

females, X-linked IEMs diseases can have highly variable manifestations from one tissue to another

and from one female (if so affected) to another. A minority of IEMs are inherited in an autosomal

dominant (AD) pattern. Another rare mode of inheritance is IEMs linked to mitochondrial DNA only

of maternal origin, as in subsets of respiratory chain disorders [50,51]. The pathophysiology behind

most IEM disorders is a specific enzyme defect that results in an inadequate conversion of substrates

into their direct products. That defect leads to accumulation of upstream substances which induce toxic

effects and abnormal alternative substrate metabolism, in addition to reduced downstream essential

products [52] (Figure 3).
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Figure 3. Mechanism of IEM diseases. Enzyme AB converts metabolite A to product B. A defect in

enzyme BC leads to an accumulation of metabolite B that may cause an activation of the pathway

BD. This causes an abnormal concentration of metabolite D and a deficiency in the end product C.

Alterations in these compounds are called the metabolic signature of the “ABCD disease” which can be

used for diagnosis if all compounds are detected.

4. Classifications

IEM disorders are often characterized by alteration of multiple overlapping metabolic pathways.

Different classifications have emerged to categorize IEM diseases to enable easier clinical and laboratory

diagnosis and facilitate treatment [53] such as pathophysiological classification of IEMs, (Figure 4).

IEMs were assorted as disorders of carbohydrate metabolism, disorders of amino acid metabolism,

disorders of organic acid metabolism, and lysosomal storage diseases [54]. However, more complex

classification systems have recently been proposed [55].

Figure 4. Pathophysiological classification of IEMs adopted from [55].

The Society for the Study of Inborn Errors of Metabolism (SSIEM) considers clinical aspects

of IEMs in a specific classification. The SSIEM classification assorts large numbers of individual

disorders according to their biochemical pathways and common pathophysiological mechanisms [4,44].

Metabolomics assays must be developed to reflect such classifications.

5. Clinical Presentation and Outcomes

IEMs may present at various ages in different ways. Clinical presentation of the disease can

occur even before birth, at birth, or during the first days of life as deterioration after normal birth and

delivery [56]. Errors in fetal metabolism may be associated with developing maternal complications

during pregnancy such as fatty liver and HELLP (Hemolysis, Elevated Liver Enzymes, Low Platelets)

syndrome [34]. At birth, inborn errors can manifest as perinatal asphyxia, or later as nonspecific chronic

manifestations such as delays in childhood developmental milestones. Acute metabolic decompensation

in the neonatal period may also present as severe acidosis, alkalosis, or hypoglycemia [15,48,56]. Most

IEM babies born at term seem to be well, but then deteriorate quickly, even when babies do not receive

oral feeds.
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This phenomenon is caused by changes in catabolism which occurs normally in the first days of

life, leading to an accumulation of metabolites that cause toxic manifestations. The rate of deterioration

is variable according to disease type, the extent of the disease and the most affected organ. For example,

inborn errors in metabolism may appear as neurological symptoms, disorders of acid-base balance,

unexplained hypoglycemia, cardiomyopathy, hepatic deterioration, or sudden death. Other diseases

have more subtle presentations, such as a characteristic odor which is not commonly detected [56,57].

In general, IEMs can be pleiotropic (affecting more than one system or organ) or have a localized

effect [58]. IEM diseases are responsible for a significant portion of childhood disability and deaths [43].

6. Diagnosis and Screening Inborn Errors of Metabolism

Clinical manifestations of IEMs are overlapping. Therefore, clinical approaches to diagnosing

IEMs are very difficult, especially for rarer disease variants. Presenting symptoms in infants can have a

wide variety of possible causes. Distinctive facial abnormalities are linked to a group of diseases such as

lysosomal storage disorders, pyruvate dehydrogenase deficiency, glutaric aciduria type II, cholesterol

biosynthesis defect, glycolysalation disorders, and disorders of peroxisomal biogenesis [59]. Infants

born with cardiac manifestation should be investigated for mitochondrial respiratory chain defect,

fatty acid oxidation disorder, and Pompe’s disease [60]. Congenital disorders of glycosylation disorders

could present with dysmorphic features and/or cardiomyopathy [61]. Hypoglycemia is a critical

manifestation of carbohydrate, fat metabolism disorders, and any IEMs with direct or indirect hepatic

insult [62]. Unexplained persistent metabolic acidosis in infants is a finding associated with poor

outcome due to wide IEM disorders related either directly or indirectly (multi organ failure) [60,63].

Acute encephalopathy and other neurological manifestations in infants have more than 50 causes of

various IEM diseases. These diseases represent organic aciduria, urea cycle disorders, mitochondrial,

lysosomal, and peroxisomal disorders [64]. Infants with IEM presenting with liver dysfunctions have

differential diagnoses ranging from galactosemia to lysosomal storage disorders. Liver manifestations

also carry the possibility of nonmetabolic diseases as sepsis and hypopituitarism [65]. It is therefore

impossible to use a universal clinical protocol for all IEMs, making it very difficult to limit differential

diagnosis only based on clinical findings. Clinical data are not sufficient for final diagnoses. Instead,

laboratory data have become the primary clue for diagnosis [66], [67]. Romão et al. reported that from

144 clinically diagnosed infants with IEM diseases, only 12 infants had confirmed diagnoses using

laboratory investigation [67].

Diagnosis of IEMs is based on biochemical tests that are divided into two approaches: (1) screening

tests to detect possible abnormal levels of metabolic biomarkers in blood or urine before the disease

manifests and (2) tests to detect specific pathognomonic biomarkers [68]. All biochemical diagnostics

procedures rely on the identification of abnormally high levels of the main substrates or of byproducts

that arise from alternative pathways upstream of the enzymatic blockage. These compounds can

be detected together with lower levels of the product of that enzyme or any of its downstream

metabolites [52]. Metabolic investigations are the primary information regarding diagnosis [69,70]

and are essential for effective treatment monitoring that could be curative, prevent continued disease

progression, or limit disability [71].

Screening is an important tool for primary disease prevention. In contrast to diagnostic

investigations, the screening tests aim to detect diseases in the latent asymptomatic stage of the

disease to facilitate intervention and improve outcomes [72]. IEM screening tests should be directed

to all newborns with accepted reliability, cost, and validity [5]. NBS programs had a dramatic

effect on improving the outcomes in many IEMs. IEMs can be detected at an asymptomatic stage,

enabling rapid medical interventions that positively change the progression of the disease [52] to

prevent life-threatening or long-term sequelae [73]. The impact of early screening was reported in

various diseases as an improved neurocognitive outcome in early diagnosis of phenylketonuria and

congenital hypothyroidism [32,74]. NBS improves the mortality in cases of medium-chain acyl-CoA

dehydrogenase (MCAD) deficiency [75], the overall outcome in cystic fibrosis (CF) [76], and primary
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immune deficiencies [77]. Yet, current NBS programs that rely on targeting few specific metabolites

still produce erroneous results, especially in stressed infants who are born prematurely or who present

with low birth weight [78].

In the symptomatic stage of the disease, severity and onset of symptoms influence the investigations

and diagnostic methods used. However, as many IEMs present with very similar symptoms, it is

necessary to perform multiple diagnostic investigations concurrently [60]. The investigations of

clinically manifested IEMs include tests to detect the nature and degree of system affection, the type

and level of toxic substances, in addition to generalized metabolite screening tests. This is often

performed through targeted mass spectrometry based metabolite assays [52,60,79].

7. Metabolomics Technologies Used in Inborn Errors of Metabolism

Metabolomics seeks to measure the complement of endogenous and exogenous small molecules

in a given sample. Metabolomics analysis in cells, tissues, and body fluids reflects the biochemical

status of the sample a direct readout of the current phenotype (normal or pathological) of the

living organism [80,81]. These compounds include molecules participating in catabolic and anabolic

pathways, small molecule regulators, epimetabolites [82], environmental factors [28], and microbial

metabolites [83]. While different molecular techniques can identify changes at the genetic level, it is

not always clear how either mutations, single nucleotide polymorphisms, or other changes to DNA or

gene expression will be translated in the cell. Metabolism receives inputs from every level of cellular

regulation and better represents the true cellular phenotype. In this regard, metabolomics has been

used successfully to give insights about the cause of diseases, discovered novel biomarkers, and shed

light on the impact of drug metabolism and drug effects in vivo [84–86].

Metabolomics analysis in clinical medicine is most commonly performed using nuclear magnetic

resonance (NMR) spectroscopy and mass spectrometry (MS) [85]. NMR spectroscopy measures the

magnetic property of atomic nuclei [87]. NMR spectroscopy has been described as a fast, reproducible,

and non-invasive method [88,89]. However, NMR has become less widely used in studies for newborn

screening in blood. While NMR may give stereochemical and structural insight into analysis of

isolated compounds, in complex mixtures of compounds (such as in blood), it measures far fewer

metabolites per sample than mass spectrometry. NMR is less suited for the measurement of low

abundant compounds because it is considerably less sensitive than mass spectrometry [90].

Mass spectrometry is used in two different modes in IEMs screening: either by direct injection of

the sample to the ionization source of the mass spectrometer or by separation mixtures of compounds

by gas chromatography (GC) or liquid chromatography (LC) prior to MS detection. GC or LC methods

reduce the complexity of chemical mixtures prior to mass spectrometry analysis [86] and is well suited

to separate isomers. Hence, GC-MS and LC-MS are better suited to detect and quantify compounds in

metabolomics analyses than NMR or direct infusion MS. Chromatographic separation adds additional

information about the metabolites and is used to aid in compound identification [86,91]. GC-MS

is optimal for the analysis of volatile metabolites, but it can also be used for analysis of primary

metabolites when chemical derivatization schemes are used. LC-MS is the most common method used

for both polar and nonpolar compounds [92].

The introduction of ultrahigh-performance liquid chromatography (UHPLC) and tandem mass

spectrometry (MS/MS) have improved sample throughput and analytical sensitivity of a wide range

of metabolites [93–95]. Recent advances in high resolution mass spectrometry (HRMS) yields better

mass accuracy and sensitivity than classic nominal mass measurements. HRMS enables detecting low

abundant compounds at less than ng/L [96]. In profiling mode, HRMS can increase the number of

detected metabolic signals to thousands of features even in small sample sizes, like dried blood spot

(DBS) samples [97]. In metabolomics newborn screening programs of IEMs, tandem mass spectrometry

(MS/MS) is the principle approach because of its rapid turnover, high specificity to detect target

metabolites, high sensitivity, and low sample volume requirements [44,98].
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8. Matrix

Metabolomics in biomedical studies generally uses biofluids, cells, and tissues as the primary

matrix to generate metabolic signatures. In clinical practice, urine, serum, and plasma are easy to

collect and to prepare. They present the most commonly used biofluids [99–101]. Currently, the most

commonly used sample types in newborn screening programs worldwide is blood in the form of

DBS. Dried blood spots have small sample volumes, are easily transported, are less biohazardous,

and are not as invasive to collect compared to plasma [102,103]. The use of DBS for the screening

of IEMs was reported by Guthrie and his colleagues [1] for screening PKU, orotic aciduria [104],

and aminoacidopathies [105]. The use of DBS and other dried biofluids have been validated in multiple

studies [106,107] as a good alternative to liquid samples for metabolomics owing to their low volume

and cost with easy handling [108,109]. Urine is used also for screening, as it is easy to collect, especially

using filter paper. However, the risk of contamination by feces in early age children limits collection

quality, and urine cannot detect all diseases associated with metabolites, limiting its usage [78].

In addition, other biosamples could be used, for example cerebrospinal fluid (CSF) [110] and

saliva [111]. These matrices are less commonly used due to difficulties with clean sample collection

or ease of sample collection. They are only used only for the diagnosis of specialized disorders.

For example, CSF is most commonly used for screening monoamine neurotransmitter deficiencies [112].

Cord blood has been used in the detection of thyroid stimulating hormone (TSH) in the screening of

congenital hypothyroidism [113]. Human skin fibroblasts were used for in vitro detection of the defect

in isoleucine catabolism in ethylmalonic encephalopathy by Sahebekhtiari et al. [114]. Ethylmalonic

encephalopathy is an organic aciduric disorder characterized by developmental delay, hypotonic

manifestation, and excretion of ethylmalonic acid (EMA) in urine [114,115]. While most studies utilize

targeted MS approaches, untargeted studies were conducted for comparison of metabolomics profiles

in different matrices. Koulman and Kennedy used untargeted lipidomics to compare DBS, plasma,

and whole blood profiles [116]. Similarly, metabolic profiles in cerebrospinal fluids, plasma, and urine

were compared [116].

9. Methods of Metabolomics Analyses

Metabolomics is divided into two approaches: studies looking only at specific compounds (targeted

metabolomics) and studies that aim at measuring all compounds (untargeted metabolomics), Table 1.

Targeted metabolomics methods detect and quantify a group of compounds using internal standards

and may be compared to a known reference range [117]. Only compounds established as part of the

method will be measured, while other compounds in the sample are not detected. The most commonly

used clinical approaches seek to accurately quantify all metabolites of interest while not collecting

data on the remaining small molecules present [41]. In untargeted metabolomics assays, samples

are analyzed to detect as many compounds as possible. Untargeted metabolomics therefore detects

both known and unknown compounds. The measurement of compounds outside of the diagnostic

set can provide deeper understanding of the disease [118]. Using internal standards with untargeted

metabolomics might achieve the same quantification confidence as in targeted metabolomics [41].

Table 1. Characteristics of targeted and untargeted metabolomics approaches in IEM diagnosis.

Parameter Targeted Metabolomics Untargeted Metabolomics

Main concept

Select specific metabolites (10-100) as targets
in LC-MS/MS or direct infusion MS/MS to

diagnose a specific disease.
Detect fragment ions of these metabolic

targets and perform molar quantification
using internal standards

Detect all ions within a certain mass range
in LC-MS/MS and identify as many

metabolites as possible.
Use signal intensities of both known and

unknown metabolites to characterize
diseases phenotypes. Quantification can be
aided by quality controls, normalizations,

and internal standards.
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Table 1. Cont.

Parameter Targeted Metabolomics Untargeted Metabolomics

Instrumentation

GC-MS (in single ion monitoring)
LC-triple quadrupole MS

LC-quadrupole linear ion trap MS (in
multi-reaction monitoring)

GC-MS (full scan)
LC-quadrupole time-of-flight MS

LC-orbital ion trap MS

Weaknesses

Selective isolation of a group of metabolites.
Focus on only specific (target) metabolites

may increase the risk of overlooking
metabolic responses in other pathways.

Target metabolites may lack specificity to
classify a variety of IEMs.

Costs for internal standards and complexity
of data analysis increases with the number of

target metabolites.

Maximum number of metabolites.
Relative (normalized) signal intensities are

not robust inter-laboratory units.
Lack of absolute quantification hampers
defining ‘normal’ metabolite levels on a

population level.
Comparisons only based on differentiating

groups within studies.
Data processing parameters not validated

across different software.
Compound identification is not

standardized yet.

Strengths

Hypothesis testing:
Targeted experiments provide better

quantitation, typically by internal standards
and specific mass spectrometer conditions.

Absolute quantifications of metabolite in may
be used to establish baseline metabolite levels
for defining healthy versus altered states and

for interlaboratory comparison.
Identification is performed by comparison to
internal standards and specificity of MS/MS.

Hypothesis generating:
Untargeted experiments provide broader

coverage with the potential to screen known
compounds and discover novel metabolites.
Cover “all” metabolites in samples within

the bounds of an analytical technique.
Typically >1000 metabolite signals.
No increase in the cost when more

metabolites are detected.
More information about the overall

genomic environmental interaction to yield
specific IEM phenotypes.

10. Targeted Metabolomics in the Screening and Diagnosis of Inborn Errors in Metabolism

Traditionally, the study and diagnosis of IEMs is performed using a panel of targeted analyses

with dedicated analytical protocols. These protocols cover a selected panel of diseases by quantifying

the metabolites in a disease pathway and metabolite levels are then compared to the range of healthy

(normal) metabolic concentrations [66,119,120]. For some diseases, metabolite measurements are

assembled into panels [121,122]. The most commonly screened panels of IEMs are using markers of

amino acids, fatty acid oxidation, and organic acid metabolism disorders [123–125]. While targeted

mass spectrometry methods are often used in the clinic and provide vital diagnostic information, they

fail to measure the diverse range of compounds found in biofluids.

Despite its unquestionable role, current target-based newborn screening programs yield only a

snapshot of all metabolic alterations. Many IEMs cannot be identified by current routine targeted

metabolite analyses [44]. Even when targeted screening protocols focused on a single disease or a

group of related diseases, up to 79% false positive results were reported in a study in Taiwan [126].

In 2005, newborn screening error rates were estimated to occur in 2500 to 51,000 cases in the United

States, per expected specificities of individual metabolite target tests [127]. Such false positive results

have great psychological impact on parents [128]. In addition, there are added costs of secondary

confirmatory diagnostic testing, follow-up, and primary medical management until the correct

diagnosis is revealed [129].

False interpretation of disease manifestations by the parents or family doctors as well as incomplete

description of patient symptoms by the parents may lead to inappropriate diagnostic panels. Hence,

there is a high risk that improper tests are performed by metabolite target screening methods, increasing

the rate of false negative results and delaying accurate diagnoses [118,124]. Using different cut offs for

the same disease is responsible for missed cases as well as for false positive results [124,130]. Both false

negative and false positive results in newborn screening have many causes. A single biomarker or

set of two metabolites can act as biomarker for more than one IEM disease. For example, methionine
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and cysteine levels are used for the diagnosis of homocystinuria, methionine adenosyltransferase

deficiency, and adenosylhomocysteine hydrolase deficiency. Histidine levels are used for the diagnosis

of histidinemia and formiminotransferase deficiency [131]. Further complicating correct diagnoses is

the fact that many amino acid biomarkers may be affected by other factors such as feeding prior to

screening or day time of screening [124,132].

The economic evaluation of targeted newborn screening programs has been studied in different

areas over the last decade. Thiboonboon et al. described extended metabolic screening as not cost-

effective in Thailand [133]. In the UK, newborn screening is recommend only as cost-effective for a

limited subset of diseases, dedicated for PKU and Medium Chain Acyl COA Dehydrogenase Deficiency

(MCAD), excluding many other inherited metabolic diseases [134]. For the US state of Texas, it was

reported that expanded newborn screening increases the costs to the payer [135]. Newborn screening

programs are still not used in all countries worldwide, especially in developing countries [120].

The American College of Medical Genetics have recommended a uniform panel of conditions formed

of 29 diseases together with 25 related diseases, including outcomes and guidelines [136]. However,

these recommendations are given for a specific country but are not used worldwide. Even within the

US, different states adopted varying parts of these recommendations and did not implement single

standardized sets [29].

In addition to limits of testing policies, targeted metabolomic analysis in classic newborn screening

programs limits the discovery of novel metabolic defects due to its focus on a single panel of

known metabolic pathways. Providing a broader understanding of the pathophysiology and the

metabolic interactions behind the phenotype of the disease is important to design better treatment

regimens [118,137]. Current newborn screening programs are only performed for treatable diseases.

This practice is in alignment with the Wilson and Jungner principles published 42 years ago [5]. Since

then, genomics tools, and now metabolomics, have expanded the possibility to characterize previously

undiagnosed diseases. The World Health Organization noted an uneven adoption of the Wilson and

Jungner principles in the era of genomic testing [25]. In our opinion, patients have an ethical right to

be diagnosed, even if there are no validated treatment options available. Genomic and metabolomic

testing will detail mechanisms of IEM etiologies, provide a baseline of prevalence of subcategories of

IEMs, and possibly provide a basis for developing treatments as outlined in a recent white paper on

the use of metabolomics in precision medicine [138]. Treatment options have shown rapid advances

in last decades [139–141]. Yet, neither genomic nor metabolomics technologies are mature enough

to justify mass IEM screening programs at this point. Cost-benefit analyses may show that current

targeted programs still underserve populations in need. Metabolomic and genomic databases must be

constructed and validated on population scale to prevent over diagnosis of IEMs. Yet, technologies

have matured sufficiently to the point that genomic and metabolomic studies can now be conducted to

validate the omics premises in the context of IEMs.

With recent characterizations of novel IEMs, researchers are beginning to recognize the drawbacks

of targeted metabolite methods in newborn screening program, especially for diseases that are difficult

to diagnose. Lysosomal storage diseases have a high degree of phenotypic and genetic variability

and are characterized by multisystem effects [142]. Fabry disease, a lysosomal storage disorder

caused by a deficiency of the α-galactosidase-A enzyme and characterized by an accumulation of

globotriaosylsphingosine (lyso-Gb3) and globotriaosylceramide (Gb3), has proven challenging to

be correctly diagnosed. Auray-Blais et al. analyzed plasma and urine samples of Fabry disease

patients using LC-time of flight mass spectrometry and found that more than 20 isoforms of Gb3 were

responsible for the disease severity and prognosis. Such detailed results were previously missed by

targeted approaches [143–146]. Thus, the need for broader techniques for metabolite screening should

be considered to correctly classify the growing numbers of IEMs. Untargeted metabolomics using high

resolution mass spectrometry might be best suited [118].



Metabolites 2019, 9, 242 11 of 26

11. Untargeted Metabolomics in the Screening and Diagnosis of Inborn Errors of Metabolism

In contrast to targeted metabolomics approaches, untargeted metabolomics aims to measure all

detectable analytes in a sample, including unidentified metabolites [41]. Untargeted metabolomics is

the most frequently used technique to elucidate the pathophysiological background and detect novel

biomarkers in a broad range of diseases [147–150]. A forerunner of untargeted metabolomics was

the use of gas chromatography-mass spectrometry (GC-MS) for urinary organic acids analysis and

IEM diagnosis [151], used since the 1970s. High levels of urinary organic acid characterize organic

aciduria as IEM [152]. GC-MS analysis of urinary organic acid is now presented in qualitative or semi

quantitative manner by adding specific metabolites standards [153,154].

Sample preparation for untargeted metabolomics aims at broad scale metabolome coverage

without discriminating against specific classes of small metabolites while still removing proteins

and other macromolecules [155]. Typically, extractions are performed using liquid-liquid extraction

or, less commonly, solid-phase extraction. Three crucial parameters define sample preparation for

untargeted metabolomics platforms: repeatability (precision), metabolome coverage, and the extent of

protein precipitation. The most often used method for protein depletion in biological samples is cold

precipitation by organic solvents, then centrifugation [156,157]. Subsequently, the complex chemical

mixtures of biosample extracts are separated by liquid or gas chromatography columns. Hence,

retention times, best specified in relation to internal standards, must be given in IEM reports to enable

independent verification of results, along with information on compound (mass-to-charge ratios, m/z)

and MS/MS fragmentation spectra. Chromatographic retention times represent the degree of interaction

of chemicals with the column adsorbent material, while accurate mass m/z and MS/MS spectral data

can be compared to authentic chemical standards to verify claims on compound identification in IEM

reports [158,159].

For untargeted assays, high resolution mass spectrometers provide the best sensitivity, specificity

and coverage. Quadrupole time-of-flight MS (QTOF MS or TTOF MS) and quadrupole Orbitrap MS

(Q-Exactive) instruments have full scan modes and ability to fragment ions to provide a panoramic

view of metabolites in biological samples. Triple quadrupole MS (QQQ MS) are most useful for targeted

metabolite newborn screening, especially for absolute quantifications [160]. Yet, on full-scan mode,

QQQ are less sensitive than QTOF or Q-Exactive MS instruments. QQQ also do not yield accurate

masses and are therefore unsuitable to identify novel biomarkers.

Untargeted metabolomics produces large and chemically diverse datasets. Such datasets comprise

signals of both of known and unknown chemical structures and require careful interpretations.

Statistical analyses of large datasets must account for false discovery rates to adjust for multiple

testing. In addition to univariate analysis, data can also be processed by multivariate data analysis,

including enrichment statistics [161]. Statistical analysis associates the most important metabolites to

mechanisms of diseases, diagnosis, treatment and prognosis [97,162,163], yet, such conclusions must

always be validated by independent secondary studies.

Many clinical and biomedical studies have reported using global untargeted metabolomics [164,165],

Table 2. Untargeted metabolomics aids better understanding of differential use of metabolic pathways

that are associated with health-related phenotypes [70,166]. Untargeted metabolomics may overcome

problems in targeted methods for newborn screening by increasing the number of screened IEM

diseases and decreasing the incidence of false negative results [167]. Indeed, a range of IEM studies

have used untargeted metabolomics with a high degree of success (Table 2). Denes et al. tested

using dried blood spots by high resolution mass spectrometry on 66 samples from nine different IEMs

diseases (Phenylketonuria (PKU), Medium Chain Acyl COA Dehydrogenase Deficiency (MCADD),

Homocystinuria (HCY), CLD, Maple Serum Urine Disease (MSUD), Isovaleric acidemia (IVA), Propionic

Acidemia (PA), and 3-MCC, Tyrosinemia, Citrullinemia and Galactosemia), in comparison to 500 control

samples. With this excellent number of controls, the clear discrimination between IEM diseased patient

samples and control cases appears to be primed for subsequent validation studies [108]. Similarly,

Miller et al. recognized novel biomarkers and pathways of 21 IEM disorders. He analyzed 120
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plasma samples of diagnosed subjects compared to 70 control samples using targeted and untargeted

techniques by GC and LC-MS [168].

Table 2. Using untargeted metabolomics for identification of inborn errors of metabolism.

Sample
Instrumentation

and Platform
Number of

Samples
Number of Studied

Diseases
Results ref.

Plasma LC ESI (−) QTOF
C18 column,

24 patients,
21 controls

9 patients with propionic
academia, 15 patients with
methylmalonic acidemia

Classification by
known and new
markers

[42]

Dried blood
spots

ESI (+,−) Orbitrap
Q-Exactive MS

66 patients,
500 controls

9 diseases: PKU, MCADD,
HCY, CLD, MSUD, IVA,
PA, 3-MCC, Tyrosinemia,
citrullinemia galactosemia

Correctly grouped
previous false
positive cases

[108]

Urine LC ESI (+) QTOF
HILIC amide
column

21 patients,
14 controls

4 diseases: cystinuria,
maple syrup urine disease,
adenylosuccinate lyase
deficiency, galactosemia

Groups were
correctly classified

[169]

Plasma GC-MS, ESI (+,−)
Orbitrap MS
HILIC column

1 patient Aromatic L-amino acid
decarboxylase (AADC)
deficiency

Case study [170]

Plasma GC-MS, ESI (+,−)
LC-MS
HILIC column

120 patients
70 controls

21 IEM diseases 20 IEMs classified,
novel
biomarkers

[168]

Dried blood
spots

ESI (+) Orbitrap
MS

25 patients
25 controls

Medium Chain Acyl-COA
Dehydrogenase Deficiency
(MCADD)

Disease groups
classified

[171]

Plasma GC-MS, ESI (+,−)
Orbitrap MS
HILIC column

4 patients Adenyl succinate lyase
(ADSL) deficiency

Disease
characterized

[172]

Plasma GC-MS, lipidomics
by
LC-QTOF MS

12 patients,
11 controls

Long-Chain Hydroxy Acyl
CoA Dehydrogenase,
Carnitine Palmitoyl
Transferase 2 Deficiency

Identified with
pathway detection

[173]

Urine LC ESI (+,−)
Q-Exactive MS
HILIC column

34 patients
66 controls

18 IEM diseases Characterization [116]

Skin
fibroblasts

LC-ESI (+,−) QTOF
MS with HILIC
column

3 patients
3 controls

Ethylmalonic
Encephalopathy

Detected possible
new biomarker

[114]

CSF, urine
plasma

GC-MS, LC (+,−)
ESI Orbitrap w/
HILIC column

17 patients Glucose Transporter Type
1 Deficiency Syndrome
(GLUT1-DS)

Detected possible
new biomarker,
pathway affected

[174]

Urine LC ion mobility MS 49 patients
66 controls

Mucopolysaccharidosis
MPS III A, B, C, D

Four phenotypes
identified with
pathways

[175]

Plasma LC (+,−) QTOF
HILIC column

46 IEM diseases 42 IEM groups,
new biomarkers

[118]

Plasma LC - heated ESI
Q-Exactive MS

48 patients Various types of urea cycle
defect (UCD)

Detect novel
metabolites,
monitor treatment

[176]

Abbreviations; ESI: Electrospray Ionization; LC: Liquid Chromatography; GC: Gas Chromatography; MS: Mass
Spectrometry; QTOF: Qudropole time of flight; HILIC: Hydrophilic Interaction Liquid Chromatography; CSF:
Cerebrospinal fluid.

Untargeted metabolomics widens the range of metabolites associated with IEMs and discovers new

compounds that could be potential biomarkers. Using untargeted metabolomics in phenylketonuria

of patient plasma led to the identification of two new biomarkers, glutamyl-glutamyl-phenylalanine,
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and phenylalanine-hexose [177]. These new markers showed a high degree of variation between PKU

patients and did not correlate with phenylalanine levels, illustrating their potential to highlight new

mechanisms of the disease that would require further validation. In a distinct study on methylmalonic

acidemia and propionic aciduria plasma samples, C18 LC-TOF MS-based untargeted metabolomics

was utilized. Apart from finding the known biomarker propionyl carnitine and other acylcarnitines

(such as isovaleryl carnitine), γ-butyrobetaine showed significant differences among the two diseased

groups in comparison to control samples [42].

12. Lipidomic Studies in Inborn Errors of Metabolism

Metabolites can be divided per their physicochemical properties such as water-soluble

(hydrophilic) and lipid-soluble (lipophilic) molecules. Hydrophilic molecules are the domain of

primary metabolism such as sugars, amino acids, organic acids, or nucleotides. Screening lipophilic

compounds has been termed lipidomics [178]. It routinely distinguishes lipid species such as

ceramides, sphingomyelins, and phospholipids [179]. Such polar lipids are the main constituent

of cell membranes, myelin sheaths, and intracellular organelle structures. Oxidized eicosanoid lipids

and phosphatidylinositol-lipids act in inter- and intracellular signaling, while neutral lipids are the main

reservoir for energy [180]. Hence, dysfunction in lipid metabolism results in various metabolic diseases

including metabolic syndrome [106]. More than 100 different IEMs have been associated with abnormal

lipid metabolism [180] such as peroxisomal disorders [181], fatty acid oxidation defects [56], and

cholesterol biosynthesis pathways disorders [182]. Lipidomics can be used in targeted or untargeted

methods to find biomarkers for diagnosis and understanding of the pathophysiology of lipid-related

diseases [181]. Lipidomics extractions are usually performed by liquid-liquid extraction, followed by

LC-MS analyses [178,183].

Acylcarnitines are important classical targets for diagnosis of IEMs such as organic aciduria,

mitochondrial and fatty acid oxidation defects [184]. Few studies have used untargeted lipidomics for

screening and diagnosis of IEMs. Plasma lipids were assessed in two different fatty acid oxidation

disorders (LCHAD and CPT2), discovering altered partitioning of long-chain fatty acids into complex

lipids [173]. Plasma and urinary lipids were studied in a cohort of Fabry disease patients under enzyme

replacement therapy, reporting increases in both sphingolipids and phospholipids [185]. A new

method for lipidomics analysis from dried blood spots and LC-high resolution mass spectrometry

was presented [106]. Similarly, an extensive database was built to catalogue the human lipidome of

cerebrospinal fluids by LC-high resolution mass spectrometry to start investigations into biomarkers

for neurological disorders [186].

13. Processing Raw Untargeted Metabolomics Data

With current advances in analytic methods, thousands of peaks and metabolites with good

sensitivity are revealed using different platforms. The need to identify these peaks (especially those with

significant effects in IEM studies) is a grand challenge for untargeted metabolomics researchers [187].

The first step in raw data processing is to produce a list of mass/retention time signals. Commonly used

software packages are MS-DIAL [188], XCMS [189], MZmine2 [190], and MAVEN [191], but other tools,

including licensed software, are used as well. Some software such as MS-DIAL has built-in capabilities

to utilize MS/MS spectra and retention time data to identify these metabolites by mass spectral

libraries [192]. The largest freely available MS/MS library is MassBank of North America [193] with

over 130,000 experimental spectra and 490,000 in silico predicted spectra for lipids (LipidBlast [194]).

MassBank of North America contains spectra from other open source repositories, including the Human

Metabolome Database (HMDB) [187,195,196]. Apart from these open-access libraries, fee-based MS/MS

repositories complement the informatics tools for compound identification, including the well-curated

NIST17 database [197] and the METLIN library [197,198]. Yet, novel IEM biomarkers discovered by

untargeted metabolomics or lipidomics might not be covered in common MS/MS libraries. Hence,

researchers have extended chemical structure databases to include enzyme-extensions of metabolism,
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such as the MINE database [199] and My Compound ID that uses an evidence-based metabolome

library (EML) [200]. However, matching metabolite spectra against such huge in silico databases can

give rise to false positive identifications. In silico generated mass spectra are often not based on specific

MS instruments or instrument parameter settings [201], and hence, in silico MS/MS spectra must be

used with great caution for identifying IEM biomarkers.

14. IEM Screening and Diagnosis Comparing Targeted Versus Untargeted Metabolomics

A number of studies compared results between targeted and untargeted techniques [202,203].

A recent study on plasma of urea cycle disorders (UCD) identified novel altered compounds in partial

ornithine transcarbamylase (OTC) deficiency disease (X linked UCD) in female participants [176].

In addition to previously known biomarkers of UCDs, this study detected metabolites associated with

long term complications of UCDs and discovered off-target effects of medication [176]. However,

the authors reported a long turnaround time as one of the limitations facing untargeted metabolomics,

due to the lack of automated data processing. Yet, they noted that the specificity of the assay was high

because several metabolites were detected only in diseased cases but not at normal baseline levels [176].

Conversely, classic NBS using targeted metabolomic approaches did not show much improvement

over the past years with respect to the magnitude of false positive results. Two distinct studies reported

one false positive case per every 50–300 true positive cases in the USA [204,205]. The main cause

for false positive results is the low cut off values in IEM screening tests to avoid missed cases (false

negatives) [206]. By and large, targeted amino acid measurements correlated to untargeted metabolomic

analysis in a study on IEMs in urine and CSF [207]; however, the authors noted that tryptophan was

degraded by acidification in the targeted assay but correctly quantified in untargeted metabolomics [207].

Despite being recognized as generally reliable and quantitative, targeted metabolomics may provide

uncertain results in some instances, for example, for patients in borderline categories [208]. Untargeted

metabolomics proved superior by detecting and analyzing key differences between aromatic amino

acid decarboxylase deficiency from drug-induced metabolite elevations, specifically by detecting

compounds such as dopamine 3-O-sulfate, vanillylmandelate, and 3-methoxytyramine sulfate that are

not screened in targeted assays [209].

If targeted metabolomics yields inconclusive diagnosis results, additional tests are required such

as analysis of further targets, DNA analysis, or more invasive techniques such as individual enzyme

assay in cells. Such analyses require additional costs and time to achieve the accurate diagnosis [210].

These problems may be overcome by using untargeted metabolomics assays. In a study on using

globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) as target biomarkers in urine

and plasma of Fabry, it was noted that untargeted urine metabolomics revealed seven novel urinary

lyso-Gb3-relateds isoforms in both male and female patients with Fabry disease, but not in healthy

controls [144,145,211,212]. Hence, in this case, untargeted metabolomics yielded no false positive cases

and 100% specificity, in addition to improved diagnosis for female cases which are challenging in Fabry

disease diagnosis [144,145,211,212].

Screening of IEM diseases using untargeted metabolomics gives a broad overview on aberrant

pathways. A large screen of multiple metabolic pathways provides more diagnostic confidence,

(Figure 5). For example, Li et al. published about false diagnosis reports of arginase deficiency by

an increased level of amino acid arginine obtained by targeted metabolite screening, which led to

inappropriate treatment for more than four years [213]. In contrast, untargeted metabolomics study

of arginase deficiency revealed alterations of more than 30 metabolic pathways linked by guanidino

compounds [176], giving a higher likelihood of correct diagnostic reports.
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Figure 5. Improvement of IEM diagnosis tests using untargeted metabolomics.

15. Conclusions

Targeted metabolomics in screening and diagnosis of IEMs give a narrow view of the diseases

assayed. We need to consider untargeted metabolomics as a new tool to improve the scope of

IEM disease categories associated with pathophysiology, early symptoms, therapy options and

follow-up strategies (Figure 6). Untargeted metabolomics will still need to remove some barriers

(such as in standardization, quantification, and compound identification) to become more useful for

clinicians, IEM researchers as well as the metabolomics community. To improve standardization of IEM

metabotyping, three steps are needed: (1) gathering distributed data of IEM diseases to a worldwide

accessible database, (2) providing open access reference databases to interpret analytical findings from

different instrumentations and matrices, and (3) generalizing screening programs across countries

by introducing affordable untargeted metabolomics. These actions will provide a better mechanistic

understanding, disease prevention, management, and disease outcome of IEMs.

Figure 6. Workflow for diagnosis of IEMs comparing targeted versus untargeted metabolomics.
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Adam, T. Oxidized phosphatidylcholines suggest oxidative stress in patients with medium-chain acyl-CoA

dehydrogenase deficiency. Talanta 2015, 139, 62–66. [CrossRef]

172. Donti, T.R.; Cappuccio, G.; Hubert, L.; Neira, J.; Atwal, P.S.; Miller, M.J.; Cardon, A.L.; Sutton, V.R.; Porter, B.E.;

Baumer, F.M.; et al. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma

reveals a phenotypic spectrum. Mol. Genet. Metab. Rep. 2016, 8, 61–66. [CrossRef]

173. McCoin, C.S.; Piccolo, B.D.; Knotts, T.A.; Matern, D.; Vockley, J.; Gillingham, M.B.; Adams, S.H. Unique

plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation.

J. Inherit. Metab. Dis. 2016, 39, 399–408. [CrossRef] [PubMed]

http://dx.doi.org/10.1590/1678-4685-gmb-2018-0105
http://www.ncbi.nlm.nih.gov/pubmed/30985856
http://dx.doi.org/10.1038/s41598-018-27983-0
http://www.ncbi.nlm.nih.gov/pubmed/29934622
http://dx.doi.org/10.1016/j.chroma.2013.04.030
http://www.ncbi.nlm.nih.gov/pubmed/23672979
http://dx.doi.org/10.1016/j.chroma.2014.04.071
http://www.ncbi.nlm.nih.gov/pubmed/24811151
http://dx.doi.org/10.3389/fbioe.2015.00023
http://www.ncbi.nlm.nih.gov/pubmed/25798438
http://dx.doi.org/10.1002/mas.20306
http://dx.doi.org/10.3390/metabo8020039
http://dx.doi.org/10.1038/s41598-017-15231-w
http://dx.doi.org/10.1038/nrm.2016.25
http://dx.doi.org/10.1038/nmeth.3940
http://www.ncbi.nlm.nih.gov/pubmed/27479327
http://dx.doi.org/10.3803/EnM.2016.31.1.7
http://www.ncbi.nlm.nih.gov/pubmed/26676338
http://dx.doi.org/10.1007/s10545-018-0139-6
http://dx.doi.org/10.1007/s10545-014-9727-2
http://dx.doi.org/10.1007/s10545-015-9843-7
http://dx.doi.org/10.5507/bp.2014.048
http://dx.doi.org/10.1016/j.ymgme.2015.04.008
http://dx.doi.org/10.1016/j.talanta.2015.02.041
http://dx.doi.org/10.1016/j.ymgmr.2016.07.007
http://dx.doi.org/10.1007/s10545-016-9915-3
http://www.ncbi.nlm.nih.gov/pubmed/26907176


Metabolites 2019, 9, 242 24 of 26

174. Cappuccio, G.; Pinelli, M.; Alagia, M.; Donti, T.; Day-Salvatore, D.L.; Veggiotti, P.; De Giorgis, V.; Lunghi, S.;

Vari, M.S.; Striano, P.; et al. Biochemical phenotyping unravels novel metabolic abnormalities and potential

biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet. PLoS ONE 2017, 12, e0184022.

[CrossRef] [PubMed]

175. Tebani, A.; Abily-Donval, L.; Schmitz-Afonso, I.; Héron, B.; Piraud, M.; Ausseil, J.; Zerimech, F.; Gonzalez, B.;

Marret, S.; Afonso, C.; et al. Unveiling metabolic remodeling in mucopolysaccharidosis type III through

integrative metabolomics and pathway analysis. J. Transl. Med. 2018, 16, 248. [CrossRef] [PubMed]

176. Burrage, L.C.; Thistlethwaite, L.; Stroup, B.M.; Sun, Q.; Miller, M.J.; Nagamani, S.C.S.; Craigen, W.; Scaglia, F.;

Sutton, V.R.; Graham, B.; et al. Untargeted metabolomic profiling reveals multiple pathway perturbations

and new clinical biomarkers in urea cycle disorders. Genet. Med. 2019, 21, 1977–1986. [CrossRef] [PubMed]

177. Vaclavik, J.; Coene, K.L.M.; Vrobel, I.; Najdekr, L.; Friedecký, D.; Karlíková, R.; Mádrová, L.; Petsalo, A.;

Engelke, U.F.H.; van Wegberg, A.; et al. Structural elucidation of novel biomarkers of known metabolic

disorders based on multistage fragmentation mass spectra. J. Inherit. Metab. Dis. 2018, 41, 407–414.

[CrossRef] [PubMed]

178. Sandlers, Y. The future perspective: Metabolomics in laboratory medicine for inborn errors of metabolism.

Transl. Res. 2017, 189, 65–75. [CrossRef] [PubMed]

179. Griffiths, W.J.; Ogundare, M.; Williams, C.M.; Wang, Y. On the future of “omics”: Lipidomics. J. Inherit.

Metab. Dis. 2011, 34, 583–592. [CrossRef]

180. Lamari, F.; Mochel, F.; Saudubray, J.M. An overview of inborn errors of complex lipid biosynthesis and

remodelling. J. Inherit. Metab. Dis. 2015, 38, 3–18. [CrossRef]

181. Herzog, K.; Pras-Raves, M.L.; Ferdinandusse, S.; Vervaart, M.A.T.; Luyf, A.C.M.; van Kampen, A.H.C.;

Wanders, R.J.A.; Waterham, H.R.; Vaz, F.M. Plasma lipidomics as a diagnostic tool for peroxisomal disorders.

J. Inherit. Metab. Dis. 2018, 41, 489–498. [CrossRef]

182. Lydic, T.A.; Goo, Y.H. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin. Transl.

Med. 2018, 7, 4. [CrossRef]

183. Li, M.; Yang, L.; Bai, Y.; Liu, H. Analytical methods in lipidomics and their applications. Anal. Chem. 2014,

86, 161–175. [CrossRef] [PubMed]

184. Rashed, M.S.; Ozand, P.T.; Bennett, M.J.; Barnard, J.J.; Govindaraju, D.R.; Rinaldo, P. Inborn errors of

metabolism diagnosed in sudden death cases by acylcarnitine analysis of postmortem bile. Clin. Chem. 1995,

41, 1109–1114. [PubMed]

185. Byeon, S.K.; Kim, J.Y.; Lee, J.S.; Moon, M.H. Variations in plasma and urinary lipids in response to enzyme

replacement therapy for Fabry disease patients by nanoflow UPLC-ESI-MS/MS. Anal. Bioanal. Chem. 2016,

408, 2265–2274. [CrossRef] [PubMed]

186. Seyer, A.; Boudah, S.; Broudin, S.; Junot, C.; Colsch, B. Annotation of the human cerebrospinal fluid lipidome

using high resolution mass Spectrom.etry and a dedicated data processing workflow. Metabolomics 2016, 12,

91. [CrossRef]

187. Mandal, R.; Chamot, D.; Wishart, D.S. The role of the Human Metab.olome Database in inborn errors of

metabolism. J. Inherit. Metab. Dis. 2018, 41, 329–336. [CrossRef]

188. Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.;

Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis.

Nat. Methods 2015, 12, 523–526. [CrossRef]

189. Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process

untargeted metabolomic data. Anal. Chem. 2012, 84, 5035–5039. [CrossRef]

190. Pluskal, T.; Castilol, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing,
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Mehta, S.S.; et al. Structure Annotation of All Mass Spectra in Untargeted Metabolomics. Anal. Chem. 2019,

91, 2155–2162. [CrossRef] [PubMed]

194. Kind, T.; Liu, K.H.; Lee, D.P.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass Spectrom.etry database

for lipid identification. Nat. Methods 2013, 10, 755–758. [CrossRef] [PubMed]

195. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.;

Sawhney, S.; et al. HMDB: The Human Metab.olome Database. Nucleic Acids Res. 2007, 35, D521–D526.

[CrossRef] [PubMed]

196. Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.;

Dong, E.; et al. HMDB 3.0—The Human Metab.olome Database in 2013. Nucleic Acids Res. 2013, 41,

D801–D807. [CrossRef] [PubMed]

197. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S.S.; Wohlgemuth, G.; Barupal, D.K.; Showalter, M.R.;

Arita, M.; et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev.

2018, 37, 513–532. [CrossRef]

198. Smith, C.A.; Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.;

Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Drug Monit 2005, 27, 747–751.

[CrossRef]

199. Jeffryes, J.G.; Colastani, R.L.; Elbadawi-Sidhu, M.; Kind, T.; Niehaus, T.D.; Broadbelt, L.J.; Hanson, A.D.;

Fiehn, O.; Tyo, K.E.; Henry, C.S. MINEs: Open access databases of computationally predicted enzyme

promiscuity products for untargeted metabolomics. J. Cheminform. 2015, 7, 44. [CrossRef]

200. Huan, T.; Tang, C.; Li, R.; Shi, Y.; Lin, G.; Li, L. MyCompoundID MS/MS Search: Metabolite Identification

Using a Library of Predicted Fragment-Ion.-Spectra of 383,830 Possible Human Metabolites. Anal. Chem.

2015, 87, 10619–10626. [CrossRef]

201. Aretz, I.; Meierhofer, D. Advantages and Pitfalls of Mass Spectrom.etry Based Metab.olome Profiling in

Systems Biol.ogy. Int. J. Mol. Sci. 2016, 17, 632. [CrossRef]

202. Zhang, X.; Zhu, X.; Wang, C.; Zhang, H.; Cai, Z. Non-targeted and targeted metabolomics approaches to

diagnosing lung cancer and predicting patient prognosis. Oncotarget 2016, 7, 63437–63448. [CrossRef]

203. Gonzalez-Riano, C.; Sanz-Rodríguez, M.; Escudero-Ramirez, J.; Lorenzo, M.P.; Barbas, C.; Cubelos, B.;

Garcia, A. Target. and untargeted GC-MS based metabolomic study of mouse optic nerve and its potential in

the study of neurological visual diseases. J. Pharm. Biomed. Anal. 2018, 153, 44–56. [CrossRef] [PubMed]

204. Kwon, C.; Farrell, P.M. The magnitude and challenge of false positive newborn screening test results.

Arch. Pediatric Adolesc. Med. 2000, 154, 714–718. [CrossRef] [PubMed]

205. Schmidt, J.L.; Castellanos-Brown, K.; Childress, S.; Bonhomme, N.; Oktay, J.S.; Terry, S.F.; Kyler, P.; Davidoff, A.;

Greene, C. The impact of false positive newborn screening results on families: A qualitative study. Genet. Med.

2012, 14, 76–80. [CrossRef] [PubMed]

206. Rock, M.J.; Levy, H.; Zaleski, C.; Farrell, P.M. Factors accounting for a missed diagnosis of cystic fibrosis after

newborn screening. Pediatric Pulmonol. 2011, 46, 1166–1174. [CrossRef]

207. Kennedy, A.D.; Pappan, K.L.; Donti, T.R.; Evans, A.M.; Wulff, J.E.; Miller, L.A.D.; Reid Sutton, V.; Sun, Q.;

Miller, M.J.; Elsea, S.H. Elucidation of the complex metabolic profile of cerebrospinal fluid using an untargeted

biochemical profiling assay. Mol. Genet. Metab. 2017, 121, 83–90. [CrossRef]

208. Percenti, L.; Vickery, G. Newborn Screening Follow-up. N. C. Med. J. 2019, 80, 37–41. [CrossRef]

209. Pappan, K.L.; Kennedy, A.D.; Magoulas, P.L.; Hanchard, N.A.; Sun, Q.; Elsea, S.H. Clinical Metabolomics

to Segregate Aromatic Amino Acid Decarboxylase Deficiency From Drug-Induced Metabolite Elevations.

Pediatric Neurol. 2017, 75, 66–72. [CrossRef]

210. Sweetman, L. Newborn screening by tandem mass Spectrom.etry: Gaining experience. Clin. Chem. 2001, 47,

1937–1938.

211. Dupont, F.O.; Gagnon, R.; Boutin, M.; Auray-Blais, C. A metabolomic study reveals novel plasma lyso-Gb3

analogs as Fabry disease biomarkers. Curr. Med. Chem. 2013, 20, 280–288. [CrossRef]

http://dx.doi.org/10.1021/acs.analchem.8b04698
http://www.ncbi.nlm.nih.gov/pubmed/30608141
http://dx.doi.org/10.1038/nmeth.2551
http://www.ncbi.nlm.nih.gov/pubmed/23817071
http://dx.doi.org/10.1093/nar/gkl923
http://www.ncbi.nlm.nih.gov/pubmed/17202168
http://dx.doi.org/10.1093/nar/gks1065
http://www.ncbi.nlm.nih.gov/pubmed/23161693
http://dx.doi.org/10.1002/mas.21535
http://dx.doi.org/10.1097/01.ftd.0000179845.53213.39
http://dx.doi.org/10.1186/s13321-015-0087-1
http://dx.doi.org/10.1021/acs.analchem.5b03126
http://dx.doi.org/10.3390/ijms17050632
http://dx.doi.org/10.18632/oncotarget.11521
http://dx.doi.org/10.1016/j.jpba.2018.02.015
http://www.ncbi.nlm.nih.gov/pubmed/29459235
http://dx.doi.org/10.1001/archpedi.154.7.714
http://www.ncbi.nlm.nih.gov/pubmed/10891024
http://dx.doi.org/10.1038/gim.2011.5
http://www.ncbi.nlm.nih.gov/pubmed/22237434
http://dx.doi.org/10.1002/ppul.21509
http://dx.doi.org/10.1016/j.ymgme.2017.04.005
http://dx.doi.org/10.18043/ncm.80.1.37
http://dx.doi.org/10.1016/j.pediatrneurol.2017.06.014
http://dx.doi.org/10.2174/092986713804806685


Metabolites 2019, 9, 242 26 of 26

212. Lavoie, P.; Boutin, M.; Auray-Blais, C. Multiplex analysis of novel urinary lyso-Gb3-related biomarkers for

Fabry disease by tandem mass Spectrom.etry. Anal. Chem. 2013, 85, 1743–1752. [CrossRef]

213. Li, H.; Zhao, L.; Singh, R.; Ham, J.N.; Fadoju, D.O.; Bean, L.J.H.; Zhang, Y.; Xu, Y.; Xu, H.E.; Gambello, M.J.

The first pediatric case of glucagon receptor defect due to biallelic mutations in GCGR is identified by

newborn screening of elevated arginine. Mol. Genet. Metab. Rep. 2018, 17, 46–52. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/ac303033v
http://dx.doi.org/10.1016/j.ymgmr.2018.09.006
http://www.ncbi.nlm.nih.gov/pubmed/30294546
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Overview of Inborn Errors of Metabolism Diseases 
	Inheritance and Causes 
	Classifications 
	Clinical Presentation and Outcomes 
	Diagnosis and Screening Inborn Errors of Metabolism 
	Metabolomics Technologies Used in Inborn Errors of Metabolism 
	Matrix 
	Methods of Metabolomics Analyses 
	Targeted Metabolomics in the Screening and Diagnosis of Inborn Errors in Metabolism 
	Untargeted Metabolomics in the Screening and Diagnosis of Inborn Errors of Metabolism 
	Lipidomic Studies in Inborn Errors of Metabolism 
	Processing Raw Untargeted Metabolomics Data 
	IEM Screening and Diagnosis Comparing Targeted Versus Untargeted Metabolomics 
	Conclusions 
	References

